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Introduction 
Generalized linear models (GLMs) represent a class of regression 

models that allow us to generalize the linear regression approach to 
accommodate many types of response variables including count, 
binary, proportions and positive valued continuous distributions [1,2]. 
Because of its flexibility in addressing a variety of statistical problems 
and the availability of software to fit the models, it is considered 
a valuable statistical tool and is widely used. In fact, the generalized 
linear model has been referred to as the most significant advance in 
regression analysis in the past twenty years [2].

A generalized linear model (GLM) consists of three components:

1. A random component, specifying the conditional distribution
of the response variable, Yi (for the ith of n independently sampled 
observations), given the values of the explanatory variables in the 
model. In the initial formulation of GLMs, the distribution of Yi was 
a member of an exponential family, such as the Gaussian, binomial, 
Poisson, gamma, or inverse-Gaussian families of distributions.

2. A linear predictor—that is a linear function of regressors,

1 1 2 2 ...ij i i i k iky X X Xα β β β= + + + +

3. A smooth and invertible linearizing link function, g (.) which
transforms the expectation of the response variable, )( ii yE=µ , to the 
linear predictor:

1 1 2 2( ) ...i ij i i i k ikg y X X Xµ α β β β= + + + +

Assumptions and diagnostics

Similar to the linear model approach, there are key assumptions 
that must be met when computing a p-value using the GLM approach 
and violation of any of these assumptions may compromise the 
interpretation of model results by producing biased standard errors 
and thus unreliable p-values. However, disagreements in the literature 
on what constitutes key assumptions, decisions and checks for 
generalized linear modeling. Because the type I error (the p-value) on 
the improvement in fit with the GLM is calculated from the chi-square 
distribution which assumes homogenous, normal, and independent 
deviations centered on zero [3] it follows that these are considered 
key assumptions for GLMs. There is a general consensus that the 
assumptions of homogeneity and independence of residuals must be 
met [2-5] however, point out that the independence assumption can 

be relaxed to “at least uncorrelated”. The importance of normality 
of residuals in GLMs, on the other hand, is debated. Some authors 
[2,3] suggest that normality of the residuals must be met to correctly 
interpret the results while others [6] note that normally distributed 
errors are not a condition of GLM quality but simply a description 
of model behavior. In addition to the assumptions of the chi-square 
distribution stated above, [4] Breslow also considers the correct 
specification of the variance function (ν), the over dispersion factor (θ) 
and the link function (g) to be critical assumptions underlying GLMs. 
The objective of this study are to determine appropriate generalized 
linear models (GLM) that are suitable for count data and investigate the 
presence of over dispersion in the model parameter. The data used for were 
simulated data from R statistical software with sample size 250.

Components of a Generalized Linear Model
Random component

The random component of GLMs defines the probability 
distribution of the response. We specify that independent observation 
Y1,Y2,…Yn on the response have a probability distribution that depends 
on Ø. the probability density function belongs to the exponential 
family, which is written in two common forms.

One form of the exponential family is given by Dobson 

[ ])()()()(exp):( ydcbyayf ++= θθθ

Where a (.), b (.), c (.) and d (.) are known functions. If a (y) = 
y, the distribution is in canonical form b(Ø) and is called the natural 
parameters, in addition to they are treated as nuisance parameters, 
whose values are assumed known.

Systematic component

The systematic component of a generalized linear model (GLM) 
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Abstract
This paper deals with an empirical study of generalized linear model (GLM) for count data. In particular, Poisson 

regression model which is also known as generalized linear model for Poisson error structure has been widely 
used in recent years; it is also used in modeling of count and frequency data. Quasi Poisson model was employ for 
handling over and under dispersion which the data was found to be over dispersed and another way of handling 
over dispersion is negative binomial regression model. In this study, the two regression model were compare using 
the Akaike information criterion (AIC), the model  with minimum AIC shows the best which implies the Poisson 
regression model.
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specifies the explanatory variable. We define ή as a linear combination 
variable xj, j=1,2,..,p. the predictor is expressed as a linear combination 
of unknown parameter βj. For the ith observation ∑ == nix jiji ,...,2,1βη  
where xij is the value of the jth explanatory variable at the observation. 
In the matrix notation, we write βη X=  where ή is a vector of n linear 
predictor T

n ),...,,( 21 ηηηη = , β is a vector p parameter T),...,,( 221 ββββ =  
and X is the (nxp) model matrix written as

11 11

1
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. .
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Each row of the model matrix X refers to a different observation 
and each refer to a different covariate.

Link function

The link function ή is so called because it relates, or links, the 
systematic and random component of GLM. It specifies how the 
expected value of the response relates to explanatory variable. Let 

µ=E(Yi), then ή=g    (µ) and ∑
=

=
p

j
jijxg

1
)( βµ  i=1,2,…,n

In matrix notation ή=g(µ)=Xβ the link function is usually chosen 
based on the form of the distribution of the response [7]. The choice 
of a link function is similar to the choice of a transformation of the 
response; expect that the link function is a transformation of the mean, 
not of the individual observations (Table 1). 

The canonical link occurs when Ø=ή where Ø is the canonical 
parameter define above. For example, when the response variable is 
normal the canonical link is the identity function, which does not 
restrict the value ή and µ are allowed to take. When the response is 
Poisson, the canonical link is the logarithmic function, which is chosen 
to ensure µ>0. When the response is binomial, the canonical link is the 
logit function, which ensures 0<µ<1. McCullagh and Nelder [5] stated 
that the canonical link is favored as it results in mathematical appealing 
properties of the model.   

Materials and Methods 
Poisson regression model 

 According to McCullagh and Nelder [5] the simplest distribution 
used for modeling count data is the Poisson distribution, thus Poisson 
regression model is a special case of the generalized linear model 
(GLM) framework. The variance in the Poisson model is identical to 
mean, thus the dispersion is fixed at theta given to be 1 and the variance 
function is V(µ)=µ.

Over dispersion in Poisson model 

• If the conditional mean is greater than the conditional variance.

• Another common problem with Poisson regression model is 
excess zeros, when over dispersion is a problem we make use of 
negative binomial regression model, it will adjust β estimate and 
standard errors.

Quasi-Poisson model 

The quasi Poisson model is a way of dealing with over-dispersion 
that is, use the mean regression function and the variance function 
from the Poisson Generalized linear model (GLM) but to leave the 

dispersion parameter unrestricted. Thus, is not assumed to be fixed at 
1 but is estimated from the data [7]. This strategy leads to the same 
coefficient estimates as the standard Poisson model but inference is 
adjusted for over-dispersion.

Negative binomial regression model 

Another way of modeling over dispersion count data is to assume 
a Negative binomial distribution for yi/xi which arises as a gamma 
mixture of Poisson distribution [1,5].

Akaike Information Criterions (AIC) 

AIC is a statistical measure of the likelihood of a model parameter 
for the complexity of the model. It is useful when comparing two or 
models for data, which implies that all the data, must have the same 
independent variables. The smaller the AIC the better fitted models of 
the parameter estimate.

Count Data 
Count data are non-negative integers, they represent the number 

of occurrence of an event within a fixed period, e.g. number of trade in 
a time interval, number of given disaster, number of crime on campus 
per semester etc.   

For count data Y1, Y2, … Yn we will assume the model for Yi to be 
Poisson regression model with equal mean and variance (Appendix).

Poisson regression model 

McCullagh and Nelder [5] suggest that the Poisson distribution 
is the nominal distribution for count data in much the same way 
that the normal distribution is the benchmark for continuous data 
(Table 2) [8].

Interpretation

The regressor is highly significant and the standard errors are 
appropriate. This will also be confirmed by the following models 
that deal with over-dispersion (excess zeros) that is the quasi Poisson 
regression model.

Quasi-Poisson regression model

The quasi Poisson model is estimated when there is presence of 
over dispersion or excess zeros in Poisson model thus the regressor for 
both quasi and Poisson model and the same AIC in model which are 
highly significant.   

From the Quasi Poisson model the estimated dispersion parameter 
were give as 1.195441 which greater than 1 indicating that over-
dispersion is present in the data. The resulting from quasi Poisson 
regression tests of the coefficients are the same as to the results obtained 
from the Poisson regression with standard errors, leading to the same 
conclusions as before (Table 3).

Negative binomial regression model

Another way of dealing with over-dispersion in a count data is to 
use a negative binomial regression model. Comparing the two models 
using the AIC, the Poisson regression has the minimum AIC with 
579.15 with that of negative binomial regression which implies that the 
Poisson regression model is best (Table 4). 

Results and Conclusions 
Based on the analysis the following are the resulting conclusions:
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Link Function
Identity µ
Logarithmic Log(µ)
Logit Log[µ/(1-µ)]

Probit )(1 µφ −  where (.)1−φ  is the normal cumulative distribution 
function

Complementary 
log-log Log[-log(1-µ)]

Power




=
≠

0log
0

λµ
λµ λ

Table 1: List some common link functions.

Coefficients: Estimate Std Error z value Pr(>|z|)
(Intercept) -0.3464 0.08452 -4.099 4.16e-05
X 1.09615 0.05619 19.507 < 2e-16

(Dispersion parameter for poisson family taken to be 1)
AIC: 579.15
Number of Fisher Scoring iterations: 5

Table 2: Poisson Regression Model.

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.34640 0.09241 -3.749 0.000221
X 1.09615 0.06144 17.841 < 2e-16

(Dispersion parameter for quasipoisson family taken to be 1.195441)
AIC: NA
Number of Fisher Scoring iterations: 5

Table 3: Quasi-Poisson Regression Model.

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.34657 0.08457 -4.098 4.16e-05
X 1.09637 0.05630 19.473 < 2e-16

(Dispersion parameter for Negative Binomial (1237.558) family taken to be 1)
AIC: 581.15

Table 4: Negative Binomial Regression Model.

• The Poisson regression model was used to fit a model, the
parameters of the fitted model were found to be significant.

• Quasi Poisson regression was used to test for over dispersion and 
it was found that there is over dispersion in Poisson regression
model which lead to use of negative binomial regression model.

• The goodness-of-fit shows that the model is appropriate.

• Using the AIC the Poisson regression model give an appropriate 
model having the minimum AIC in the analysis.
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