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Abstract
This research investigates a no-wait hybrid flow shop scheduling problem. Minimizing the mean tardiness is 

considered as the objective to develop the optimal scheduling algorithm. Characteristics of our considered problem 
leads to the complexity of problem. First, no-wait operations. Second, setup time of each job is separated from its 
processing time and depends upon its preceding job. Third, all of jobs aren’t available at the first of scheduling. In 
other word, each job has individual ready time. Finally, machines are not continuously available due to the preventive 
maintenance. An effective harmony search algorithm is used to tackle the mentioned problem. A series of computational 
experiments is conducted by comparing our algorithm with previous meta-heuristic algorithms like population based 
simulated annealing (PBSA), Adopted imperialist competitive algorithm (ICA) and hybridization of PBSA and ICA 
(ICA+PBSA). To achieve reliable results, Taguchi approach is used to define robust parameters’ values for our proposed 
algorithm. The computational results with random test problems suggest that our proposed harmony search outperforms 
the three foregoing algorithms.
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Notations
n: The number of jobs to be scheduled (j=1, 2,.., n)

mi: The number of parallel machines at stage i
j

iup : Processing time for job j at stage i (i=1, 2,.., s) on uth machine

dj: Due date for job j
i
k, jS : Sequence-dependent setup time from job k to job j at stage i

π: Permutation of the given jobs (π={ π1, π2,..., πn})

MAui: Machine availability time for uth machine at stage i

Cj: Completion time of job j

Tj: Tardiness for job j (Tj=max(0, Cj - dj))

T : Mean tardiness 
1

( ( ) / )
n

j
j

T T n
=

= ∑
NP-Hard: Non-deterministic polynomial-time Hard.

Introduction
Production scheduling is one of the prominent decision-making 

process in the operation level of each manufacture or service 
companies. It can be defined as sequencing of a number of jobs on 
one or several machines aiming to optimally utilizing the resources 
while meeting the customer’s demands in an efficient manner. Such 
a frequently occurring scheduling problem is difficult to solve due its 
complex nature. In recent years, researchers have focus in solving new 
challenges of machine scheduling problems [1-7].

One of the very noticeable process to make decision is the planning 
for production in service companies. This is actually a classification 
of jobs for one or more machines to best use of the capabilities in 
operation and reach the customer’s satisfaction at the same time. This 
planning problem that is often occurring, is interacted to solve since 
the environment is so [8].

One of the most applicable problems in scheduling area in both 

theory and practice is flexible flow shop (FFS), or a hybrid flow shop 
(HFS), or a flow shop with multiple processors (FSMP). A typical FFS 
problem can be defined as follows: there are N jobs passing through 
a K stage flow line with one or more parallel machines at each stage. 
No-wait flow shop and flexible flow shop scheduling problem has been 
studied by many researchers [9-19]. For a literature review in this area 
the readers are referred to those conducted by Richard and Zhang [20], 
Ruiz et al. [21], and Ribas et al. [22],

Classical flexible flow shop scheduling problems assume that 
there is unlimited intermediate storage available to work in process 
(WIP) jobs between two adjacent stages. In a particular case of the 
FFL, there is no longer any need for intermediate storage or blocking 
between stages. The operations of all jobs have to be processed from 
start to finish without interruptions either on or between stages. i.e., 
if necessary, the start of a job on a given machine must be delayed 
so that the completion of the operation coincides with the beginning 
of the operation on the following machine. These conditions are 
quite common in several industries. In some industries, due to the 
temperature or other characteristics of the material it is required that 
each operation follow the previous one immediately. Such situations 
appear in the chemical processing [23], food processing [24], concrete 
ware production [25], pharmaceutical processing [26] and production 
of steel, plastics, and aluminum products [27]. For instance, in the 
steel-making and continuous casting processes of iron and steel 
manufacturing enterprises, a no-wait scheduling can reduce the energy 
loss of high-temperature molten steel and plays an important role in 
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realizing the advanced production style of HCR/DHCR [28]. For a 
further study in no wait manufacturing the readers are recommended 
to review the paper present by Hall and Sriskandarajah [26].

In the literature, the no-wait flow shop scheduling problem 
has attracted many studies since 1964 [29-44]. No-wait flow shop 
scheduling problem is a typical scheduling problem with strong 
engineering background.

Gilmore and Gomory [29] presented an algorithm that can solve a 
restricted version of the travelling salesman problem (TSP). As the no-
wait two-machine flow shop problem of mean completion time (MCT) 
minimization can be formulated as the restricted TSP, the Gilmore and 
Gomory algorithm can be used to solve the problem in polynomial 
time. Gupta et al. [45] showed that the problem can be reduced to the 
Gilmore–Gomory TSP and can be solved in polynomial time. Cheng 
et al. [30] considered the problem of one-operator two-machine flow-
shop scheduling with setup and dismounting times to minimize MCT. 
The no-wait two-machine flow-shop scheduling problem with separate 
sequence-independent setup times was addressed by Aldowaisan and 
Allahverdi [46] with the objective of minimizing total completion time. 
They developed optimal solutions for certain cases, established a local 
dominance relation for the general case, and proposed a simple but 
effective heuristic. The same problem was studied by Aldowaisan [47] 
where a global dominance relation along with a heuristic and a branch-
and-bound method was provided.

The algorithm presented by Gilmore and Gomory [29], can answer 
to the salesman travelling question. When the no-wait two-machine 
flow shop problem of mean completion time (MCT) is shown as 
salesman travelling question, the abovementioned algorithm can be 
answered in several steps. Also to decrease MCT, Cheng et al. uses 
special system and descending time. The entire accomplishment time is 
the goal of Aldowaisan and Allahverdi. They applied discrete sequence-
independent arrangement times to come up with the no-wait two-
machine flow-shop scheduling problem. They made the best answer for 
some issues, for the general cases they based local supremacy relation, 
and finally suggested a modest and operative empirical method. 
Another study by Aldowaisan was proposed to answer the same issue 
that a global dominance relation accompanied with an empirical and 
branch-and-bound method was created.

The two-machine no-wait flow-shop separate setup time problem 
with the objective of minimizing MCT is also addressed in the 
literature. Sidney et al. [48] consider the same problem but where 
the setup on the second machine consists of two parts. Nagano and 
Araújo [42] addressed the problem of scheduling jobs in a no-wait 
flow-shop with sequence-dependent setup times with the objective 
of minimizing the makespan and the total flow time. They presented 
two new constructive heuristics to obtain good approximate solutions 
for the problem in a short CPU time, named GAPH and QUARTS. 
Samarghandi and ElMekkawy [44] developed a mathematical model of 
the problem and the problem was reduced to a permutation problem. 
A straightforward algorithm for calculating the makespan of the 
permutation of jobs was developed. A particle swarm optimization 
(PSO) was applied on the encoded sequences for exploration of the 
solution space. Computational results on the available test problems 
revealed the efficiency of the PSO in finding good-quality solutions.

In real manufacturing systems, many assumptions could be 
considered but in most of the studies in this area, investigators tried 
to solve the problems with a few practical assumptions. In contrast to 
the existence of many research results on the no-wait flexible flow shop 

scheduling, there have been few attempts to study scheduling problems 
that involve sequence dependent setup time, minimizing tardiness, 
unrelated parallel machine and machine availability in no-wait flexible 
flow shop simultaneously. Some of close researches to our studied 
problem have discussed as follows.

Liu et al. [49] presented a heuristic algorithm named Least Deviation 
(LD) algorithm for two-stage no-wait hybrid flow shop scheduling with 
a single machine in either stage. The performance measure used in this 
study is makespan. The results showed that LD algorithm outperforms 
the others in most practical cases. In addition the proposed algorithms 
showed low computational complexity and easy to implement, thus it 
is favourable application value.

Xie et al. [50] proposed a new heuristic algorithm known as 
Minimum Deviation Algorithm (MDA) to minimize makespan in 
a two stage flexible flow shop with no waiting time. Experimental 
results of the study showed that MDA outperforms partition method, 
partition method with LPT, Johnson’s and modified Johnson’s 
algorithms. Huang et al. [51] considered a no-wait two stage flexible 
flow shop with setup times and with minimum total completion time 
performance measure. They proposed an integer programming model 
and Ant Colony Optimization heuristic approach. The results revealed 
that the efficiency of the proposed algorithm is superior to those solved 
by integer programming while having satisfactory solutions. Jolai et al. 
[52] introduced no-wait flexible flow line scheduling problem with time 
windows and job rejection to maximizing profit. This is an extension of 
production and delivery scheduling problem with time windows. They 
also presented a mixed integer-linear programming model and genetic 
algorithm procedures to solve their model efficiently. Comparison of 
the results obtained by GA with LINGO solutions and Tabu search 
showed that the proposed GA obtains better solutions in a very low 
computational time in comparison with the solutions obtained from 
LINGO optimization software. Jolai et al. [53] introduced a novel 
hybrid meta-heuristic algorithm to solve a no-wait flexible flow shop 
scheduling problem with sequence-dependent setup times to minimize 
the maximum completion time. They proposed three novel meta-
heuristic algorithms, namely Population Based Simulated Annealing 
(PBSA), Adapted Imperialist Competitive Algorithm (AICA) and 
hybridization of adapted imperialist competitive algorithm and 
population based simulated annealing (AICA+PBSA) to solve the 
addressed problem. The computational evaluations of their study 
manifestly support the high performance of our proposed novel hybrid 
algorithm against other algorithms which were applied in literature for 
related production scheduling problems. Rabiee et al. [54] addressed 
the problem of no-wait two stage flexible flow shop scheduling problem 
with respect to unrelated parallel machines, sequence-dependent setup 
times, probable reworks and different ready times to actualize the 
problem. They proposed an intelligent hybrid meta-heuristic which was 
based on imperialist competitive algorithm (ICA), simulated annealing 
(SA), variable neighbourhood search (VNS) and genetic algorithm 
(GA) for solving the mentioned problem. The results of their study 
revealed the relative superiority of proposed algorithm. Ramezani et al. 
[39] dealt with a no-wait scheduling problem considering anticipatory 
sequence-dependent setup times on the flexible flow shop environment 
with uniform parallel machines to minimize maximum completion 
time of jobs. Since this problem was known to be NP-hard, they 
introduced a novel approach to tackle the problem. They proposed a 
hybrid meta-heuristic which involved invasive weed optimization, 
variable neighbourhood search and simulated annealing to tackle 
of the problem. The experimental results of their research revealed 
the superiority of the performance of the hybrid meta-heuristic in 



Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling 
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 3 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

comparison with original ones singularly. Asefi et al. [55] proposed a 
hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible 
flow shop scheduling problem. They compared proposed algorithm 
with NSGA-II and SPEA-II and revealed that their algorithm can 
achieve reliable and better results. Khalili and Naderi [56] proposed a 
novel bi-objective imperialist competitive algorithm to solve a no-wait 
flexible flow shop scheduling problem with sequence dependent setup 
times.

To the best of our knowledge, the mean tardiness minimization 
in no-wait flexible flow shop scheduling problem with sequence 
dependent setup times, unrelated parallel machine, ready time and 
machine availability constraint has not been studied yet. Considering 
the importance of the no-wait flexible flow shop problem and the fact 
that the no-wait flexible flow shop problem with mentioned constraints 
and assumptions has not been given much heed by researchers, here we 
have offered a new effective harmony search algorithm for solving it.

The outline of the paper is as follows: problem definition is 
presented in section 2. Section 3 explains the proposed harmony search 
to solve the considered problem. Computational experiments as well as 
parameter tuning are provided in section 4. Finally, section 5 is devoted 
to conclusion remarks and future researches.

Problem Definition
In this section, first the notations which are used in this research are 

defined then the assumptions of the studied problem are elaborated.

Assumptions

The problem under study here involves processing of a set of 
n jobs (j={j1, j2,..., jn}). It is needed that these jobs are processed in k 
consecutive stages. The number of parallel machines in the kth stage is 
Mk and the processing time of the jth job in the uth machine at ith stage 
is 

j
iup . The sequence dependent setup time between jth and Lth job in 

jth stage is shown as. Our problem there is finding the sequence of jobs 
with minimum average delay ( T ). Here are some assumptions of the 
problem:

•	 All the data used here for the study of the problem are known 
deterministically.

•	 Once a job began on a machine, it must proceed to completion 
without interruption. That is, once a job is commenced on the 
first machine, it must proceed through all machines without 
any occlusion or interruption.

•	 Each stage has at least one machine, and there is at least one 
stage which has more than one machine.

•	 A machine can process only one job at a time.

•	 Travel times between stages are negligible.

•	 Each job is assigned to every machine one at a time and no 
machines are twice occupied by the same job.

•	 To processing of each job some of machines are available due 
to machine eligibility an. There is no breakdown or s machine 
availability constraint.

•	 The release time of all jobs are different, meaning that each job 
can be processed after release time and it can’t be processed 
before its ready time.

Setup times depend on sequencing of jobs which means setup 

times are sequence dependent and the length of time required to do the 
setup depends on the prior and current jobs and the machine which is 
to do the processing in the mentioned stage ( i

jlS ).

Machine in all stages are non-identical which means speed of 
each machine relatively is different. In this case, processors work in 
parallel and speed of processing time of job i at stage t uniformly differs 
depends on relative speed of ,

t
i jv (see eqn. (1)).

,
,

t
t i
i j t

i j

pp
v

=  i=1,..,n j=1,…,mt t=1,….g                  (1)

The problem of no wait flexible flow shop is shown by FFS (QM 
(1),..., QM (m)) / no-wait, SDST, rj, Mj/T and formally defined in the 
following. The problem is processing of n jobs {J1, J2, J3,…, Jn} on a series 
of stages {1, 2,..., t,…, k}which at each stage there are mt machines. 
Scheduling of the addressed problem comprises three sub-problems: 
At first, the problem is finding a sequence which minimizes the average 
tardiness. Second issue which has to be taken into account is machine 
assignment. Thirdly, minimum starting times must be determined 
in a way that all of the no-wait constraints are satisfied. The no-wait 
constraint requires that the starting time of job Jj at stage t be equal to 
the completion time of job Jj at stage t-1 for each i and t.
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Regarding above mentioned relations, completion time of a job is 
equal to completion time of that job at the final stage:

[ ] [ ]j j

kC Cπ π=                                      (6)

And as mentioned earlier, the makespan of the scheduling 
corresponding to the given sequence of jobs is calculated as follows:
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j
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∑                     (8)

Herein, the goal of the problem of no-wait SDST flexible flow shop 
with different ready time and machine availability is to find an optimal 
sequence which can minimize the mean tardiness of scheduling.

In this formula, the objective is to find out the best order that can 
highly reduce the lateness of planning for the problem of no-wait SDST 
flexible flow shop with variety of ready time and machine readiness.

No-wait two-stage flexible flow shop problems are NP-hard in the 
strong sense. So, the no-wait k-stage flexible flow shop problem is NP-
hard, too. Hence, all exact approaches for even simple problems will 
most likely have running times that increase exponentially with the 
problem size. In this paper a novel advanced meta-heuristic algorithm 
(effective harmony search) is suggested for solving the problem 
described above. This problem considered in this study is schematically 
depicted in Figure 1. Also, the framework of this algorithm is elucidated 
in the next section.



Citation: Rahmanidoust M, Zheng J, Rabiee M (2017) An Effective Harmony Search Algorithm for Solving a No-Wait Hybrid Flow Shop Scheduling 
Problem with Machine Availability Constraint. Ind Eng Manage 6: 225. doi:10.4172/2169-0316.1000225

Page 4 of 13

Volume 6 • Issue 3 • 1000225Ind Eng Manage, an open access journal
ISSN: 2169-0316

No-wait two-stage flexible flow shop problems are NP-hard in the 
strong sense. Hence the same is for the no-wait k-stage flexible flow 
shop problem, i, e; the NP-hard too. So, any possible precise methods 
for even simple problems probably have process times that rapidly 
grow as the size of problem grows. This study attempts to suggest a new 
advanced meta-heuristic algorithm (effective harmony search) to solve 
the abovementioned problem.

Hybrid Harmony Search (HHS)
Recently, the meta-heuristics have become quite popular over the 

other approximate, exact or heuristic methods for solving complex 
combinatorial optimization problems such as job shop, flow shop 
scheduling problem and too many other hard problems [57-60]. In this 
paper, a new algorithm called ‘hybrid algorithm’ (HA)” is proposed to 
solve the described problem.

Harmony search is a music-based metaheuristic optimization 
algorithm. It was inspired by the observation that the aim of music is 
to search for a perfect state of harmony. The effort to find the harmony 
in music is analogous to find the optimality in an optimization process. 
A musician always intends to produce a piece of music with perfect 
harmony. On the other hand, an optimal solution to an optimization 
problem should be the best solution available to the problem under the 
given objectives and limited by constraints. Both processes intend to 
produce the best or optimum. In order to explain the Harmony Search 
in more detail, let us first idealize the improvisation process by a skilled 
musician. When a musician is improvising, he or she has three possible 
choices: (1) playing any famous tune exactly from his or her memory; 
(2) playing something similar to the aforementioned tune (thus 
adjusting the pitch slightly); or (3) composing new or random notes.

Geem et al. [61] formalized these three options into quantitative 
optimization process, and the three corresponding components become: 
usage of harmony memory, pitch adjusting, and randomization.

Searching for harmony which is a subject in music, is an algorithm 
for metaheuristic optimization. The criteria were recognized when 
the amazing state of music harmony was searched as a goal. In the 
process of harmony search in music, the corresponding note is being 
attempted to find. The composer aims to find it when the best result is 
recognized. So the objective is to find optimum or the best solution for 
our subjected optimization problem and this is surely the best possible 
solution considering the goals, limits and capabilities. So what really 
matters in both areas is, “the best” or “optimum”. To elaborate the 
process of Harmony search, let’s simulate what an expert composer 
does. When he is improvising, he goes through 3 different choices. One 
is, copying what he has in mind from a famous tune. Two is, simulate 

a tune that is similar to that and three is, producing a tune by chance. 
These are what Geem et al. [61] refers to as usage of harmony memory, 
pitch adjusting, and randomization.

The steps in the procedure of harmony search are as follows [62]:

Step 1. Initialize the problem and algorithm parameters.

Step 2. Initialize the harmony memory.

Step 3. Improvise a new harmony.

Step 4. Update the harmony memory.

Step 5. Check the stopping criterion.

These steps are described in the next subsections.

Algorithm’s parameters

Before defining the steps of proposed hybrid harmony search the 
parameters of this algorithm should be introduced. The HS algorithm 
parameters are also specified in this step. These are the harmony 
memory size (HMS), or the number of solution vectors in the harmony 
memory; harmony memory considering rate (HMCR); pitch adjusting 
rate (PAR); and the number of improvisations (NI), or stopping 
criterion. The harmony memory (HM) is a memory location where all 
the solution vectors (sets of decision variables) are stored. This HM is 
similar to the genetic pool in the GA [63]. Here, HMCR and PAR are 
parameters that are used to improve the solution vector.

As the first step, the factors of suggested hybrid harmony search are 
elaborated to define the details of it. Also, the HS algorithm parameters 
are stated here. They’re referred as Harmony memory size (HMS) 
or the quantity of possible solution path for that harmony memory. 
Harmony memory considering rate (HMCR); pitch adjusting rate 
(PAR); and the number of improvisations (NI), or stopping criterion. 
All solution paths or collection of choices are stored in Harmony 
Memory. HM corresponds to what we already mentioned as genetic 
pool in the GA. Both HMCR and PAR are the factors that matter to 
develop the solution path bank.

Harmony memory initialization and evaluation

The HM matrix is filled with as many randomly generated solution 
vectors as the HMS. This matrix has N columns where N is the total 
number of decision variables and HMS rows which are selected in the 
first step. This initial memory is created by assigning random values 
that lie inside the lower and upper bounds of the decision variable to 
each decision parameter of each vector of the memory as shown in eqn. 
(10). An initial population of harmony vectors are randomly generated 
and stored in a harmony memory (HM). Then a new candidate 
harmony is generated from all of the solutions in HM by using a 
memory consideration, a pitch adjustment, and a random selection.

The HM matrix is accumulated with maximum number of 
randomly made solution paths. It has N columns where N is the sum of 
choices and HMS rows that are selected in the first step. This primarily 
memory is shaped via allocating random values that are from upper 
and lower boundaries of choices to every single decision factor and 
parts of memory as shown in eqn. (10). A pool from harmony paths 
are randomly created and stored in HM. Using a memory status, an 
adjustment in pitch and a random choice, another harmony variable is 
created among all the possible choices in HM.

( )0 min max min
i, j j j j jx x r x x= + × −                    (9)

J1 Jl Jn
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Figure 1: Schematic of the problem.
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Where min
jx  and max

jx  are the lower and upper bound of the 
jth decision parameter respectively, and rj ∈[0,1] is an uniformly 
distributed random number generated anew for each value of j. Pseudo 
code of memory initialization can be shown in Figure 2. Thus, HM 
form can be shown as in Figure 3. Candidate solution vectors in HM 
shown in Figure 3 are then analyzed and their objective function values 
are calculated.

(f (xi), 1,2,..., HMS.

It should be noted that to use HS algorithm for solving the 
mentioned scheduling problem, it is necessary to convert it to a job 
permutation for evaluating the objective value. Let each index of 
the dimensions of the vector represent a typical job from J={1, 2,..., 
n}, and the n indexes denote n different jobs. Thereafter, the largest 
position value (LPV) rule is employed to obtain a job permutation 
p={p(1),p(2),..., p(n)} by ordering the jobs in their non-increasing 
position value of Xi. A simple example is illustrated in Figure 4.

Improvise a new harmony

In this step, a New Harmony vector ( )1 2, ,i i, i, i,nx x x x′ ′ ′ ′=   is generated 
based on three rules. They are memory consideration, pitch adjustment, 
and random selection. The value of a design variable can be selected 
from the values stored in HM with a probability of harmony memory 
considering rate (HMCR). It can be further adjusted by moving to a 
neighbor value of a selected value from the HM with a probability of 
pitch adjusting rate (PAR). Or, it can be selected randomly from the set 
of all candidate values without considering the stored values in HM, 
with the probability of (1-HMCR).

Memory consideration: The usage of harmony memory (HM) 
is important because it ensures that good harmonies are considered 
as elements of new solution vectors. In order to use this memory 
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called 
harmony memory considering (or accepting) rate. If this rate is too low, 
only few elite harmonies are selected and it may converge too slowly. If 
this rate is extremely high (near 1), the pitches in the harmony memory 
are mostly used, and other ones are not explored well, leading not into 
good solutions. Therefore, based on researchers suggestion HMCR 
is considered between 0.7 and 0.95. We consider a linear relation for 
HMCR so that it has bigger value at first iteration and lower value at 
the end of iterations.

Using HM drastically matters since it guarantees the best harmonies 
are purified for components of the selected solution. To meritoriously 
apply the memory, HS process implements a factor HMCR ∈ [0,1], that 
is known as rate of harmony memory accepting. In case the best and 
few harmonies are selected, this rate is too low and the convergence is 
very slow. On the other hand, when the rate is tremendously high, it 
means the pitches in harmony memory are almost fully working, the 
other ones are not working well and hence they’re not led to proper 
solution. As a result, the investigators suggest 0.7 and 0.95 as the range 
of HMCR. Also since the relation of it is linear, at the first iteration, it 
has higher value and it incrementally decrease till the end of iterations 
that has low value.

Memory consideration: The usage of harmony memory (HM) 
is important because it ensures that good harmonies are considered 
as elements of new solution vectors. In order to use this memory 
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called 
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it 
may converge too slowly. If this rate is extremely high (near 1), the 
pitches in the harmony memory are mostly used, and other ones are 
not explored well, leading not into good solutions. Therefore, based on 
researchers suggestion HMCR is considered between 0.7 and 0.95. We 
consider a linear relation for HMCR so that it has bigger value at first 
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies 
are purified for components of the selected solution. To meritoriously 
apply the memory, HS process implements a factor HMCR ∈ [0,1], that 
is known as rate of harmony memory accepting. In case the best and 
few harmonies are selected, this rate is too low and the convergence is 
very slow. On the other hand, when the rate is tremendously high, it 
means the pitches in harmony memory are almost fully working, the 
other ones are not working well and hence they’re not led to proper 
solution. As a result, the investigators suggest 0.7 and 0.95 as the range 
of HMCR. Aslo since the relation of it is linear, at the first iteration, it 
has higher value and it incrementally decrease till the end of iterations 
that has low value.

Memory consideration: The usage of harmony memory (HM) 
is important because it ensures that good harmonies are considered 
as elements of new solution vectors. In order to use this memory 
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called 
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it 
may converge too slowly. If this rate is extremely high (near 1), the 
pitches in the harmony memory are mostly used, and other ones are 
not explored well, leading not into good solutions. Therefore, based on 
researchers suggestion HMCR is considered between 0.7 and 0.95. We 
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consider a linear relation for HMCR so that it has bigger value at first 
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies 
are purified for components of the selected solution. To meritoriously 
apply the memory, HS process implements a factor HMCR ∈ [0,1], that 
is known as rate of harmony memory accepting. In case the best and 
few harmonies are selected, this rate is too low and the convergence is 
very slow. On the other hand, when the rate is tremendously high, it 
means the pitches in harmony memory are almost fully working, the 
other ones are not working well and hence they’re not led to proper 
solution. As a result, the investigators suggest 0.7 and 0.95 as the range 
of HMCR. Aslo since the relation of it is linear, at the first iteration, it 
has higher value and it incrementally decrease till the end of iterations 
that has low value.

Memory consideration: The usage of harmony memory (HM) 
is important because it ensures that good harmonies are considered 
as elements of new solution vectors. In order to use this memory 
effectively, the HS algorithm adopts a parameter HMCR ∈ [0,1], called 
harmony memory considering (or accepting) rate.

If this rate is too low, only few elite harmonies are selected and it 
may converge too slowly. If this rate is extremely high (near 1), the 
pitches in the harmony memory are mostly used, and other ones are 
not explored well, leading not into good solutions. Therefore, based on 
researchers suggestion HMCR is considered between 0.7 and 0.95. We 
consider a linear relation for HMCR so that it has bigger value at first 
iteration and lower value at the end of iterations.

Using HM drastically matters since it guarantees the best harmonies 
are purified for components of the selected solution. To meritoriously 
apply the memory, HS process implements a factor HMCR ∈ [0,1], that 
is known as rate of harmony memory accepting. In case the best and 
few harmonies are selected, this rate is too low and the convergence is 
very slow. On the other hand, when the rate is tremendously high, it 
means the pitches in harmony memory are almost fully working, the 
other ones are not working well and hence they’re not led to proper 
solution. As a result, the investigators suggest 0.7 and 0.95 as the range 
of HMCR. Aslo since the relation of it is linear, at the first iteration, it 
has higher value and it incrementally decrease till the end of iterations 
that has low value.

( ) max min
min

HMCR HMCRHMCR t HMCR t
NI
−

= + ×                 (10)

Where HMCR(t) is harmony memory consideration rate for 
iteration t, HMCRmin and HMCRmax are the minimum and maximum 
value for HMCR, respectively and finally NI is number of iterations.

Pitch adjustment: The second component is the pitch adjustment 
which has parameters such as pitch bandwidth (bw) and pitch adjusting 
rate (PAR). As the pitch adjustment in music means changing the 
frequency, it means generating a slightly different value in the HS 
algorithm. In theory, the pitch can be adjusted linearly or nonlinearly, 
but in practice, linear adjustment is used. This operation uses the 
PAR parameter, which is the rate of pitch adjustment and r which is 
a random number between 0 and 1; and bw is an arbitrary distance 
bandwidth. Pitch adjustment is similar to the mutation operator in 
genetic algorithms. We can assign a pitch-adjusting rate (PAR) to 
control the degree of the adjustment (Figure 5). A low pitch adjusting 
rate with a narrow bandwidth can slow down the convergence of HS 
because of the limitation in the exploration of only a small subspace of 
the whole search space. On the other hand, a very high pitch-adjusting 
rate with a wide bandwidth may cause the solution to scatter around 

some potential optima as in a random search. It has examined that 
PAR=0.1~0.5 is the best value to obtain better results. We also used 
another modification for pitch adjustment rate and consider a linear 
relation so that it has bigger value at first iteration and lower value at 
the end of iterations (See eqn. (11)).

Pitch adjustment is the second part. Its factors are Pitch bandwidth 
(bw) and pitch adjusting rate (PAR). In music, this means frequency 
change. Here, it means adjusting the value in HS algorithm. Both 
adjustment, linear and non-linear are possible in theory but in fact only 
linear adjustment is applied that uses the PAR factor, which is the rate 
of pitch adjustment and r which is a random number between 0 and 1; 
and bw is an arbitrary distance bandwidth. Pitch adjustment performs 
like mutation operator in genetic algorithms it means it’s possible to 
allocate a PAR to regulate the degree of adjustment (Figure 5). Due to 
restriction in searching subspace, a low PAR and narrow bw decelerate 
the convergence of HS. Vice versa, in random exploration, a high PAR 
and wide bw leads to the key to scatter around some potential optima.. 
It has examined that PAR=0.1~0.5 is the best value to reach the best 
results. We also used another modification for PAR. The relation is 
linear, i.e. at the first iteration, the value is higher and at the ending 
iterations, the value becomes lower and lower (See eqn. (11)).

( ) max min
min

PAR PARPAR t PAR t
NI
−

= + ×                   (11)

Random selection: The third component is the randomization, 
which is to increase the diversity of the solutions. Although the pitch 
adjustment has a similar role, it is limited to certain area and thus 
corresponds to a local search. The use of randomization can drive the 
system further to explore various diverse solutions so as to attain the 
global optimality.

Harmony memory update

If the newly generated harmony vector gives a better function value 
than the worst one, the new harmony vector is included in the HM and 
the worst harmony is excluded.

Affinity function

Affinity function was used for avoiding from premature 
convergence and increasing the diversification. Affinity function 
allows us the generated solutions with high diversity. We consider 
a parameter called percentage of affinity, which is denoted PAF for 
defining the percentage of good sorted solutions, which remained at 
each iteration, and then the remained capacity of the population is 
selected from unique solutions existing among the present solutions. If 
unique solutions were not enough for filling the remained capacity of 
population, we have to use the repetitive solutions.

In order to prevent from untimely convergence and also to increase 
the diversification, affinity function was applied. This function provides 
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Figure 5: Pitch adjustment.
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us the capability to create diverse solutions. Affinity percentage is a 
parameter that is meant PAF to show the percentage of good sorted 
solutions. The solutions that we have at each iteration and hence, the 
capacity of the quantity of infrequent solutions that are among the 
percentage. If infrequent solutions were not sufficient to fill the free 
capacity of total quantity, we must apply repetitive solutions.

Termination criterion

The process of harmony search is stopped if the number of 
repetition ends. The highest number of repetition is shown by MaxIt. 
Our proposed algorithm in pseudo code is shown in Figure 6.

Computational Experiments
Problem design

In this study we examined the effectiveness of the proposed 
approaches for a 15 test problems. The problem data can be 
characterized by three factors in terms of the number of jobs, number 
of machines, processing time, sequences dependent setup times, 
Ready time and machine availability time. Table 1 shows the random 
generated problems in detail.

1) Calculate mean processing time of each job on all s stages.
.
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2) Calculate average setup times for all possible subsequent jobs 

and sum it for all s stages.
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Determine a due date for each job with following formula.
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Parameter tuning

It is known that the great choice of parameters has striking impact 
on performance of algorithms. Furthermore, the suitable design 
parameter values highly depend on the type of problems. Most of 
researches where were conducted by using evolutionary algorithms 
generally have been fixed parameter values after some preliminary 
experiment or have been fixed with reference to values of the previous 
similar literature. Main motive of this behaviour related to large 
number of parameters and their levels; because a comprehensive 
calibration requires to time and resource-consuming. Calibration plays 
a prominent role in improvement of performance of algorithm and in 
some cases it is a compulsory step in the developing the algorithms. 
For the purpose of calibration of algorithms some methods were 
used in literature. However, the most frequently used and exhaustive 
approach is a full factorial experiment [64,65]. This methodology 
usually is utilized when number of factor and their levels also CPU 
time of algorithm is small or moderate. Using of this approach gets very 
difficult for algorithms with numerous factors and levels and high CPU 
time. To diminish the number of required tests, fractional factorial 
experiment (FFE) was developed [66]. FFEs permit only a portion of 
the total possible combinations to estimate the main effect of factors 
and some of their interactions [67].

We already knew the algorithms performance is highly impacted 
by choice of parameters. Besides, the problem type is a key factor to 
the suitable design parameter values. Usually, the researches that are 
run using evolutionary algorithm are fixed the values after sequences of 
experiment or by going back to values of previous identical experiences. 
The key reason to conduct as such, is depended to the quantity of 
parameters as well as their level. Because abroad correction needs time 
as well as consumption of many resources. Correction or calibration 
is a main factor to increase the performance level of algorithm and 
sometimes is mandatory phase. In order to do the calibration, some 
methodologies were discussed in papers. However, the most frequently 
used and exhaustive approach is a full factorial experiment. This 
approach is generally applied if quantity of factors, their levels, CPU 
time of algorithm are low or near average. To diminish the number 
of required tests, fractional factorial experiment (FFE) was developed. 
FFEs permit only a portion of the total possible combinations to 
estimate the main effect of factors and some of their interactions.

A family of matrices decreasing the number of experiments is 
established by Ross [68]. Taguchi developed a family of FFE matrices 
which eventually reduce the number of experiments, but still provide 
sufficient information. In Taguchi method, the orthogonal arrays are 
used to study a large number of decision variables with a small number 
of experiments.
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Define pitch adjustment rate ( )
Define Maximum Iteration ( )
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Figure 6: Pseudo code for harmony search.

Factors Levels
Number of job 8,16,20,24,30

Number of stages 2,3,4
Number of Machines at each stage U(1,4)

Processing times U(1,100)
Sequence dependent setup times U(5,20)

Ready time U(1,100)
Machine availability time U(500,1000)

Table 1: Problem parameters and their levels.
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The experimental design proposed by Taguchi involves using 
orthogonal arrays to organize the parameters affecting the process and 
the levels at which they should be varying. Instead of having to test 
all possible combinations like the factorial design, the Taguchi method 
tests pairs of combinations. This makes collection of the necessary data 
to determine which factors have most significant effects on product 
quality with a minimum amount of experiment, thus saving time and 
resources. An advantage of the Taguchi method is that it emphasizes a 
mean performance characteristic value close to the target value rather 
than a value within certain specification limits, thus improving the 
final quality. Additionally, Taguchi method for experimental design is 
straightforward and easy to apply for many engineering situations. This 
makes it a powerful simple tool yet. It can be used to various research 
projects or to identify problems in a manufacturing process. Also, it 
has wide range of application in analysis of many different parameters 
without a prohibitively high amount of experimentation.

In Taguchi approach, variables are classified in two groups: 
controllable and noise factors (uncontrollable). Noise factors are 
those over which we have no direct control. Since elimination of the 
noise factors is impractical and often impossible, the Taguchi method 
seeks to minimize the effect of noises and determine optimal levels of 
important controllable factors based on the concept of robustness [69].

Besides determining the optimal levels, Taguchi identifies the 
relative significance of individual factors in terms of their main effects 
on the objective function. Taguchi has created a transformation of 
the repetition data to another value which is the measure of variation. 
The transformation is the signal-to-noise (S/N) ratio which explains 
why this type of parameter design is called robust design. Here, the 
term ‘‘signal’’ denotes the desirable value (mean response variable) 
and ‘‘noise’’ denotes the undesirable value (standard deviation); so the 
S/N ratio indicates the amount of variation presents in the response 
variable. The aim is to maximize the signal-to-noise ratio [70-83].

Taguchi method classifies the variable into two sets. Controllable 
and uncontrollable (or sometimes known as noise factors). Noise 
factors are those over which we have no direct control. Since 
elimination of the noise factors is impractical and often impossible, the 
Taguchi method seeks to minimize the effect of noises and determine 
optimal levels of important controllable factors based on the concept 
of robustness. Not only Taguchi does determine the importance ratio 
of every single factor in terms of their impact on the aiming function, 
but also it identifies its ideal level too. What Taguchi introduced, is a 
sort of modification in the iterative data to an additional value that is 
called measure of variation. The transformation is the signal-to-noise 
(S/N) ratio which explains why this type of parameter design is called 
robust design. By “signal” it infers, those values that are critical or 
anticipated. Dislike the “signal”, by “noise” it infers those values that 
are not wanted or anticipated (Standard Deviation). Hence, this is a 
percentage of variation in response variable. This is what we need to try 
to increase [84-97].

Taguchi categorizes objective functions into three groups: the 
smaller-the-better type, the larger-the-better type, and nominal-is-best 
type. Since almost all objective functions in scheduling are categorized 
in the smaller-the-better type, its corresponding S/N ratio is:

( )10/ ratio logS N objective function
 
 = −
 
 
∑                (15)

Before calibration of HS, the algorithm is subjected to some 
preliminary tests to obtain the proper parameter levels to be tested 

in the fine-tuning process. Some quick experiments showed that In 
order to achieve to more accurate and stable results for our proposed 
algorithm, we considered eleven parameters for tuning. These 
parameters are HMCR, PAR, MaxIt, nPop, PAF which they are shown 
with their level in Table 2. The considered orthogonal array with eleven 
factors and three levels in Taguchi method is L27. The orthogonal array 
L27 is presented in Table 3.

By calculating all of experimental results in Taguchi method, the 
average S/N ratio and average of maximum completion time were 
obtained for both considered scales. Figures 6 displays the average 
S/N ratio obtained at each level. As illustrated in Figure 7, optimal 
levels are A(3), B(1), C(3), D(3), E(1), F(1). Furthermore, computed 
results in terms of Objective Function in Taguchi experimental analysis 
confirmed the achieved optimal levels using S/N ratio (Figure 8). The 
ranking for importance of harmony search’s parameters showed in 
Figure 9.

Results
In this section the results of tested experiments for all algorithms 

are presented and the performance of the proposed algorithms is 
compared to each other in terms of the performance metrics. All 
algorithms were coded using MATLAB 2013a and run on personal 
computer with a 2.66 GHz CPU and 4 GB main memory.

A B C D E F
Level HMS nPop HMCR PAR PAF

1 100 5 25 0.75 0.1 0.40
2 150 10 40 0.85 0.3 0.50
3 200 15 80 0.95 0.5 0.60

Table 2: Parameters and their levels.

A B C D E F
1 1 1 1 1 1 1
2 1 1 1 1 2 2
3 1 1 1 1 3 3
4 1 2 2 2 1 1
5 1 2 2 2 2 2
6 1 2 2 2 3 3
7 1 3 3 3 1 1
8 1 3 3 3 2 2
9 1 3 3 3 3 3
10 2 1 2 3 1 2
11 2 1 2 3 2 3
12 2 1 2 3 3 1
13 2 2 3 1 1 2
14 2 2 3 1 2 3
15 2 2 3 1 3 1
16 2 3 1 2 1 2
17 2 3 1 2 2 3
18 2 3 1 2 3 1
19 3 1 3 2 1 3
20 3 1 3 2 2 1
21 3 1 3 2 3 2
22 3 2 1 3 1 3
23 3 2 1 3 2 1
24 3 2 1 3 3 2
25 3 3 2 1 1 3
26 3 3 2 1 2 1
27 3 3 2 1 3 2

Table 3: The orthogonal array L27.
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The effectiveness of the algorithms was testified by solving 15 
different problems. Tables 3-5 show the comparative results of the 
three algorithms with respect to five performance measures for small 
and large scale problem respectively [98-106].

Regarding the performance measures, Relative Percentage 
Deviation (RPD) over the best solutions is used. It is calculated as 
follows:

100sol sol

sol

Method Best
RPD

Best
−

= ×                 (16)

Where Methodsol is value of method and Bestsol is the best value 
between the algorithms.

Summary results for test problems in terms of RPD , standard 
deviation of RPD, best RPD and worst RPD are shown in Table 4. 
The results indicated that, HS strongly outperforms the three other 
algorithms. As can be seen in Table 4, in small size problems (with 8 
jobs) two of algorithms (HS and AICA+PBSA) have reached to best 
solution and there is no difference among algorithms. In medium size 
and large size problems, HS outperformed the other algorithms. We 
conducted means plot and Tukey intervals for the algorithms at 95% 
confidence interval. Figure 9 demonstrated that the HS algorithm 
statistically outperformed the other algorithms. Furthermore, we 
analysed the behaviour of algorithms in different scenarios. Figures 
10 and 11 indicated that HS have better results in terms of ARPD 
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Figure 11: Means plot between the type of algorithm and number of stages in 
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Level A B C D E F
1 -24.88 -19.64 -24.94 -24.78 -21.27 -21.03
2 -20.43 -23.25 -21.51 -22.07 -23.21 -22.43
3 -20.16 -22.50 -19.14 -18.40 -21.09 -22.24

Delta 4.72 3.61 5.80 6.38 2.12 1.40
Rank 3 4 2 1 5 6

Table 4: SN Ratio table for parameters in Taguchi methodology.
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Figure 10: Means plot between the type of algorithm and number of jobs in 
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for all of examples with different job numbers and different stages, 
respectively. We also examined our proposed algorithms in term of 
standard deviation. As can be seen in Figure 12, there is a same manner 
for algorithms except for job number 20 (Table 5).

Conclusion and Further Researches
This paper presents an industrial scheduling problem as a no-

wait hybrid flow shop problem with sequence dependent setup times, 
different ready times and machine availability time. This problem has 
many applications in wide ranges of modern manufacturing and service 
industries. To our knowledge, there is no other published work that 
considers finding an optimal schedule for this problem. We propose an 
effective harmony search algorithm to tackle the considered problem. 
To validate the proposed algorithm, we used fifteen test problems 
and evaluated the performance and the reliability of the proposed 
algorithm. Computational simulations and comparisons demonstrated 
the effectiveness and efficiency of the proposed HS algorithm. There 
are a number of research directions that can be considered as useful 
extensions of this approach. As a direction for further researches in 
this area, the influence of the starting solution should be investigated. 
Moreover, hybrid algorithms should be developed by using a local 
search like simulated annealing or variable neighbourhood search 
within a HS. Other issues that are worthy of future research includes 

developing and testing of novel meta-heuristics like firefly algorithm, 
graph colouring-based algorithm. Developing models with some 
practical assumptions like emergency maintenance, learning effect and 
deterioration may be other fruitful topics for future investigations.
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4 7/63 8/86 4/24 1/81 0/00 0/00 0/00 0/00 12/99 16/21 13/69 4/44 5/55 6/16 5/50 1/49
2 6/82 11/58 5/29 1/10 0/00 3/40 0/00 0/00 18/30 21/01 7/41 5/81 8/12 6/82 2/86 2/18

20 3 4/45 5/42 1/36 1/98 0/00 0/00 0/00 0/00 15/67 10/26 2/82 7/57 4/85 3/79 1/42 3/09
4 9/37 7/48 5/43 0/72 5/02 3/71 0/00 0/00 15/70 12/94 9/60 3/48 2/74 3/12 3/75 1/46
2 12/60 11/80 6/76 1/60 0/00 0/00 0/00 0/00 35/15 24/60 16/21 8/36 9/48 6/93 5/57 2/86

24 3 6/41 13/62 3/25 1/89 0/00 3/61 0/00 0/00 16/22 31/00 6/79 6/62 6/48 7/88 2/48 2/34
4 12/23 14/62 7/33 1/61 0/00 0/00 0/00 0/00 17/35 21/64 17/48 8/15 5/23 8/64 6/24 2/84
2 10/98 18/86 5/60 1/91 0/00 0/00 0/00 0/00 14/11 30/44 12/84 8/45 4/11 13/29 4/87 3/50

30 3 15/02 18/09 5/32 1/79 0/00 0/00 0/00 0/00 23/81 33/83 9/84 5/98 10/30 10/02 3/97 2/89
4 11/20 11/08 4/11 0/93 0/00 0/00 0/00 0/00 23/26 22/72 12/03 3/14 10/36 8/61 4/91 1/28

Average 7/71 9/61 4/03 1/38 0/34 0/78 0/00 0/00 15/69 18/69 9/57 5/61 5/55 6/30 3/69 2/11

Table 5: Summary results for small scale problems in terms of ARPD, Best RPD, Worst RPD and Standard deviation of RPDs.
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Figure 12: Means plot between the type of algorithm and number of stages in 
terms of average standard deviation.
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