
Research Article Open Access

Industrial Engineering & Management
Ind

us
tri

al
En

gineering & Managem
ent

ISSN: 2169-0316

Rahmanidoust et al., Ind Eng Manage 2017, 6:3
DOI: 10.4172/2169-0316.1000225

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid
Flow Shop Scheduling Problem with Machine Availability Constraint
Mohammad Rahmanidoust1*, Jianguo Zheng1 and Meysam Rabiee2

1Glorious Sun School of Business and Management, Donghua University, PR China
2Department of Industrial Engineering, Bu-Ali Sina University, Hamedan, Iran

Abstract
This research investigates a no-wait hybrid flow shop scheduling problem. Minimizing the mean tardiness is

considered as the objective to develop the optimal scheduling algorithm. Characteristics of our considered problem
leads to the complexity of problem. First, no-wait operations. Second, setup time of each job is separated from its
processing time and depends upon its preceding job. Third, all of jobs aren’t available at the first of scheduling. In
other word, each job has individual ready time. Finally, machines are not continuously available due to the preventive
maintenance. An effective harmony search algorithm is used to tackle the mentioned problem. A series of computational
experiments is conducted by comparing our algorithm with previous meta-heuristic algorithms like population based
simulated annealing (PBSA), Adopted imperialist competitive algorithm (ICA) and hybridization of PBSA and ICA
(ICA+PBSA). To achieve reliable results, Taguchi approach is used to define robust parameters’ values for our proposed
algorithm. The computational results with random test problems suggest that our proposed harmony search outperforms
the three foregoing algorithms.

*Corresponding author: Mohammad Rahmanidoust, Glorious Sun School of
Business and Management, Donghua University, PR China, Tel: +989121366482;
E-mail: rahmanidoust@hotmail.com

Received June 13, 2017; Accepted June 14, 2017; Published August 11, 2017

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony
Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling Problem
with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-
0316.1000225

Copyright: © 2017 Rahmanidoust M, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Keywords: Scheduling; No-wait; Flow shop; Harmony search;
Taguchi

Notations
n: The number of jobs to be scheduled (j=1, 2,.., n)

mi: The number of parallel machines at stage i
j

iup : Processing time for job j at stage i (i=1, 2,.., s) on uth machine

dj: Due date for job j
i
k, jS : Sequence-dependent setup time from job k to job j at stage i

π: Permutation of the given jobs (π={ π1, π2,..., πn})

MAui: Machine availability time for uth machine at stage i

Cj: Completion time of job j

Tj: Tardiness for job j (Tj=max(0, Cj - dj))

T : Mean tardiness
1

(() /)
n

j
j

T T n
=

= ∑
NP-Hard: Non-deterministic polynomial-time Hard.

Introduction
Production scheduling is one of the prominent decision-making

process in the operation level of each manufacture or service
companies. It can be defined as sequencing of a number of jobs on
one or several machines aiming to optimally utilizing the resources
while meeting the customer’s demands in an efficient manner. Such
a frequently occurring scheduling problem is difficult to solve due its
complex nature. In recent years, researchers have focus in solving new
challenges of machine scheduling problems [1-7].

One of the very noticeable process to make decision is the planning
for production in service companies. This is actually a classification
of jobs for one or more machines to best use of the capabilities in
operation and reach the customer’s satisfaction at the same time. This
planning problem that is often occurring, is interacted to solve since
the environment is so [8].

One of the most applicable problems in scheduling area in both

theory and practice is flexible flow shop (FFS), or a hybrid flow shop
(HFS), or a flow shop with multiple processors (FSMP). A typical FFS
problem can be defined as follows: there are N jobs passing through
a K stage flow line with one or more parallel machines at each stage.
No-wait flow shop and flexible flow shop scheduling problem has been
studied by many researchers [9-19]. For a literature review in this area
the readers are referred to those conducted by Richard and Zhang [20],
Ruiz et al. [21], and Ribas et al. [22],

Classical flexible flow shop scheduling problems assume that
there is unlimited intermediate storage available to work in process
(WIP) jobs between two adjacent stages. In a particular case of the
FFL, there is no longer any need for intermediate storage or blocking
between stages. The operations of all jobs have to be processed from
start to finish without interruptions either on or between stages. i.e.,
if necessary, the start of a job on a given machine must be delayed
so that the completion of the operation coincides with the beginning
of the operation on the following machine. These conditions are
quite common in several industries. In some industries, due to the
temperature or other characteristics of the material it is required that
each operation follow the previous one immediately. Such situations
appear in the chemical processing [23], food processing [24], concrete
ware production [25], pharmaceutical processing [26] and production
of steel, plastics, and aluminum products [27]. For instance, in the
steel-making and continuous casting processes of iron and steel
manufacturing enterprises, a no-wait scheduling can reduce the energy
loss of high-temperature molten steel and plays an important role in

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 2 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

realizing the advanced production style of HCR/DHCR [28]. For a
further study in no wait manufacturing the readers are recommended
to review the paper present by Hall and Sriskandarajah [26].

In the literature, the no-wait flow shop scheduling problem
has attracted many studies since 1964 [29-44]. No-wait flow shop
scheduling problem is a typical scheduling problem with strong
engineering background.

Gilmore and Gomory [29] presented an algorithm that can solve a
restricted version of the travelling salesman problem (TSP). As the no-
wait two-machine flow shop problem of mean completion time (MCT)
minimization can be formulated as the restricted TSP, the Gilmore and
Gomory algorithm can be used to solve the problem in polynomial
time. Gupta et al. [45] showed that the problem can be reduced to the
Gilmore–Gomory TSP and can be solved in polynomial time. Cheng
et al. [30] considered the problem of one-operator two-machine flow-
shop scheduling with setup and dismounting times to minimize MCT.
The no-wait two-machine flow-shop scheduling problem with separate
sequence-independent setup times was addressed by Aldowaisan and
Allahverdi [46] with the objective of minimizing total completion time.
They developed optimal solutions for certain cases, established a local
dominance relation for the general case, and proposed a simple but
effective heuristic. The same problem was studied by Aldowaisan [47]
where a global dominance relation along with a heuristic and a branch-
and-bound method was provided.

The algorithm presented by Gilmore and Gomory [29], can answer
to the salesman travelling question. When the no-wait two-machine
flow shop problem of mean completion time (MCT) is shown as
salesman travelling question, the abovementioned algorithm can be
answered in several steps. Also to decrease MCT, Cheng et al. uses
special system and descending time. The entire accomplishment time is
the goal of Aldowaisan and Allahverdi. They applied discrete sequence-
independent arrangement times to come up with the no-wait two-
machine flow-shop scheduling problem. They made the best answer for
some issues, for the general cases they based local supremacy relation,
and finally suggested a modest and operative empirical method.
Another study by Aldowaisan was proposed to answer the same issue
that a global dominance relation accompanied with an empirical and
branch-and-bound method was created.

The two-machine no-wait flow-shop separate setup time problem
with the objective of minimizing MCT is also addressed in the
literature. Sidney et al. [48] consider the same problem but where
the setup on the second machine consists of two parts. Nagano and
Araújo [42] addressed the problem of scheduling jobs in a no-wait
flow-shop with sequence-dependent setup times with the objective
of minimizing the makespan and the total flow time. They presented
two new constructive heuristics to obtain good approximate solutions
for the problem in a short CPU time, named GAPH and QUARTS.
Samarghandi and ElMekkawy [44] developed a mathematical model of
the problem and the problem was reduced to a permutation problem.
A straightforward algorithm for calculating the makespan of the
permutation of jobs was developed. A particle swarm optimization
(PSO) was applied on the encoded sequences for exploration of the
solution space. Computational results on the available test problems
revealed the efficiency of the PSO in finding good-quality solutions.

In real manufacturing systems, many assumptions could be
considered but in most of the studies in this area, investigators tried
to solve the problems with a few practical assumptions. In contrast to
the existence of many research results on the no-wait flexible flow shop

scheduling, there have been few attempts to study scheduling problems
that involve sequence dependent setup time, minimizing tardiness,
unrelated parallel machine and machine availability in no-wait flexible
flow shop simultaneously. Some of close researches to our studied
problem have discussed as follows.

Liu et al. [49] presented a heuristic algorithm named Least Deviation
(LD) algorithm for two-stage no-wait hybrid flow shop scheduling with
a single machine in either stage. The performance measure used in this
study is makespan. The results showed that LD algorithm outperforms
the others in most practical cases. In addition the proposed algorithms
showed low computational complexity and easy to implement, thus it
is favourable application value.

Xie et al. [50] proposed a new heuristic algorithm known as
Minimum Deviation Algorithm (MDA) to minimize makespan in
a two stage flexible flow shop with no waiting time. Experimental
results of the study showed that MDA outperforms partition method,
partition method with LPT, Johnson’s and modified Johnson’s
algorithms. Huang et al. [51] considered a no-wait two stage flexible
flow shop with setup times and with minimum total completion time
performance measure. They proposed an integer programming model
and Ant Colony Optimization heuristic approach. The results revealed
that the efficiency of the proposed algorithm is superior to those solved
by integer programming while having satisfactory solutions. Jolai et al.
[52] introduced no-wait flexible flow line scheduling problem with time
windows and job rejection to maximizing profit. This is an extension of
production and delivery scheduling problem with time windows. They
also presented a mixed integer-linear programming model and genetic
algorithm procedures to solve their model efficiently. Comparison of
the results obtained by GA with LINGO solutions and Tabu search
showed that the proposed GA obtains better solutions in a very low
computational time in comparison with the solutions obtained from
LINGO optimization software. Jolai et al. [53] introduced a novel
hybrid meta-heuristic algorithm to solve a no-wait flexible flow shop
scheduling problem with sequence-dependent setup times to minimize
the maximum completion time. They proposed three novel meta-
heuristic algorithms, namely Population Based Simulated Annealing
(PBSA), Adapted Imperialist Competitive Algorithm (AICA) and
hybridization of adapted imperialist competitive algorithm and
population based simulated annealing (AICA+PBSA) to solve the
addressed problem. The computational evaluations of their study
manifestly support the high performance of our proposed novel hybrid
algorithm against other algorithms which were applied in literature for
related production scheduling problems. Rabiee et al. [54] addressed
the problem of no-wait two stage flexible flow shop scheduling problem
with respect to unrelated parallel machines, sequence-dependent setup
times, probable reworks and different ready times to actualize the
problem. They proposed an intelligent hybrid meta-heuristic which was
based on imperialist competitive algorithm (ICA), simulated annealing
(SA), variable neighbourhood search (VNS) and genetic algorithm
(GA) for solving the mentioned problem. The results of their study
revealed the relative superiority of proposed algorithm. Ramezani et al.
[39] dealt with a no-wait scheduling problem considering anticipatory
sequence-dependent setup times on the flexible flow shop environment
with uniform parallel machines to minimize maximum completion
time of jobs. Since this problem was known to be NP-hard, they
introduced a novel approach to tackle the problem. They proposed a
hybrid meta-heuristic which involved invasive weed optimization,
variable neighbourhood search and simulated annealing to tackle
of the problem. The experimental results of their research revealed
the superiority of the performance of the hybrid meta-heuristic in

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 3 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

comparison with original ones singularly. Asefi et al. [55] proposed a
hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible
flow shop scheduling problem. They compared proposed algorithm
with NSGA-II and SPEA-II and revealed that their algorithm can
achieve reliable and better results. Khalili and Naderi [56] proposed a
novel bi-objective imperialist competitive algorithm to solve a no-wait
flexible flow shop scheduling problem with sequence dependent setup
times.

To the best of our knowledge, the mean tardiness minimization
in no-wait flexible flow shop scheduling problem with sequence
dependent setup times, unrelated parallel machine, ready time and
machine availability constraint has not been studied yet. Considering
the importance of the no-wait flexible flow shop problem and the fact
that the no-wait flexible flow shop problem with mentioned constraints
and assumptions has not been given much heed by researchers, here we
have offered a new effective harmony search algorithm for solving it.

The outline of the paper is as follows: problem definition is
presented in section 2. Section 3 explains the proposed harmony search
to solve the considered problem. Computational experiments as well as
parameter tuning are provided in section 4. Finally, section 5 is devoted
to conclusion remarks and future researches.

Problem Definition
In this section, first the notations which are used in this research are

defined then the assumptions of the studied problem are elaborated.

Assumptions

The problem under study here involves processing of a set of
n jobs (j={j1, j2,..., jn}). It is needed that these jobs are processed in k
consecutive stages. The number of parallel machines in the kth stage is
Mk and the processing time of the jth job in the uth machine at ith stage
is

j
iup . The sequence dependent setup time between jth and Lth job in

jth stage is shown as. Our problem there is finding the sequence of jobs
with minimum average delay (T). Here are some assumptions of the
problem:

•	 All the data used here for the study of the problem are known
deterministically.

•	 Once a job began on a machine, it must proceed to completion
without interruption. That is, once a job is commenced on the
first machine, it must proceed through all machines without
any occlusion or interruption.

•	 Each stage has at least one machine, and there is at least one
stage which has more than one machine.

•	 A machine can process only one job at a time.

•	 Travel times between stages are negligible.

•	 Each job is assigned to every machine one at a time and no
machines are twice occupied by the same job.

•	 To processing of each job some of machines are available due
to machine eligibility an. There is no breakdown or s machine
availability constraint.

•	 The release time of all jobs are different, meaning that each job
can be processed after release time and it can’t be processed
before its ready time.

Setup times depend on sequencing of jobs which means setup

times are sequence dependent and the length of time required to do the
setup depends on the prior and current jobs and the machine which is
to do the processing in the mentioned stage (i

jlS).

Machine in all stages are non-identical which means speed of
each machine relatively is different. In this case, processors work in
parallel and speed of processing time of job i at stage t uniformly differs
depends on relative speed of ,

t
i jv (see eqn. (1)).

,
,

t
t i
i j t

i j

pp
v

= i=1,..,n j=1,…,mt t=1,….g (1)

The problem of no wait flexible flow shop is shown by FFS (QM
(1),..., QM (m)) / no-wait, SDST, rj, Mj/T and formally defined in the
following. The problem is processing of n jobs {J1, J2, J3,…, Jn} on a series
of stages {1, 2,..., t,…, k}which at each stage there are mt machines.
Scheduling of the addressed problem comprises three sub-problems:
At first, the problem is finding a sequence which minimizes the average
tardiness. Second issue which has to be taken into account is machine
assignment. Thirdly, minimum starting times must be determined
in a way that all of the no-wait constraints are satisfied. The no-wait
constraint requires that the starting time of job Jj at stage t be equal to
the completion time of job Jj at stage t-1 for each i and t.

[] [] [] []{ }1 0 ,1 , 1 ,

1 1 1

1
min

i iti m
C p Sπ π π π

≤ ≤
= + (2)

[] [] [] [] []{ }1 1 10 ,1 , 1 '

1 1

1
min

j jt

t t t

j m
C C p S−
π π π π π

≤ ≤
= + + (3)

[] [] [] [] [] []{ }1 1 ,, '

1 1

1
2

min
j ilj j jj j

t
l l

j m
l

C C F p S
−π π π π π π

≤ ≤
=

= + +∑ (4)

Where,

[] [] [] [] [] []{ }1 1 1 ,, '

-1
1

2 1
1

max 0, min min
i it li j j jj j

t
t l l

i m i m
l

F C C p S
− − −π π π π π π

≤ ≤ ≤ ≤
=

 = − + +
∑ j=2,…,n (5)

Regarding above mentioned relations, completion time of a job is
equal to completion time of that job at the final stage:

[] []j j

kC Cπ π= (6)

And as mentioned earlier, the makespan of the scheduling
corresponding to the given sequence of jobs is calculated as follows:

[]{ }max 0,
j

g
jT C dπ

 = −

 (7)

1

n

j
j

T

T
N
==
∑ (8)

Herein, the goal of the problem of no-wait SDST flexible flow shop
with different ready time and machine availability is to find an optimal
sequence which can minimize the mean tardiness of scheduling.

In this formula, the objective is to find out the best order that can
highly reduce the lateness of planning for the problem of no-wait SDST
flexible flow shop with variety of ready time and machine readiness.

No-wait two-stage flexible flow shop problems are NP-hard in the
strong sense. So, the no-wait k-stage flexible flow shop problem is NP-
hard, too. Hence, all exact approaches for even simple problems will
most likely have running times that increase exponentially with the
problem size. In this paper a novel advanced meta-heuristic algorithm
(effective harmony search) is suggested for solving the problem
described above. This problem considered in this study is schematically
depicted in Figure 1. Also, the framework of this algorithm is elucidated
in the next section.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 4 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

No-wait two-stage flexible flow shop problems are NP-hard in the
strong sense. Hence the same is for the no-wait k-stage flexible flow
shop problem, i, e; the NP-hard too. So, any possible precise methods
for even simple problems probably have process times that rapidly
grow as the size of problem grows. This study attempts to suggest a new
advanced meta-heuristic algorithm (effective harmony search) to solve
the abovementioned problem.

Hybrid Harmony Search (HHS)
Recently, the meta-heuristics have become quite popular over the

other approximate, exact or heuristic methods for solving complex
combinatorial optimization problems such as job shop, flow shop
scheduling problem and too many other hard problems [57-60]. In this
paper, a new algorithm called ‘hybrid algorithm’ (HA)” is proposed to
solve the described problem.

Harmony search is a music-based metaheuristic optimization
algorithm. It was inspired by the observation that the aim of music is
to search for a perfect state of harmony. The effort to find the harmony
in music is analogous to find the optimality in an optimization process.
A musician always intends to produce a piece of music with perfect
harmony. On the other hand, an optimal solution to an optimization
problem should be the best solution available to the problem under the
given objectives and limited by constraints. Both processes intend to
produce the best or optimum. In order to explain the Harmony Search
in more detail, let us first idealize the improvisation process by a skilled
musician. When a musician is improvising, he or she has three possible
choices: (1) playing any famous tune exactly from his or her memory;
(2) playing something similar to the aforementioned tune (thus
adjusting the pitch slightly); or (3) composing new or random notes.

Geem et al. [61] formalized these three options into quantitative
optimization process, and the three corresponding components become:
usage of harmony memory, pitch adjusting, and randomization.

Searching for harmony which is a subject in music, is an algorithm
for metaheuristic optimization. The criteria were recognized when
the amazing state of music harmony was searched as a goal. In the
process of harmony search in music, the corresponding note is being
attempted to find. The composer aims to find it when the best result is
recognized. So the objective is to find optimum or the best solution for
our subjected optimization problem and this is surely the best possible
solution considering the goals, limits and capabilities. So what really
matters in both areas is, “the best” or “optimum”. To elaborate the
process of Harmony search, let’s simulate what an expert composer
does. When he is improvising, he goes through 3 different choices. One
is, copying what he has in mind from a famous tune. Two is, simulate

a tune that is similar to that and three is, producing a tune by chance.
These are what Geem et al. [61] refers to as usage of harmony memory,
pitch adjusting, and randomization.

The steps in the procedure of harmony search are as follows [62]:

Step 1. Initialize the problem and algorithm parameters.

Step 2. Initialize the harmony memory.

Step 3. Improvise a new harmony.

Step 4. Update the harmony memory.

Step 5. Check the stopping criterion.

These steps are described in the next subsections.

Algorithm’s parameters

Before defining the steps of proposed hybrid harmony search the
parameters of this algorithm should be introduced. The HS algorithm
parameters are also specified in this step. These are the harmony
memory size (HMS), or the number of solution vectors in the harmony
memory; harmony memory considering rate (HMCR); pitch adjusting
rate (PAR); and the number of improvisations (NI), or stopping
criterion. The harmony memory (HM) is a memory location where all
the solution vectors (sets of decision variables) are stored. This HM is
similar to the genetic pool in the GA [63]. Here, HMCR and PAR are
parameters that are used to improve the solution vector.

As the first step, the factors of suggested hybrid harmony search are
elaborated to define the details of it. Also, the HS algorithm parameters
are stated here. They’re referred as Harmony memory size (HMS)
or the quantity of possible solution path for that harmony memory.
Harmony memory considering rate (HMCR); pitch adjusting rate
(PAR); and the number of improvisations (NI), or stopping criterion.
All solution paths or collection of choices are stored in Harmony
Memory. HM corresponds to what we already mentioned as genetic
pool in the GA. Both HMCR and PAR are the factors that matter to
develop the solution path bank.

Harmony memory initialization and evaluation

The HM matrix is filled with as many randomly generated solution
vectors as the HMS. This matrix has N columns where N is the total
number of decision variables and HMS rows which are selected in the
first step. This initial memory is created by assigning random values
that lie inside the lower and upper bounds of the decision variable to
each decision parameter of each vector of the memory as shown in eqn.
(10). An initial population of harmony vectors are randomly generated
and stored in a harmony memory (HM). Then a new candidate
harmony is generated from all of the solutions in HM by using a
memory consideration, a pitch adjustment, and a random selection.

The HM matrix is accumulated with maximum number of
randomly made solution paths. It has N columns where N is the sum of
choices and HMS rows that are selected in the first step. This primarily
memory is shaped via allocating random values that are from upper
and lower boundaries of choices to every single decision factor and
parts of memory as shown in eqn. (10). A pool from harmony paths
are randomly created and stored in HM. Using a memory status, an
adjustment in pitch and a random choice, another harmony variable is
created among all the possible choices in HM.

()0 min max min
i, j j j j jx x r x x= + × − (9)

J1 Jl Jn

M1

M2

M
m1

M1

M2

M
m2

M1

M2

M
m3

M1

M2

M
mk

Stage 1 Stage 2 Stage 3 Stage k

Figure 1: Schematic of the problem.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 5 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

Where min
jx and max

jx are the lower and upper bound of the
jth decision parameter respectively, and rj ∈[0,1] is an uniformly
distributed random number generated anew for each value of j. Pseudo
code of memory initialization can be shown in Figure 2. Thus, HM
form can be shown as in Figure 3. Candidate solution vectors in HM
shown in Figure 3 are then analyzed and their objective function values
are calculated.

(f (xi), 1,2,..., HMS.

It should be noted that to use HS algorithm for solving the
mentioned scheduling problem, it is necessary to convert it to a job
permutation for evaluating the objective value. Let each index of
the dimensions of the vector represent a typical job from J={1, 2,...,
n}, and the n indexes denote n different jobs. Thereafter, the largest
position value (LPV) rule is employed to obtain a job permutation
p={p(1),p(2),..., p(n)} by ordering the jobs in their non-increasing
position value of Xi. A simple example is illustrated in Figure 4.

Improvise a new harmony

In this step, a New Harmony vector ()1 2, ,i i, i, i,nx x x x′ ′ ′ ′= is generated
based on three rules. They are memory consideration, pitch adjustment,
and random selection. The value of a design variable can be selected
from the values stored in HM with a probability of harmony memory
considering rate (HMCR). It can be further adjusted by moving to a
neighbor value of a selected value from the HM with a probability of
pitch adjusting rate (PAR). Or, it can be selected randomly from the set
of all candidate values without considering the stored values in HM,
with the probability of (1-HMCR).

Memory consideration: The usage of harmony memory (HM)
is important because it ensures that good harmonies are considered
as elements of new solution vectors. In order to use this memory
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called
harmony memory considering (or accepting) rate. If this rate is too low,
only few elite harmonies are selected and it may converge too slowly. If
this rate is extremely high (near 1), the pitches in the harmony memory
are mostly used, and other ones are not explored well, leading not into
good solutions. Therefore, based on researchers suggestion HMCR
is considered between 0.7 and 0.95. We consider a linear relation for
HMCR so that it has bigger value at first iteration and lower value at
the end of iterations.

Using HM drastically matters since it guarantees the best harmonies
are purified for components of the selected solution. To meritoriously
apply the memory, HS process implements a factor HMCR ∈ [0,1], that
is known as rate of harmony memory accepting. In case the best and
few harmonies are selected, this rate is too low and the convergence is
very slow. On the other hand, when the rate is tremendously high, it
means the pitches in harmony memory are almost fully working, the
other ones are not working well and hence they’re not led to proper
solution. As a result, the investigators suggest 0.7 and 0.95 as the range
of HMCR. Also since the relation of it is linear, at the first iteration, it
has higher value and it incrementally decrease till the end of iterations
that has low value.

Memory consideration: The usage of harmony memory (HM)
is important because it ensures that good harmonies are considered
as elements of new solution vectors. In order to use this memory
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it
may converge too slowly. If this rate is extremely high (near 1), the
pitches in the harmony memory are mostly used, and other ones are
not explored well, leading not into good solutions. Therefore, based on
researchers suggestion HMCR is considered between 0.7 and 0.95. We
consider a linear relation for HMCR so that it has bigger value at first
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies
are purified for components of the selected solution. To meritoriously
apply the memory, HS process implements a factor HMCR ∈ [0,1], that
is known as rate of harmony memory accepting. In case the best and
few harmonies are selected, this rate is too low and the convergence is
very slow. On the other hand, when the rate is tremendously high, it
means the pitches in harmony memory are almost fully working, the
other ones are not working well and hence they’re not led to proper
solution. As a result, the investigators suggest 0.7 and 0.95 as the range
of HMCR. Aslo since the relation of it is linear, at the first iteration, it
has higher value and it incrementally decrease till the end of iterations
that has low value.

Memory consideration: The usage of harmony memory (HM)
is important because it ensures that good harmonies are considered
as elements of new solution vectors. In order to use this memory
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it
may converge too slowly. If this rate is extremely high (near 1), the
pitches in the harmony memory are mostly used, and other ones are
not explored well, leading not into good solutions. Therefore, based on
researchers suggestion HMCR is considered between 0.7 and 0.95. We

0 min max min
,

1 HMS
1 decision variables

()i j j j j j

for i to
for j to

x x r x x
end

end

=
=

= + × −

Figure 2: Memory initialization.

()
()

()

1
1 1 1
1 2

22 2 2
1 2

1 2

|...
|...

HM
|....
|...

n

n

HMS HMS HMS HMSn

f xx x x
f xx x x

x x x f x

=

Figure 3: HM form.

0.73 0.21 0.43 0.19 0.56 0.68

1 5 4 6 3 2

Figure 4: An example for the LPV rule.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 6 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

consider a linear relation for HMCR so that it has bigger value at first
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies
are purified for components of the selected solution. To meritoriously
apply the memory, HS process implements a factor HMCR ∈ [0,1], that
is known as rate of harmony memory accepting. In case the best and
few harmonies are selected, this rate is too low and the convergence is
very slow. On the other hand, when the rate is tremendously high, it
means the pitches in harmony memory are almost fully working, the
other ones are not working well and hence they’re not led to proper
solution. As a result, the investigators suggest 0.7 and 0.95 as the range
of HMCR. Aslo since the relation of it is linear, at the first iteration, it
has higher value and it incrementally decrease till the end of iterations
that has low value.

Memory consideration: The usage of harmony memory (HM)
is important because it ensures that good harmonies are considered
as elements of new solution vectors. In order to use this memory
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it
may converge too slowly. If this rate is extremely high (near 1), the
pitches in the harmony memory are mostly used, and other ones are
not explored well, leading not into good solutions. Therefore, based on
researchers suggestion HMCR is considered between 0.7 and 0.95. We
consider a linear relation for HMCR so that it has bigger value at first
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies
are purified for components of the selected solution. To meritoriously
apply the memory, HS process implements a factor HMCR ∈ [0,1], that
is known as rate of harmony memory accepting. In case the best and
few harmonies are selected, this rate is too low and the convergence is
very slow. On the other hand, when the rate is tremendously high, it
means the pitches in harmony memory are almost fully working, the
other ones are not working well and hence they’re not led to proper
solution. As a result, the investigators suggest 0.7 and 0.95 as the range
of HMCR. Aslo since the relation of it is linear, at the first iteration, it
has higher value and it incrementally decrease till the end of iterations
that has low value.

() max min
min

HMCR HMCRHMCR t HMCR t
NI
−

= + × (10)

Where HMCR(t) is harmony memory consideration rate for
iteration t, HMCRmin and HMCRmax are the minimum and maximum
value for HMCR, respectively and finally NI is number of iterations.

Pitch adjustment: The second component is the pitch adjustment
which has parameters such as pitch bandwidth (bw) and pitch adjusting
rate (PAR). As the pitch adjustment in music means changing the
frequency, it means generating a slightly different value in the HS
algorithm. In theory, the pitch can be adjusted linearly or nonlinearly,
but in practice, linear adjustment is used. This operation uses the
PAR parameter, which is the rate of pitch adjustment and r which is
a random number between 0 and 1; and bw is an arbitrary distance
bandwidth. Pitch adjustment is similar to the mutation operator in
genetic algorithms. We can assign a pitch-adjusting rate (PAR) to
control the degree of the adjustment (Figure 5). A low pitch adjusting
rate with a narrow bandwidth can slow down the convergence of HS
because of the limitation in the exploration of only a small subspace of
the whole search space. On the other hand, a very high pitch-adjusting
rate with a wide bandwidth may cause the solution to scatter around

some potential optima as in a random search. It has examined that
PAR=0.1~0.5 is the best value to obtain better results. We also used
another modification for pitch adjustment rate and consider a linear
relation so that it has bigger value at first iteration and lower value at
the end of iterations (See eqn. (11)).

Pitch adjustment is the second part. Its factors are Pitch bandwidth
(bw) and pitch adjusting rate (PAR). In music, this means frequency
change. Here, it means adjusting the value in HS algorithm. Both
adjustment, linear and non-linear are possible in theory but in fact only
linear adjustment is applied that uses the PAR factor, which is the rate
of pitch adjustment and r which is a random number between 0 and 1;
and bw is an arbitrary distance bandwidth. Pitch adjustment performs
like mutation operator in genetic algorithms it means it’s possible to
allocate a PAR to regulate the degree of adjustment (Figure 5). Due to
restriction in searching subspace, a low PAR and narrow bw decelerate
the convergence of HS. Vice versa, in random exploration, a high PAR
and wide bw leads to the key to scatter around some potential optima..
It has examined that PAR=0.1~0.5 is the best value to reach the best
results. We also used another modification for PAR. The relation is
linear, i.e. at the first iteration, the value is higher and at the ending
iterations, the value becomes lower and lower (See eqn. (11)).

() max min
min

PAR PARPAR t PAR t
NI
−

= + × (11)

Random selection: The third component is the randomization,
which is to increase the diversity of the solutions. Although the pitch
adjustment has a similar role, it is limited to certain area and thus
corresponds to a local search. The use of randomization can drive the
system further to explore various diverse solutions so as to attain the
global optimality.

Harmony memory update

If the newly generated harmony vector gives a better function value
than the worst one, the new harmony vector is included in the HM and
the worst harmony is excluded.

Affinity function

Affinity function was used for avoiding from premature
convergence and increasing the diversification. Affinity function
allows us the generated solutions with high diversity. We consider
a parameter called percentage of affinity, which is denoted PAF for
defining the percentage of good sorted solutions, which remained at
each iteration, and then the remained capacity of the population is
selected from unique solutions existing among the present solutions. If
unique solutions were not enough for filling the remained capacity of
population, we have to use the repetitive solutions.

In order to prevent from untimely convergence and also to increase
the diversification, affinity function was applied. This function provides

' '
:, :,

' '
:, :,

j j

j j

If rand PAR
x x r bw

else
x x
endif

= ± ×

=

Figure 5: Pitch adjustment.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 7 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

us the capability to create diverse solutions. Affinity percentage is a
parameter that is meant PAF to show the percentage of good sorted
solutions. The solutions that we have at each iteration and hence, the
capacity of the quantity of infrequent solutions that are among the
percentage. If infrequent solutions were not sufficient to fill the free
capacity of total quantity, we must apply repetitive solutions.

Termination criterion

The process of harmony search is stopped if the number of
repetition ends. The highest number of repetition is shown by MaxIt.
Our proposed algorithm in pseudo code is shown in Figure 6.

Computational Experiments
Problem design

In this study we examined the effectiveness of the proposed
approaches for a 15 test problems. The problem data can be
characterized by three factors in terms of the number of jobs, number
of machines, processing time, sequences dependent setup times,
Ready time and machine availability time. Table 1 shows the random
generated problems in detail.

1) Calculate mean processing time of each job on all s stages.
.

1

1

round(),
.

no eligiblemachine
j

ius
u

j
ii

p

p i N
no eligiblemachine

=

=

= ∀ ∈
∑

∑
 (12)

2) Calculate average setup times for all possible subsequent jobs

and sum it for all s stages.

()

.

1

1

round(),
1 .

no eligiblemachine
i
k, j,us

u
j

ii

s

s i N
n no eligiblemachine

=

=

= ∀ ∈
− ×

∑
∑ (13)

Determine a due date for each job with following formula.

()
1

1

round(U[0,])

n

j j
j

j j j s

i

p s

d p s

mi

=

=

+

= + + α×
∑

∑
 (14)

Parameter tuning

It is known that the great choice of parameters has striking impact
on performance of algorithms. Furthermore, the suitable design
parameter values highly depend on the type of problems. Most of
researches where were conducted by using evolutionary algorithms
generally have been fixed parameter values after some preliminary
experiment or have been fixed with reference to values of the previous
similar literature. Main motive of this behaviour related to large
number of parameters and their levels; because a comprehensive
calibration requires to time and resource-consuming. Calibration plays
a prominent role in improvement of performance of algorithm and in
some cases it is a compulsory step in the developing the algorithms.
For the purpose of calibration of algorithms some methods were
used in literature. However, the most frequently used and exhaustive
approach is a full factorial experiment [64,65]. This methodology
usually is utilized when number of factor and their levels also CPU
time of algorithm is small or moderate. Using of this approach gets very
difficult for algorithms with numerous factors and levels and high CPU
time. To diminish the number of required tests, fractional factorial
experiment (FFE) was developed [66]. FFEs permit only a portion of
the total possible combinations to estimate the main effect of factors
and some of their interactions [67].

We already knew the algorithms performance is highly impacted
by choice of parameters. Besides, the problem type is a key factor to
the suitable design parameter values. Usually, the researches that are
run using evolutionary algorithm are fixed the values after sequences of
experiment or by going back to values of previous identical experiences.
The key reason to conduct as such, is depended to the quantity of
parameters as well as their level. Because abroad correction needs time
as well as consumption of many resources. Correction or calibration
is a main factor to increase the performance level of algorithm and
sometimes is mandatory phase. In order to do the calibration, some
methodologies were discussed in papers. However, the most frequently
used and exhaustive approach is a full factorial experiment. This
approach is generally applied if quantity of factors, their levels, CPU
time of algorithm are low or near average. To diminish the number
of required tests, fractional factorial experiment (FFE) was developed.
FFEs permit only a portion of the total possible combinations to
estimate the main effect of factors and some of their interactions.

A family of matrices decreasing the number of experiments is
established by Ross [68]. Taguchi developed a family of FFE matrices
which eventually reduce the number of experiments, but still provide
sufficient information. In Taguchi method, the orthogonal arrays are
used to study a large number of decision variables with a small number
of experiments.

harmony memory considering rate ()
Define pitch adjustment rate ()
Define Maximum Iteration ()
Define a percent for affinity function ()
Generate Harmony Memory with rand

De

om

fi

harmonies
()

ne

A F

HM CR
PA R

MaxIt
P

t M axIt<

beg

while

in

(number of devision variables)
(()),Choose a value from for the variable

(()), Adjust the value by adding certain amount

Choose a random value

Accept the new harmony if bett

i
rand HMCR t HM i

rand PA R t

≤
<
<

while
if

if
endif

else
end if

end while
er

Apply affinity function

Find the currrent best solution
end while

end

Figure 6: Pseudo code for harmony search.

Factors Levels
Number of job 8,16,20,24,30

Number of stages 2,3,4
Number of Machines at each stage U(1,4)

Processing times U(1,100)
Sequence dependent setup times U(5,20)

Ready time U(1,100)
Machine availability time U(500,1000)

Table 1: Problem parameters and their levels.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 8 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

The experimental design proposed by Taguchi involves using
orthogonal arrays to organize the parameters affecting the process and
the levels at which they should be varying. Instead of having to test
all possible combinations like the factorial design, the Taguchi method
tests pairs of combinations. This makes collection of the necessary data
to determine which factors have most significant effects on product
quality with a minimum amount of experiment, thus saving time and
resources. An advantage of the Taguchi method is that it emphasizes a
mean performance characteristic value close to the target value rather
than a value within certain specification limits, thus improving the
final quality. Additionally, Taguchi method for experimental design is
straightforward and easy to apply for many engineering situations. This
makes it a powerful simple tool yet. It can be used to various research
projects or to identify problems in a manufacturing process. Also, it
has wide range of application in analysis of many different parameters
without a prohibitively high amount of experimentation.

In Taguchi approach, variables are classified in two groups:
controllable and noise factors (uncontrollable). Noise factors are
those over which we have no direct control. Since elimination of the
noise factors is impractical and often impossible, the Taguchi method
seeks to minimize the effect of noises and determine optimal levels of
important controllable factors based on the concept of robustness [69].

Besides determining the optimal levels, Taguchi identifies the
relative significance of individual factors in terms of their main effects
on the objective function. Taguchi has created a transformation of
the repetition data to another value which is the measure of variation.
The transformation is the signal-to-noise (S/N) ratio which explains
why this type of parameter design is called robust design. Here, the
term ‘‘signal’’ denotes the desirable value (mean response variable)
and ‘‘noise’’ denotes the undesirable value (standard deviation); so the
S/N ratio indicates the amount of variation presents in the response
variable. The aim is to maximize the signal-to-noise ratio [70-83].

Taguchi method classifies the variable into two sets. Controllable
and uncontrollable (or sometimes known as noise factors). Noise
factors are those over which we have no direct control. Since
elimination of the noise factors is impractical and often impossible, the
Taguchi method seeks to minimize the effect of noises and determine
optimal levels of important controllable factors based on the concept
of robustness. Not only Taguchi does determine the importance ratio
of every single factor in terms of their impact on the aiming function,
but also it identifies its ideal level too. What Taguchi introduced, is a
sort of modification in the iterative data to an additional value that is
called measure of variation. The transformation is the signal-to-noise
(S/N) ratio which explains why this type of parameter design is called
robust design. By “signal” it infers, those values that are critical or
anticipated. Dislike the “signal”, by “noise” it infers those values that
are not wanted or anticipated (Standard Deviation). Hence, this is a
percentage of variation in response variable. This is what we need to try
to increase [84-97].

Taguchi categorizes objective functions into three groups: the
smaller-the-better type, the larger-the-better type, and nominal-is-best
type. Since almost all objective functions in scheduling are categorized
in the smaller-the-better type, its corresponding S/N ratio is:

()10/ ratio logS N objective function

 = −

∑ (15)

Before calibration of HS, the algorithm is subjected to some
preliminary tests to obtain the proper parameter levels to be tested

in the fine-tuning process. Some quick experiments showed that In
order to achieve to more accurate and stable results for our proposed
algorithm, we considered eleven parameters for tuning. These
parameters are HMCR, PAR, MaxIt, nPop, PAF which they are shown
with their level in Table 2. The considered orthogonal array with eleven
factors and three levels in Taguchi method is L27. The orthogonal array
L27 is presented in Table 3.

By calculating all of experimental results in Taguchi method, the
average S/N ratio and average of maximum completion time were
obtained for both considered scales. Figures 6 displays the average
S/N ratio obtained at each level. As illustrated in Figure 7, optimal
levels are A(3), B(1), C(3), D(3), E(1), F(1). Furthermore, computed
results in terms of Objective Function in Taguchi experimental analysis
confirmed the achieved optimal levels using S/N ratio (Figure 8). The
ranking for importance of harmony search’s parameters showed in
Figure 9.

Results
In this section the results of tested experiments for all algorithms

are presented and the performance of the proposed algorithms is
compared to each other in terms of the performance metrics. All
algorithms were coded using MATLAB 2013a and run on personal
computer with a 2.66 GHz CPU and 4 GB main memory.

A B C D E F
Level HMS nPop HMCR PAR PAF

1 100 5 25 0.75 0.1 0.40
2 150 10 40 0.85 0.3 0.50
3 200 15 80 0.95 0.5 0.60

Table 2: Parameters and their levels.

A B C D E F
1 1 1 1 1 1 1
2 1 1 1 1 2 2
3 1 1 1 1 3 3
4 1 2 2 2 1 1
5 1 2 2 2 2 2
6 1 2 2 2 3 3
7 1 3 3 3 1 1
8 1 3 3 3 2 2
9 1 3 3 3 3 3
10 2 1 2 3 1 2
11 2 1 2 3 2 3
12 2 1 2 3 3 1
13 2 2 3 1 1 2
14 2 2 3 1 2 3
15 2 2 3 1 3 1
16 2 3 1 2 1 2
17 2 3 1 2 2 3
18 2 3 1 2 3 1
19 3 1 3 2 1 3
20 3 1 3 2 2 1
21 3 1 3 2 3 2
22 3 2 1 3 1 3
23 3 2 1 3 2 1
24 3 2 1 3 3 2
25 3 3 2 1 1 3
26 3 3 2 1 2 1
27 3 3 2 1 3 2

Table 3: The orthogonal array L27.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 9 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

The effectiveness of the algorithms was testified by solving 15
different problems. Tables 3-5 show the comparative results of the
three algorithms with respect to five performance measures for small
and large scale problem respectively [98-106].

Regarding the performance measures, Relative Percentage
Deviation (RPD) over the best solutions is used. It is calculated as
follows:

100sol sol

sol

Method Best
RPD

Best
−

= × (16)

Where Methodsol is value of method and Bestsol is the best value
between the algorithms.

Summary results for test problems in terms of RPD , standard
deviation of RPD, best RPD and worst RPD are shown in Table 4.
The results indicated that, HS strongly outperforms the three other
algorithms. As can be seen in Table 4, in small size problems (with 8
jobs) two of algorithms (HS and AICA+PBSA) have reached to best
solution and there is no difference among algorithms. In medium size
and large size problems, HS outperformed the other algorithms. We
conducted means plot and Tukey intervals for the algorithms at 95%
confidence interval. Figure 9 demonstrated that the HS algorithm
statistically outperformed the other algorithms. Furthermore, we
analysed the behaviour of algorithms in different scenarios. Figures
10 and 11 indicated that HS have better results in terms of ARPD

0

2

4

6

8

10

12

2 3 4

A
RP

D

Stage

PBSA AICA AICA+PBSA HS

Figure 11: Means plot between the type of algorithm and number of stages in
terms ARPD.

321

-18.0

-19.5

-21.0

-22.5

-24.0

321 321

321

-18.0

-19.5

-21.0

-22.5

-24.0

321 321

A

M
ea

n
of

SN
ra

ti
os

B C

D E F

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

Figure 7: The S/N ratio plot in Taguchi methodology.

321

20.0

17.5

15.0

12.5

10.0

321 321

321

20.0

17.5

15.0

12.5

10.0

321 321

A

M
ea

n
of

M
ea

ns

B C

D E F

Main Effects Plot for Means
Data Means

Figure 8: The Mean of objective function plot in Taguchi methodology.

HSICA+PBSAICAPBSA

12

10

8

6

4

2

0

R
PD

Interval Plot of PBSA, ICA, ICA+PBSA, HS
95% CI for the Mean

Figure 9: Means and interval plot for random problems in terms of RPD.

Level A B C D E F
1 -24.88 -19.64 -24.94 -24.78 -21.27 -21.03
2 -20.43 -23.25 -21.51 -22.07 -23.21 -22.43
3 -20.16 -22.50 -19.14 -18.40 -21.09 -22.24

Delta 4.72 3.61 5.80 6.38 2.12 1.40
Rank 3 4 2 1 5 6

Table 4: SN Ratio table for parameters in Taguchi methodology.

0

2

4

6

8

10

12

14

16

18

8 16 20 24 30

A
RP

D

Job number

PBSA AICA AICA+PBSA HS

Figure 10: Means plot between the type of algorithm and number of jobs in
terms of ARPD.

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 10 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

for all of examples with different job numbers and different stages,
respectively. We also examined our proposed algorithms in term of
standard deviation. As can be seen in Figure 12, there is a same manner
for algorithms except for job number 20 (Table 5).

Conclusion and Further Researches
This paper presents an industrial scheduling problem as a no-

wait hybrid flow shop problem with sequence dependent setup times,
different ready times and machine availability time. This problem has
many applications in wide ranges of modern manufacturing and service
industries. To our knowledge, there is no other published work that
considers finding an optimal schedule for this problem. We propose an
effective harmony search algorithm to tackle the considered problem.
To validate the proposed algorithm, we used fifteen test problems
and evaluated the performance and the reliability of the proposed
algorithm. Computational simulations and comparisons demonstrated
the effectiveness and efficiency of the proposed HS algorithm. There
are a number of research directions that can be considered as useful
extensions of this approach. As a direction for further researches in
this area, the influence of the starting solution should be investigated.
Moreover, hybrid algorithms should be developed by using a local
search like simulated annealing or variable neighbourhood search
within a HS. Other issues that are worthy of future research includes

developing and testing of novel meta-heuristics like firefly algorithm,
graph colouring-based algorithm. Developing models with some
practical assumptions like emergency maintenance, learning effect and
deterioration may be other fruitful topics for future investigations.

References

1. Marichelvam MK, Tosun Ö, Geetha M (2017) Hybrid monkey search algorithm
for flow shop scheduling problem under makespan and total flow time. Applied
Soft Computing 55: 82-92.

2. Fanjul-Peyro L, Perea F, Ruiz R (2017) MIP models and mataheuristics for
the unrelated parallel machine scheduling problem with additional resources.
European Journal of Operational Research.

3. Low C, Wu GH (2016) Unrelated parallel-machine scheduling with controllable
processing times and eligibility constraints to minimize the makespan. Journal
of Industrial and Production Engineering 33: 286-293.

4. Yin Y, Wu WH, Cheng TCE, Wu CC (2015) Single-machine scheduling with
time-dependent and position-dependent deteriorating jobs. International
Journal of Computer Integrated Manufacturing 28: 781-790.

5. Joo CM, Kim BS (2015) Hybrid genetic algorithms with dispatching rules
for unrelated parallel machine scheduling with setup time and production
availability. Computers & Industrial Engineering 85: 102-109.

6. Liaw CF (2016) A branch-and-bound algorithm for identical parallel machine
total tardiness scheduling problem with preemption. Journal of Industrial and
Production Engineering 33: 426-434.

7. Pei J, Liu X, Fan W, Pardalos PM, Migdalas A, et al. (2016) Scheduling jobs
on a single serial-batching machine with dynamic job arrivals and multiple job
types. Annals of Mathematics and Artificial Intelligence 76: 215-228.

8. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2009) A
comparison of scheduling algorithms for flexible flow shop problems with
unrelated parallel machines, setup times, and dual criteria. Computers &
Operations Research 36: 358-378.

9. Ruiz R, Şerifoğlu FS, Urlings T (2008) Modeling realistic hybrid flexible flowshop
scheduling problems. Computers & Operations Research 35: 1151-1175.

10. Haouari M, Hidri L (2008) On the hybrid flowshop scheduling problem.
International Journal of Production Economics 113: 495-497.

11. Behnamian J, Ghomi SF, Zandieh M (2009) A multi-phase covering Pareto-
optimal front method to multi-objective scheduling in a realistic hybrid flowshop
using a hybrid metaheuristic. Expert Systems with Applications 36: 11057-
11069.

12. Yaurima V, Burtseva L, Tchernykh A (2009) Hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints and limited
buffers. Computers & Industrial Engineering 56: 1452-1463.

13. Naderi B, Gohari S, Yazdani M (2014) Hybrid flexible flowshop problems:

No.
jobs

No.
Stages

ARPD Best RPD Worst RPD Standard deviation of RPDs
PBSA AICA AICA+PBSA HS PBSA AICA AICA+PBSA HS PBSA AICA AICA+PBSA HS PBSA AICA AICA+PBSA HS

2 2/32 2/26 1/00 0/49 0/04 0/99 0/00 0/00 4/55 4/94 2/92 1/89 1/65 1/18 1/08 0/74
8 3 1/06 1/12 0/91 0/16 0/00 0/00 0/00 0/00 2/42 3/38 2/20 0/74 0/96 1/10 0/88 0/28

4 0/98 1/36 0/93 0/22 0/00 0/00 0/00 0/00 2/74 3/58 2/90 1/32 1/02 1/33 1/19 0/42
2 8/43 8/98 3/04 1/37 0/00 0/00 0/00 0/00 13/66 18/82 11/32 7/23 5/96 8/44 4/54 2/28

16 3 6/15 8/93 5/88 3/13 0/00 0/00 0/00 0/00 19/38 25/00 15/58 11/05 6/38 7/26 6/07 3/99
4 7/63 8/86 4/24 1/81 0/00 0/00 0/00 0/00 12/99 16/21 13/69 4/44 5/55 6/16 5/50 1/49
2 6/82 11/58 5/29 1/10 0/00 3/40 0/00 0/00 18/30 21/01 7/41 5/81 8/12 6/82 2/86 2/18

20 3 4/45 5/42 1/36 1/98 0/00 0/00 0/00 0/00 15/67 10/26 2/82 7/57 4/85 3/79 1/42 3/09
4 9/37 7/48 5/43 0/72 5/02 3/71 0/00 0/00 15/70 12/94 9/60 3/48 2/74 3/12 3/75 1/46
2 12/60 11/80 6/76 1/60 0/00 0/00 0/00 0/00 35/15 24/60 16/21 8/36 9/48 6/93 5/57 2/86

24 3 6/41 13/62 3/25 1/89 0/00 3/61 0/00 0/00 16/22 31/00 6/79 6/62 6/48 7/88 2/48 2/34
4 12/23 14/62 7/33 1/61 0/00 0/00 0/00 0/00 17/35 21/64 17/48 8/15 5/23 8/64 6/24 2/84
2 10/98 18/86 5/60 1/91 0/00 0/00 0/00 0/00 14/11 30/44 12/84 8/45 4/11 13/29 4/87 3/50

30 3 15/02 18/09 5/32 1/79 0/00 0/00 0/00 0/00 23/81 33/83 9/84 5/98 10/30 10/02 3/97 2/89
4 11/20 11/08 4/11 0/93 0/00 0/00 0/00 0/00 23/26 22/72 12/03 3/14 10/36 8/61 4/91 1/28

Average 7/71 9/61 4/03 1/38 0/34 0/78 0/00 0/00 15/69 18/69 9/57 5/61 5/55 6/30 3/69 2/11

Table 5: Summary results for small scale problems in terms of ARPD, Best RPD, Worst RPD and Standard deviation of RPDs.

0

2

4

6

8

10

12

8 16 20 24 30

Av
er

ag
e

St
an

da
rd

D
ev

ia
tio

n

Job number

PBSA AICA AICA+PBSA HS

Figure 12: Means plot between the type of algorithm and number of stages in
terms of average standard deviation.

http://dx.doi.org/10.1016/j.asoc.2017.02.003
http://dx.doi.org/10.1016/j.asoc.2017.02.003
http://dx.doi.org/10.1016/j.asoc.2017.02.003
https://doi.org/10.1016/j.ejor.2017.01.002
https://doi.org/10.1016/j.ejor.2017.01.002
https://doi.org/10.1016/j.ejor.2017.01.002
http://dx.doi.org/10.1080/21681015.2016.1139005
http://dx.doi.org/10.1080/21681015.2016.1139005
http://dx.doi.org/10.1080/21681015.2016.1139005
http://dx.doi.org/10.1080/0951192X.2014.900872
http://dx.doi.org/10.1080/0951192X.2014.900872
http://dx.doi.org/10.1080/0951192X.2014.900872
https://doi.org/10.1016/j.cie.2015.02.029
https://doi.org/10.1016/j.cie.2015.02.029
https://doi.org/10.1016/j.cie.2015.02.029
http://dx.doi.org/10.1080/21681015.2016.1147088
http://dx.doi.org/10.1080/21681015.2016.1147088
http://dx.doi.org/10.1080/21681015.2016.1147088
http://dx.doi.org/10.1007/s10472-015-9449-7
http://dx.doi.org/10.1007/s10472-015-9449-7
http://dx.doi.org/10.1007/s10472-015-9449-7
https://doi.org/10.1016/j.cor.2007.10.004
https://doi.org/10.1016/j.cor.2007.10.004
https://doi.org/10.1016/j.cor.2007.10.004
https://doi.org/10.1016/j.cor.2007.10.004
https://doi.org/10.1016/j.cor.2006.07.014
https://doi.org/10.1016/j.cor.2006.07.014
http://scholar.google.co.in/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S0925527307003131&hl=en&sa=X&scisig=AAGBfm24R2J0xpyFjkV0dhv3xX5YA_TBNA&nossl=1&oi=scholarr&ved=0ahUKEwjdxKfyovfWAhXEvY8KHbzHCMEQgAMIJSgBMAA
http://scholar.google.co.in/scholar_url?url=http://www.sciencedirect.com/science/article/pii/S0925527307003131&hl=en&sa=X&scisig=AAGBfm24R2J0xpyFjkV0dhv3xX5YA_TBNA&nossl=1&oi=scholarr&ved=0ahUKEwjdxKfyovfWAhXEvY8KHbzHCMEQgAMIJSgBMAA
https://doi.org/10.1016/j.eswa.2009.02.080
https://doi.org/10.1016/j.eswa.2009.02.080
https://doi.org/10.1016/j.eswa.2009.02.080
https://doi.org/10.1016/j.eswa.2009.02.080
https://s3.amazonaws.com/academia.edu.documents/43942350/CAIE_2008.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508224682&Signature=X2bJRgJWumXK60byAfdxdMl39%2FM%3D&response-content-disposition=inline%3B filename%3DHybrid_flowshop_with_unrelated_machines.pdf
https://s3.amazonaws.com/academia.edu.documents/43942350/CAIE_2008.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508224682&Signature=X2bJRgJWumXK60byAfdxdMl39%2FM%3D&response-content-disposition=inline%3B filename%3DHybrid_flowshop_with_unrelated_machines.pdf
https://s3.amazonaws.com/academia.edu.documents/43942350/CAIE_2008.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508224682&Signature=X2bJRgJWumXK60byAfdxdMl39%2FM%3D&response-content-disposition=inline%3B filename%3DHybrid_flowshop_with_unrelated_machines.pdf
http://dx.doi.org/10.1016/j.apm.2014.04.012

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 11 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

Models and solution methods. Applied Mathematical Modelling 38: 5767-5780.

14. Bozorgirad MA, Logendran R (2013) Bi-criteria group scheduling in hybrid
flowshops. International Journal of Production Economics 145: 599-612.

15. Pan QK, Wang L, Li JQ, Duan JH (2014) A novel discrete artificial bee
colony algorithm for the hybrid flowshop scheduling problem with makespan
minimisation. Omega 45: 42-56.

16. Behnamian J, Zandieh M (2011) A discrete colonial competitive algorithm
for hybrid flowshop scheduling to minimize earliness and quadratic tardiness
penalties. Expert Systems with Applications 38: 14490-14498.

17. Zandieh M, Hashemi AR (2015) Group scheduling in hybrid flexible flowshop
with sequence-dependent setup times and random breakdowns via integrating
genetic algorithm and simulation. International Journal of Industrial and
Systems Engineering 21: 377-394.

18. Shao W, Pi D, Shao Z (2016) A hybrid discrete optimization algorithm based
on teaching-probabilistic learning mechanism for no-wait flow shop scheduling.
Knowledge-Based Systems 107: 219-234.

19. Riahi V, Kazemi M (2016) A new hybrid ant colony algorithm for scheduling of
no-wait flowshop. Operational Research 1-20.

20. Linn R, Zhang W (1999) Hybrid flow shop scheduling: a survey. Computers &
industrial engineering 37: 57-61.

21. Ruiz R, Vázquez-Rodríguez JA (2010) The hybrid flow shop scheduling
problem. European Journal of Operational Research 205: 1-18.

22. Ribas I, Leisten R, Framiñan JM (2010) Review and classification of hybrid flow
shop scheduling problems from a production system and a solutions procedure
perspective. Computers & Operations Research 37: 1439-1454.

23. Rajendran C (1994) A no-wait flowshop scheduling heuristic to minimize
makespan. Journal of the Operational Research Society 45: 472-478.

24. Hall NG, Sriskandarajah C (1996) A survey of machine scheduling problems
with blocking and no-wait in process. Operations research 44: 510-525.

25. Grabowski J, Pempera J (2000) Sequencing of jobs in some production system.
European Journal of Operational Research 125: 535-50.

26. Raaymakers WH, Hoogeveen JA (2000) Scheduling multipurpose batch
process industries with no-wait restrictions by simulated annealing. European
Journal of Operational Research 126: 131-151.

27. Aldowaisan T, Allahverdi A (2004) A New heuristics for m-machine no-wait flow
shop to minimize total completion time. Omega 32: 345-352.

28. Chang JL, Gong DW (2007) A heuristic genetic algorithm for no-wait flowshop
scheduling problem. Journal of China University of Mining and Technology 17:
582-586.

29. Gilmore PC, Gomory RE (1964) Sequencing a one-state variable machine: a
solvable case of the travelling salesman problem. Operations Research 12:
655-679.

30. Cheng TCE, Wang G, Sriskandarajah C (1999) One-operator-two-machine
flowshop scheduling with setup and dismounting times. Computers and
Operations Research 26: 715-730.

31. Allahverdi A, Aldowaisan T (2004) No-wait flowshops with bicriteria of
makespan and maximum lateness. European Journal of Operational Research
152: 132-147.

32. Li X, Wang Q, Wu C (2008) Heuristic for no-wait flow shops with makespan
minimization. International Journal of Production Research 46: 2519-2530.

33. Pan QK, Tasgetiren MF, Liang YC (2008) A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem. Computers
& Operations Research 35(9): 2807-2839.

34. Framinan JM, Nagano MS (2008) Evaluating the performance for makespan
minimisation in no-wait flowshop sequencing. Journal of materials processing
technology 197: 1-9.

35. Ruiz R, Allahverdi A (2009) New heuristics for no-wait flow shops with a linear
combination of makespan and maximum lateness. International Journal of
Production Research 47: 5717-5738.

36. Samarghandi H, ElMekkawy TY (2011). An efficient hybrid algorithm for the
two-machine no-wait flow shop problem with separable setup times and single
server. European Journal of Industrial Engineering 5: 111-131.

37. Ben Chihaoui F, Kacem I, Hadj-Alouane AB, Dridi N, Rezg N (2011) No-wait
scheduling of a two-machine flow-shop to minimise the makespan under non-
availability constraints and different release dates. International Journal of
Production Research 49: 6273-6286.

38. Shafaei R, Rabiee M, Mirzaeyan M (2011) An adaptive neuro fuzzy inference
system for makespan estimation in multiprocessor no-wait two stage flow shop.
International Journal of Computer Integrated Manufacturing 24: 888-899.

39. Moradinasab N, Shafaei R, Rabiee M, Ramezani P (2013) No-wait two stage
hybrid flow shop scheduling with genetic and adaptive imperialist competitive
algorithms. Journal of Experimental & Theoretical Artificial Intelligence 25: 207-225.

40. Rabiee M, Zandieh M, Jafarian A (2012) Scheduling of a no-wait two-machine
flow shop with sequence-dependent setup times and probable rework using
robust meta-heuristics. International Journal of Production Research 50: 7428-
7446.

41. Arabameri S, Salmasi N (2013) Minimization of weighted earliness and
tardiness for no-wait sequence-dependent setup times flowshop scheduling
problem. Computers & Industrial Engineering 64: 902-916.

42. Nagano MS, Araújo DC (2014) New heuristics for the no-wait flowshop with
sequence-dependent setup times problem. Journal of the Brazilian Society of
Mechanical Sciences and Engineering 36: 139-151.

43. Allahverdi A, Aydilek H (2014) Total completion time with makespan constraint
in no-wait flowshops with setup times. European Journal of Operational
Research 238: 724-734.

44. Samarghandi H, ElMekkawy TY (2014) Solving the no-wait flow-shop problem
with sequence-dependent set-up times. International Journal of Computer
Integrated Manufacturing 27: 213-228.

45. Gupta JND, Strusevich VA, Zwaneveld CM (1997) Two-stage no-wait
scheduling models with setup and removal times separated. Computer and
Operation Research 24: 1025-1031.

46. Aldowaisan T, Allahverdi A (1998) Total flowtime in no-wait flow shops with
separated setup times. Computer and Operation Research 25: 757-765.

47. Aldowaisan T (2001) A new heuristic and dominance relations for no-wait
flowshops with setups. Computer and Operation Research 28: 563-584.

48. Sidney JB, Potts CN, Sriskandarajah C (2000) A heuristic for scheduling two-
machine no-wait flow shops with anticipatory setups. Operations Research
Letters 26: 165-173.

49. Liu Z, Xie J, Li J, Dong J (2003) A heuristic for two-stage no-wait hybrid
flowshop scheduling with a single machine in either stage. Tsinghua Science
and Technology 8: 43-48.

50. Xie J, Xing W, Liu Z, Dong J (2004) Minimum deviation algorithm for two-
stageno-wait flowshops with parallel machines. Computers & Mathematics with
Applications 47: 1857-1863.

51. Huang RH, Yang CL, Huang YC (2009) No-wait two-stage multiprocessor
flow shop scheduling with unit setup. International Journal of Advanced
Manufacturing Technology 44: 921-927.

52. Jolai F, Sheikh S, Rabbani M, Karimi B (2009) A genetic algorithm for solving
no-wait flexible flow lines with due window and job rejection. International
Journal of Advanced Manufacturing Technology 42: 523-532.

53. Jolai F, Rabiee M, Asefi H (2012) A novel hybrid meta-heuristic algorithm for a
no-wait flexible flow shop scheduling problem with sequence dependent setup
times. Int J Prod Res 50: 7447-7466.

54. Rabiee M, Rad RS, Mazinani M, Shafaei R (2014) An intelligent hybrid meta-
heuristic for solving a case of no-wait two-stage flexible flow shop scheduling
problem with unrelated parallel machines. The International Journal of
Advanced Manufacturing Technology 71: 1229-1245.

55. Asefi H, Jolai F, Rabiee M, Araghi MT (2014) A hybrid NSGA-II and VNS
for solving a bi-objective no-wait flexible flowshop scheduling problem. The
International Journal of Advanced Manufacturing Technology 75: 1017-1033.

56. Khalili M, Naderi B (2014) A bi-objective imperialist competitive algorithm for no-
wait flexible flow lines with sequence dependent setup times. The International
Journal of Advanced Manufacturing Technology 76: 461-469.

57. Marichelvam MK, Geetha M (2016) Application of novel harmony search
algorithm for solving hybrid flow shop scheduling problems to minimise
makespan. International Journal of Industrial and Systems Engineering 23:
467-481.

http://dx.doi.org/10.1016/j.apm.2014.04.012
https://doi.org/10.1016/j.ijpe.2013.05.015
https://doi.org/10.1016/j.ijpe.2013.05.015
http://dx.doi.org/10.1016/j.omega.2013.12.004
http://dx.doi.org/10.1016/j.omega.2013.12.004
http://dx.doi.org/10.1016/j.omega.2013.12.004
https://doi.org/10.1016/j.eswa.2011.04.241
https://doi.org/10.1016/j.eswa.2011.04.241
https://doi.org/10.1016/j.eswa.2011.04.241
https://doi.org/10.1504/IJISE.2015.072273
https://doi.org/10.1504/IJISE.2015.072273
https://doi.org/10.1504/IJISE.2015.072273
https://doi.org/10.1504/IJISE.2015.072273
http://dx.doi.org/10.1016/j.knosys.2016.06.011
http://dx.doi.org/10.1016/j.knosys.2016.06.011
http://dx.doi.org/10.1016/j.knosys.2016.06.011
https://link.springer.com/article/10.1007/s12351-016-0253-x
https://link.springer.com/article/10.1007/s12351-016-0253-x
https://doi.org/10.1016/S0360-8352(99)00023-6
https://doi.org/10.1016/S0360-8352(99)00023-6
http://ai2-s2-pdfs.s3.amazonaws.com/c946/cd683b0e09123f95497ae4b685e4509d6aee.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/c946/cd683b0e09123f95497ae4b685e4509d6aee.pdf
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.1016/j.cor.2009.11.001
https://doi.org/10.2307/2584218
https://doi.org/10.2307/2584218
http://dx.doi.org/10.1287/opre.44.3.510
http://dx.doi.org/10.1287/opre.44.3.510
https://doi.org/10.1016/S0377-2217(99)00224-6
https://doi.org/10.1016/S0377-2217(99)00224-6
http://dx.doi.org/10.1016/S0377-2217(99)00285-4
http://dx.doi.org/10.1016/S0377-2217(99)00285-4
http://dx.doi.org/10.1016/S0377-2217(99)00285-4
https://doi.org/10.1016/S0305-0548(02)00068-0
https://doi.org/10.1016/S0305-0548(02)00068-0
https://doi.org/10.1016/S1006-1266(07)60150-3
https://doi.org/10.1016/S1006-1266(07)60150-3
https://doi.org/10.1016/S1006-1266(07)60150-3
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1016/S0305-0548(98)00087-2
https://doi.org/10.1016/S0305-0548(98)00087-2
https://doi.org/10.1016/S0305-0548(98)00087-2
https://doi.org/10.1016/S0377-2217(02)00646-X
https://doi.org/10.1016/S0377-2217(02)00646-X
https://doi.org/10.1016/S0377-2217(02)00646-X
http://dx.doi.org/10.1080/00207540701737997
http://dx.doi.org/10.1080/00207540701737997
http://dx.doi.org/10.1016/j.cor.2006.12.030
http://dx.doi.org/10.1016/j.cor.2006.12.030
http://dx.doi.org/10.1016/j.cor.2006.12.030
https://doi.org/10.1016/j.jmatprotec.2007.07.039
https://doi.org/10.1016/j.jmatprotec.2007.07.039
https://doi.org/10.1016/j.jmatprotec.2007.07.039
https://pdfs.semanticscholar.org/1526/01433fa50fdb6c42ebee532c6f6ef68006de.pdf
https://pdfs.semanticscholar.org/1526/01433fa50fdb6c42ebee532c6f6ef68006de.pdf
https://pdfs.semanticscholar.org/1526/01433fa50fdb6c42ebee532c6f6ef68006de.pdf
https://doi.org/10.1504/EJIE.2011.039869
https://doi.org/10.1504/EJIE.2011.039869
https://doi.org/10.1504/EJIE.2011.039869
http://dx.doi.org/10.1080/00207543.2010.531775
http://dx.doi.org/10.1080/00207543.2010.531775
http://dx.doi.org/10.1080/00207543.2010.531775
http://dx.doi.org/10.1080/00207543.2010.531775
http://dx.doi.org/10.1080/0951192X.2011.597430
http://dx.doi.org/10.1080/0951192X.2011.597430
http://dx.doi.org/10.1080/0951192X.2011.597430
http://dx.doi.org/10.1080/0952813X.2012.682752
http://dx.doi.org/10.1080/0952813X.2012.682752
http://dx.doi.org/10.1080/0952813X.2012.682752
http://dx.doi.org/10.1080/00207543.2011.652747
http://dx.doi.org/10.1080/00207543.2011.652747
http://dx.doi.org/10.1080/00207543.2011.652747
http://dx.doi.org/10.1080/00207543.2011.652747
http://www.academia.edu/7721626/Minimization_of_weighted_earliness_and_tardiness_for_no-wait_sequence-dependent_setup_times_flowshop_scheduling_problem
http://www.academia.edu/7721626/Minimization_of_weighted_earliness_and_tardiness_for_no-wait_sequence-dependent_setup_times_flowshop_scheduling_problem
http://www.academia.edu/7721626/Minimization_of_weighted_earliness_and_tardiness_for_no-wait_sequence-dependent_setup_times_flowshop_scheduling_problem
http://dx.doi.org/10.1007/s40430-013-0064-4
http://dx.doi.org/10.1007/s40430-013-0064-4
http://dx.doi.org/10.1007/s40430-013-0064-4
https://doi.org/10.1016/j.ejor.2014.04.031
https://doi.org/10.1016/j.ejor.2014.04.031
https://doi.org/10.1016/j.ejor.2014.04.031
http://dx.doi.org/10.1080/0951192X.2013.812802
http://dx.doi.org/10.1080/0951192X.2013.812802
http://dx.doi.org/10.1080/0951192X.2013.812802
https://doi.org/10.1016/S0305-0548(97)00018-X
https://doi.org/10.1016/S0305-0548(97)00018-X
https://doi.org/10.1016/S0305-0548(97)00018-X
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjx9J6fnPfWAhVMq48KHaeDDUsQFgglMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0305054898000021&usg=AOvVaw3wzw97AF3K2Gp2WLErENXQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjx9J6fnPfWAhVMq48KHaeDDUsQFgglMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0305054898000021&usg=AOvVaw3wzw97AF3K2Gp2WLErENXQ
https://kuwaitresearch.com/publication/title/new-heuristic-and-dominance-relations-no-wait-flowshops-setups
https://kuwaitresearch.com/publication/title/new-heuristic-and-dominance-relations-no-wait-flowshops-setups
http://dx.doi.org/10.1016/S0167-6377(00)00019-5
http://dx.doi.org/10.1016/S0167-6377(00)00019-5
http://dx.doi.org/10.1016/S0167-6377(00)00019-5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.615.6688&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.615.6688&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.615.6688&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.camwa.2003.08.003
http://dx.doi.org/10.1016/j.camwa.2003.08.003
http://dx.doi.org/10.1016/j.camwa.2003.08.003
https://doi.org/10.1007/s00170-008-1865-y
https://doi.org/10.1007/s00170-008-1865-y
https://doi.org/10.1007/s00170-008-1865-y
https://doi.org/10.1007/s00170-008-1618-y
https://doi.org/10.1007/s00170-008-1618-y
https://doi.org/10.1007/s00170-008-1618-y
http://dx.doi.org/10.1080/00207543.2011.653012
http://dx.doi.org/10.1080/00207543.2011.653012
http://dx.doi.org/10.1080/00207543.2011.653012
http://dx.doi.org/10.1007/s00170-013-5375-1
http://dx.doi.org/10.1007/s00170-013-5375-1
http://dx.doi.org/10.1007/s00170-013-5375-1
http://dx.doi.org/10.1007/s00170-013-5375-1
https://doi.org/10.1007/s00170-014-6177-9
https://doi.org/10.1007/s00170-014-6177-9
https://doi.org/10.1007/s00170-014-6177-9
https://doi.org/10.1007/s00170-014-6305-6
https://doi.org/10.1007/s00170-014-6305-6
https://doi.org/10.1007/s00170-014-6305-6
https://doi.org/10.1504/IJISE.2016.077698
https://doi.org/10.1504/IJISE.2016.077698
https://doi.org/10.1504/IJISE.2016.077698
https://doi.org/10.1504/IJISE.2016.077698

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 12 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

58. Gao KZ, Suganthan PN, Pan QK, Chua TJ, Cai TX, et al. (2016) Discrete
harmony search algorithm for flexible job shop scheduling problem with multiple
objectives. Journal of Intelligent Manufacturing, 27: 363-374.

59. Guo Z, Shi L, Chen L, Liang Y (2017) A harmony search-based memetic
optimization model for integrated production and transportation scheduling in
MTO manufacturing. Omega 66: 327-343.

60. Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search
algorithm with cuckoo search for global numerical optimization. Soft Computing
20: 273-285.

61. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization
algorithm: Harmony search. Simulation 76: 60-68.

62. Lee KS, Geem ZW (2004) A new meta-heuristic algorithm for continues
engineering optimization: harmony search theory and practice. Comput. Meth.
Appl. Mech. Eng. 194: 3902-3933.

63. Geem ZW, Kim JH, Loganathan GV (2002) Harmony search optimization:
application to pipe network design. International Journal of Modelling and
Simulation 22: 125-133.

64. Montgomery DC (2000) Design and analysis of experiments, (5thedn) Wiley,
New York, USA

65. Ruiz R, Maroto C, Alcaraz J (2006) Two new robust genetic algorithms for the
flowshop scheduling problem. Omega 34: 461-476.

66. Cochran WG, Cox GM (1992) Experimental Designs, 2nd ed., Wiley, USA, p:
640.

67. Naderi B, Ghomi SF, Aminnayeri M (2010) A high performing metaheuristic
for job shop scheduling with sequence-dependent setup times. Applied Soft
Computing 10: 703-710.

68. Ross PJ (1988) Taguchi Techniques for Quality Engineering. McGraw-Hill,
New York, p: 329.

69. Phadke MS (1989) Quality engineering using robust design: Robuste Prozesse
durch Quality Engineering. Deutsche Übersetzung: G. LIESEGANG. GFMT-
VERLAG, MÜNCHEN 33.

70. Coello CAC, Veldhuizen DAV, Lamont GB (2002) Evolutionary algorithms for
solving multi-objective problems. Singapore: Kluwer Academic.

71. Deb K (2001) Multiobjective optimization using evolutionary algorithms.
Chichester UK, JohnWiley and Sons Ltd.

72. Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) Fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6:
182-197.

73. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: An
algorithm for optimization inspired by imperialist competitive. IEEE Congress
on Evolutionary computation, Singapore.

74. Shokrollahpour E, Zandieh M, Dorri B (2011) A novel imperialist competitive
algorithm for bi-criteria scheduling of the assembly flowshop problem.
International Journal of Production Research 49: 3087-3103.

75. Eiben AE, Smith JE (2003) Introduction to evolutionary computing, Springer
1st edition.

76. Furtuna R, Curteanu S, Leon F (2011) An elitist non-dominated sorting genetic
algorithm enhanced with a neural network applied to the multi-objective
Optimization of a polysiloxane synthesis process. Engineering Applications of
Artificial Intelligence 24: 772-785.

77. Ghiasi H, Pasini D, Lessard L (2011) A non-dominated sorting hybrid
algorithm for multi-objective optimization of engineering problems. Engineering
Optimization 43: 39-59.

78. Hsieh JC, Chang PC, Hsu LC (2003) Scheduling of drilling operations in printed
circuit board factory. Computers and Industrial Engineering 44: 461-73.

79. Hwang C, Yoon K (1981) Multiple Attribute Decision Making: Methods and
Applications. Springer, Berlin.

80. Johnson SM (1954) Optimal two and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly 1: 61-68.

81. Khalili M (2012) Multi-objective no-wait hybrid flowshop scheduling problem
with transportation times. Int J Comput Sci Eng 7: 147-154.

82. Khalili M (2013) A multi-objective electromagnetism algorithm for a bi-objective
hybrid no-wait flowshop scheduling problem. Int J Adv Manuf Technol, pp: 1-11.

83. Kim DW, Na DG, Chen FF (2003) Unrelated parallel machine scheduling with
setup times and a total weighted tardiness objective. Robotics and Computer
Integrated Manufacturing 19: 173-181.

84. Kishor A, Yadav SP, Kumar S (2009) Interactive fuzzy multiobjective reliability
optimization using NSGA-II. Opsearch 46: 214-224.

85. Knowles JD, Corne DW (1999) Local Search, Multiobjective Optimization
and the Pareto Archived Evolution Strategy. In: Mckay B, Sarker R, Yao X,
Tsujimura Y, Namatame A, et al. (eds.) Proceedings of The Third Australia-
Japan Joint Workshop on Intelligent and Evolutionary Systems, Ashikaga,
Japan, Ashikaga Institute of Technology, pp: 209-216.

86. Knowles JD, Corne DW (1999) The Pareto Archived Evolution Strategy: A
New Baseline Algorithm for Multiobjective Optimization. 1999 Congress on
Evolutionary Computation, Piscataway, NJ, July 1999. IEEE Service Center.
pp: 98-105,

87. Knowles JD, Corne DW (2000) Approximating the non-dominated front using
the Pareto Archived Evolution Strategy. Evolutionary Computation 8: 149-172.

88. Lin BM, Lin FC, Lee RCT (2006) Two-machine flow-shop scheduling to
minimize total late work. Engineering Optimization 38: 501-509.

89. Lin SW, Ying KC (2016) Minimizing makespan for solving the distributed no-
wait flowshop scheduling problem. Computers & Industrial Engineering 99:
202-209.

90. Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on
Computing 20: 451-471.

91. Karimi N, Zandieh M, Najafi AA (2010) Group scheduling in flexible flow shops:
a hybridised approach of imperialist competitive algorithm and electromagnetic-
like mechanism. International Journal of Production Research 49: 4965-4977.

92. Nagano MS, Miyata HH, Araújo DC (2015) A constructive heuristic for total
flowtime minimization in a no-wait flowshop with sequence-dependent setup
times. Journal of Manufacturing Systems 36: 224-230.

93. Pan QK, Wang L, Qian B (2009) A novel differential evolution algorithm for
bi-criteria no-wait flow shop scheduling problems. Computers & Operations
Research 36: 2498-2511.

94. Qian B, Wang L, Huang DX, Wang WL, Wang X (2009) An effective hybrid DE-
based algorithm for multi-objective flow shop scheduling with limited buffers.
Computers & Operations Research 36: 209-233.

95. Rabiee M, Zandieh M, Ramezani P (2012) Bi-objective partial flexible job
shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches.
International Journal of Production Research 50: 7327-7342.

96. Rahimi-Vahed AR, Javadi B, Rabbani M, Tavakkoli-Moghaddam R (2008) A
multi-objective scatter search for a bi-criteria no-wait flow shop scheduling
problem. Engineering Optimization 40: 331-346.

97. Ramezani P, Rabiee M, Jolai F (2015) No-wait flexible flowshop with uniform
parallel machines and sequence-dependent setup time: a hybrid meta-heuristic
approach. Journal of Intelligent Manufacturing 26: 731-744.

98. Sivakumar K, Balamurugan C, Ramabalan S (2011) Simultaneous optimal
selection of design and manufacturing tolerances with alternative manufacturing
process selection. Computer-Aided Design 43: 207-218.

99. Sriskandarajah C, Ladet P (1986) Some no-wait shops scheduling problems:
complexity aspect. European Journal of Operational Research 24: 424-438.

100. Steuer RE (1986) Multiple criteria optimization: theory, computation, and
applications. Wiley Series in Probability and Statistics, p: 546.

101. Syswerda G (1989) Uniform crossover in genetic algorithms. In Proceedings
of the 3rd International Conference on Genetic Algorithms.

102. Tasgetiren MF, Pan QK, Suganthan PN, Liang YC (2007) A discrete
differential evolution algorithm for the no-wait flowshop scheduling problem
with total flowtime criterion. In Computational Intelligence in Scheduling, IEEE
Symposium 251-258.

103. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2007) A hybrid
multi-objective immune algorithm for a flow shop scheduling problem with
bi-objectives: weighted mean completion time and weighted mean tardiness.
Information Sciences 177: 5072-5090.

https://doi.org/10.1007/s10845-014-0869-8
https://doi.org/10.1007/s10845-014-0869-8
https://doi.org/10.1007/s10845-014-0869-8
https://doi.org/10.1016/j.omega.2015.10.012
https://doi.org/10.1016/j.omega.2015.10.012
https://doi.org/10.1016/j.omega.2015.10.012
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s00500-014-1502-7
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1177/003754970107600201
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjf7ZrLpvfWAhVILI8KHXdZBpsQFggwMAE&url=http%3A%2F%2Fisiarticles.com%2Fbundles%2FArticle%2Fpre%2Fpdf%2F7984.pdf&usg=AOvVaw3-1cp-YzvBVvgCe3EJfpu-
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjf7ZrLpvfWAhVILI8KHXdZBpsQFggwMAE&url=http%3A%2F%2Fisiarticles.com%2Fbundles%2FArticle%2Fpre%2Fpdf%2F7984.pdf&usg=AOvVaw3-1cp-YzvBVvgCe3EJfpu-
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjf7ZrLpvfWAhVILI8KHXdZBpsQFggwMAE&url=http%3A%2F%2Fisiarticles.com%2Fbundles%2FArticle%2Fpre%2Fpdf%2F7984.pdf&usg=AOvVaw3-1cp-YzvBVvgCe3EJfpu-
http://www.tandfonline.com/doi/abs/10.1080/02286203.2002.11442233
http://www.tandfonline.com/doi/abs/10.1080/02286203.2002.11442233
http://www.tandfonline.com/doi/abs/10.1080/02286203.2002.11442233
https://s3.amazonaws.com/academia.edu.documents/46773153/Two_new_robust_genetic_algorithms_for_th20160624-11823-1bp05b8.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508226533&Signature=zNIbnhp34lTYcVCL6%2BVhMHverxg%3D&response-content-disposition=inline%3B filename%3DTwo_new_robust_genetic_algorithms_for_th.pdf
https://s3.amazonaws.com/academia.edu.documents/46773153/Two_new_robust_genetic_algorithms_for_th20160624-11823-1bp05b8.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1508226533&Signature=zNIbnhp34lTYcVCL6%2BVhMHverxg%3D&response-content-disposition=inline%3B filename%3DTwo_new_robust_genetic_algorithms_for_th.pdf
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471545678.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471545678.html
http://dx.doi.org/10.1016/j.asoc.2009.08.039
http://dx.doi.org/10.1016/j.asoc.2009.08.039
http://dx.doi.org/10.1016/j.asoc.2009.08.039
https://books.google.co.in/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=yhttps://books.google.co.in/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=y
https://books.google.co.in/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=yhttps://books.google.co.in/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=y
http://www.springer.com/in/book/9780387332543
http://www.springer.com/in/book/9780387332543
https://dl.acm.org/citation.cfm?id=559152
https://dl.acm.org/citation.cfm?id=559152
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1080/00207540903536155
http://dx.doi.org/10.1080/00207540903536155
http://dx.doi.org/10.1080/00207540903536155
http://www.springer.com/us/book/9783642072857
http://www.springer.com/us/book/9783642072857
https://doi.org/10.1016/j.engappai.2011.02.004https:/doi.org/10.1016/j.engappai.2011.02.004
https://doi.org/10.1016/j.engappai.2011.02.004https:/doi.org/10.1016/j.engappai.2011.02.004
https://doi.org/10.1016/j.engappai.2011.02.004https:/doi.org/10.1016/j.engappai.2011.02.004
https://doi.org/10.1016/j.engappai.2011.02.004https:/doi.org/10.1016/j.engappai.2011.02.004
http://dx.doi.org/10.1080/03052151003739598
http://dx.doi.org/10.1080/03052151003739598
http://dx.doi.org/10.1080/03052151003739598
https://elibrary.ru/item.asp?id=6410012
https://elibrary.ru/item.asp?id=6410012
http://www.springer.com/in/book/9783540105589
http://www.springer.com/in/book/9783540105589
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1504/IJCSE.2012.048094
https://doi.org/10.1504/IJCSE.2012.048094
https://doi.org/10.1007/s00170-013-5376-0
https://doi.org/10.1007/s00170-013-5376-0
http://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02683768&AN=100490253&h=k7ZiRFDZMUqVfbhAC4DMWDmV4PP3F2j7dQ3ix4%2f%2bxCrtC216qlGr80iqCAXW%2biDaZXytnCrJvg%2bkFLboM7QXjA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d02683768%26AN%3d100490253
http://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02683768&AN=100490253&h=k7ZiRFDZMUqVfbhAC4DMWDmV4PP3F2j7dQ3ix4%2f%2bxCrtC216qlGr80iqCAXW%2biDaZXytnCrJvg%2bkFLboM7QXjA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d02683768%26AN%3d100490253
http://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02683768&AN=100490253&h=k7ZiRFDZMUqVfbhAC4DMWDmV4PP3F2j7dQ3ix4%2f%2bxCrtC216qlGr80iqCAXW%2biDaZXytnCrJvg%2bkFLboM7QXjA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d02683768%26AN%3d100490253
https://doi.org/10.1007/s12597-009-0013-2
https://doi.org/10.1007/s12597-009-0013-2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848
https://doi.org/10.1109/CEC.1999.781913
https://doi.org/10.1109/CEC.1999.781913
https://doi.org/10.1109/CEC.1999.781913
https://doi.org/10.1109/CEC.1999.781913
https://doi.org/10.1162/106365600568167
https://doi.org/10.1162/106365600568167
https://doi.org/10.1080/03052150500420439
https://doi.org/10.1080/03052150500420439
http://dx.doi.org/10.1016/j.cie.2016.07.027
http://dx.doi.org/10.1016/j.cie.2016.07.027
http://dx.doi.org/10.1016/j.cie.2016.07.027
http://dx.doi.org/10.1287/ijoc.1070.0258
http://dx.doi.org/10.1287/ijoc.1070.0258
http://dx.doi.org/10.1287/ijoc.1070.0258
http://en.journals.sid.ir/ViewPaper.aspx?ID=388252
http://en.journals.sid.ir/ViewPaper.aspx?ID=388252
http://en.journals.sid.ir/ViewPaper.aspx?ID=388252
http://dx.doi.org/10.1016/j.jmsy.2014.06.007
http://dx.doi.org/10.1016/j.jmsy.2014.06.007
http://dx.doi.org/10.1016/j.jmsy.2014.06.007
http://dx.doi.org/10.1016/j.cor.2008.10.008
http://dx.doi.org/10.1016/j.cor.2008.10.008
http://dx.doi.org/10.1016/j.cor.2008.10.008
http://dx.doi.org/10.1016/j.cor.2007.08.007
http://dx.doi.org/10.1016/j.cor.2007.08.007
http://dx.doi.org/10.1016/j.cor.2007.08.007
http://dx.doi.org/10.1080/00207543.2011.648280
http://dx.doi.org/10.1080/00207543.2011.648280
http://dx.doi.org/10.1080/00207543.2011.648280
http://dx.doi.org/10.1080/03052150701732509
http://dx.doi.org/10.1080/03052150701732509
http://dx.doi.org/10.1080/03052150701732509
https://doi.org/10.1007/s10845-013-0830-2
https://doi.org/10.1007/s10845-013-0830-2
https://doi.org/10.1007/s10845-013-0830-2
http://dx.doi.org/10.1016/j.cad.2010.10.001
http://dx.doi.org/10.1016/j.cad.2010.10.001
http://dx.doi.org/10.1016/j.cad.2010.10.001
https://ideas.repec.org/a/eee/ejores/v24y1986i3p424-438.html
https://ideas.repec.org/a/eee/ejores/v24y1986i3p424-438.html
https://books.google.co.in/books/about/Multiple_Criteria_Optimization.html?id=0H9jQgAACAAJ&redir_esc=y
https://books.google.co.in/books/about/Multiple_Criteria_Optimization.html?id=0H9jQgAACAAJ&redir_esc=y
http://ci.nii.ac.jp/naid/10000012509/
http://ci.nii.ac.jp/naid/10000012509/
http://dx.doi.org/10.1109/SCIS.2007.367698
http://dx.doi.org/10.1109/SCIS.2007.367698
http://dx.doi.org/10.1109/SCIS.2007.367698
http://dx.doi.org/10.1109/SCIS.2007.367698
http://dx.doi.org/10.1016/j.ins.2007.06.001
http://dx.doi.org/10.1016/j.ins.2007.06.001
http://dx.doi.org/10.1016/j.ins.2007.06.001
http://dx.doi.org/10.1016/j.ins.2007.06.001

Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 13 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

104. Yu L, Shih HM, Pfund M, Matthew CW, Fowler JW (2002) Scheduling of
unrelated parallel machines: an application to PWB manufacturing. IIE
transactions 34: 921-931.

105. Zandieh M, Karimi N (2011) An adaptive multi-population genetic algorithm to
solve the multi-objective group scheduling problem in hybrid flexible flowshop

with sequence-dependent setup times. Journal of Intelligent Manufacturing 22:
979-989.

106. Zhou G, Min H, Gen M (2003) A genetic algorithm approach to the bi-criteria
allocation of customers to warehouses. International Journal of Production
Economics 86: 35-45.

http://dx.doi.org/10.1080/07408170208928923
http://dx.doi.org/10.1080/07408170208928923
http://dx.doi.org/10.1080/07408170208928923
http://dx.doi.org/10.1007/s10845-009-0374-7
http://dx.doi.org/10.1007/s10845-009-0374-7
http://dx.doi.org/10.1007/s10845-009-0374-7
http://dx.doi.org/10.1007/s10845-009-0374-7
http://dx.doi.org/10.1016/S0925-5273(03)00007-0
http://dx.doi.org/10.1016/S0925-5273(03)00007-0
http://dx.doi.org/10.1016/S0925-5273(03)00007-0

	Title
	Corresponding author
	Abstract
	Keywords
	Notations
	Introduction
	Problem Definition
	Assumptions

	Hybrid Harmony Search (HHS)
	Algorithm’s parameters
	Harmony memory initialization and evaluation
	Improvise a new harmony
	Harmony memory update
	Affinity function
	Termination criterion

	Computational Experiments
	Problem design
	Parameter tuning

	Results
	Conclusion and Further Researches
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	References

