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Introduction
The theory of impulsive differential equations is an important area 

of scientific activity. Many evolution processes are characterized by the 
fact that at certain moments of time they experience a change of state 
abruptly. These short term perturbations act instantaneously, that is in 
the form of impulses. For example, that many biological phenomena 
involving thresholds, optimal control models in economics and 
frequency modulated systems, do exhibit impulsive effects. So the 
impulsive differential equations appear as a natural description 
of observed evolution phenomena of several real world problems. 
Existence of solutions of impulsive differential equations has been 
studied by many authors. If the impulses are random the solution 
becomes a stochastic process. Existence of solutions of differential 
equations with random impulses have been studied by many authors 
[1-3].

Furthermore, besides impulsive effects, stochastic effects likewise 
exist in real systems. There is a wide range of interesting process in 
robotics, economics and biology that can be described as differential 
equations with non-deterministic dynamics such phenomena are 
described by stochastic differential equations. The solution of stochastic 
differential equation is a stochastic process. However the solution 
of differential equation with random impulses is different from the 
solution of stochastic differential equations. Existence, Uniqueness and 
qualitative analysis of solutions of stochastic differential equations have 
discussed by several authors [4,5].

Since both impulsive and stochastic effects exist it is very difficult 
to investigate the existence of solution of impulsive stochastic 
differential equations. In [6] Anguraj and Vinodkumar discussed 
the existence, uniqueness and stability of impulsive stochastic semi 
linear neutral functional differential with infinite delays. Lakrib [7] 
discussed about the existence results for impulsive neutral functional 
differential equations with multiple delays. Based on the existing 
literature, stochastic impulsive differential equations involved mainly 
on controlability and stability. To the best of our knowledge, there is 
no work reported on impulsive stochastic differential equations with 
multiple delays. The purpose of this paper is to discuss about the 
existence results of impulsive stochastic neutral functional differential 
equations with multiple delays. Our approach is based on Schaefer’s 
fixed point theorem.

In this paper we study the existence results for stochastic impulsive 
differential equations with multiple delays
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where f : J × Rn → Rn, g : J × Rn → Rn and a : J × Rn → Rn are Borel 
Measurable functions, J0 =[−r, 0], r=max {τi : i=1, 2, ...p} and φ: [−r, 
0] → Rn. Further-more the fixed moments of time tk satisfy 0=t0<t1<..... 
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Preliminaries
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where E denotes the expectation of stochastic process [8-10]. The initial 
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Let PC(J, Rn) the space of piecewise continuous functions x: J → Rn 
such that x is continuous everywhere except for t=tk at which ( )−kx t
and ( )+kx t exist and ( ) ( ), 1,...− = =k kx t x t k m . If we set Ω={x: J1 → Rn, x ∈ 
Rn ∩ PC (J, Rn)} where J1=[−r, 1] then Ω is a Banach space normed by 

{ }| ( ) |: ,  .= ∈ ∈Ωx sup x t t J x
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Obviously, for any x∈ Ω and t ∈ J, the function xt defined by 
xt(θ)=x(t + θ), for θ ∈ J0, belongs to Rn.

By L1 (J, Rn) we denote the Banach space of measurable functions x: 
J → Rn which are Lebesgue integrable, normed by
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(i) x(t) is Ft adapted;

(ii)x(t) satisfies the integral equation

0
0

10

1 00 0

( )   ,   

(0) (0, (0)) ( , ) ( , ) ( )

( )

( ) ( , ) ( ) ( ( ))    

τ

τ

φ

φ φ φ
= −

−
−

= < <

∈

 − + + += 
+ + + ∈



∑∫ ∫

∑ ∑∫ ∫

i

i

k

t p

t s
i

t tp

s k k
i t t

t for t J

f f t x g s x ds s ds

x t

x s ds a s x dB s I x t for t J

 (2.1)

Definition 2.2: (Schaefer fixed point theorem). Let X be a normed 
linear space and let Γ: X → X be a completely continuous map, that is, 
it is a continuous mapping which is compact on each bounded subset 
of X. If the set ζ={x ∈∈ X: λx=Γx for some λ>1} is bounded, then Γ has 
a fixed point [11].

Hypotheses 
H1: The function f, g: J × Rn → Rn is such that

2 2 2
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for each t∈[0, 1] and c1, c2>0 are constants.

H2: The function a: J × Rn → Rn is Caratheodory, that is,

(i) ( , )t a t x is measurable for each x ∈ R,

(ii) ( , )x a t x is continuous for a.e t ∈ J.

H3: There exists a function q ∈ L1(J, Rn) with q(t)>0 for a.e t ∈ J 
and a continuous non decreasing function ψ : [0, ∞) → [0, ∞) such that
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H4: The function Ik: R → R and there exist positive constant ck, k=1, 

2, ....m, such that ( ) ,  ≤ ∈k kI x c x R

Theorem 2.1: Suppose that the conditions (H1) − (H4) are satisfied 
then there exists a solution of the problem (1.1) on J1 [12-14].

Proof: Transform the problem (1.1) − (1.3) into a fixed point 
problem. Consider the operator Γ : Ω → Ω defined by
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Step 1: Γ has bounded values for bounded sets in Ω.

Let B be a bounded set in Ω. Then there exists a real number ρ>0 
such that 2 ρ≤E x , for all x ∈ B.

Let x ∈ B and t ∈ J, we have
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If t ∈ J0, then 
2 2φΓ ≤E x and hence 2 ηΓ ≤E x for all x ∈ B, that 

is Γ is bounded on bounded subsets of Ω.

Step 2: Γ maps bounded sets into equicontinuous sets.

Let B be as in Step 1 and x ∈ B. Let t and 0h ≠  be such that t, t + 
h ∈ J\{t1, t2, ....tm }

Now
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as h→ 0, the right hand side of the above inequality tends to zero. This 
implies the equicontinuity on J \ {t1, t2, ....tm}.

It remains to examine at t=ti, i=1, 2, ....m. Let 0h ≠ be such that 
{ }: [ , ]≠ ∩ − − =∅k i it k i t h t h Thus we have

2( ) ( ) ( , ( , )+Γ + − Γ ≤ + −i i t h tx t h x t E f t h x f t x
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The right hand side of the above inequality tends to zero as h → 0. 
The equicontinuity on J0 follows from the uniform continuity of φ on 
this interval.

Step 3: Now we show that Γ is continuous

Let {xn}⊂ Ω be a sequence such that xn → x. We will show that Γxn 
→ Γx.

For t ∈ J
1 12
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Using H3 it can be easily shown that the function ( , ) ( , )− nt tt g t x g t x
is Lebesgue integrable. By the continuity of f and Ik, k=1, 2, ...m and the 
dominated convergence theorem, the right hand side of inequality (3.2) 
tends to zero as n → ∞, which completes the proof that Γ is continuous 
[15-18].

As a sequence of steps 1 to 3, together with the Arzela-Ascoli 
theorem, we conclude that Γ is completely continuous.

To complete the proof of the theorem, it suffices to prove the 
following step.

Step 4:

There exists a priori bound of the set

ς={x ∈ Ω: λx=Γx for some λ>1}

Let x ∈ ς and λ>1 be such that λx=Γx. Then x|[−r, t1] satisfies for 
each t ∈ [0, t1],
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And Q(t)=max {q(t), p} , f or t ∈ [0, t1]

Set,
1 2

1 1 1 1 1 10
( ) ( )[ ( ( )) ( )]     [0, ]ψ= + + ∈∫

t
w t C C Q s v s v s ds for t t

Then we have v1(t) ≤ w1(t) for all t ∈ [0, t1]

A direct differentiation of w1 yields
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By a change of variables, inequality (3.4) becomes,
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By (3.1) and the mean value theorem, there is a constant 
M1=M1(t1)>0 such that w1(t) ≤ M1 for all t ∈ [0, t1]

That is v1(t) ≤ M1 for all t ∈ [0, t1]
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And Q(t)=Max {q(t), p} , for t ∈ [0, t2].

If we set,

1 2
2 2 2 2 2 20
( ) ( )[ ( ( )) ( )]     [0, ]ψ= + + ∈∫

t
w t C C Q s v s v s ds for t t
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20 0

2 2

( ) ( ) ,   [0, ]
( ( )) ( )ψ

′ ≤ ≤ ∈
+∫ ∫

t tw t ds Q s ds Q t t
w s pw s

2

1
2

( )

2, [0, ]
( )ψ

≤ ∈
+∫

w t

C

ds Q t t
s s

Again by (3.1) and the mean value theorem, there is a constant 
M2=M2 (t1, t2)>0 such that w2(t) ≤ M2 for all t ∈ [0, t2 ], and then v2(t) ≤ 
M2 for all t ∈ [0, t2]. Finally, if we

Choose M2 such that φ ≤ M2, we get,

{ }2
2 2 2 2( ) : [ , ] ( )∈ − = ≤sup E x t t r t v t M

Continue this process for x|[−r,t3], .... x|J1, we obtain that there exists 
a constant M=M (t1, ...tm)>0 such that x ≤ M.

This finish to show that the ζ is bounded in Ω.

As a result the conclusion of theorem holds and consequently the 
problem (1.1) has a solution x on J1. This completes the proof [19].
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