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Abstract

transformation is also introduced.

Light travels through a vacuum at speed c regardless of the motion of the light source or that of an observer's
frame of reference. Consequently, sometime is required for light to travel from a light source to an observer in
space, such that the emission of light and the observance of the emitted light are not simultaneous. Based on these
considerations, a method for measuring the absolute velocity of an observer is proposed, which could be used for
determining a spacecraft's state of motion from inside a closed cabin. In this study, a new explanation of the Lorentz
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Introduction

The following analysis presents a practical approach for
measuring the absolute velocity of an observer, which could be used
for determining a spacecraft's state of motion from inside a closed
cabin. The concept of absolute velocity generally refers to a standard
uniform velocity of the various objects of a physical system relative to
a postulated immobile space that exists independently of the physical
objects contained therein (i.e., an absolute space).

Analysis on Absolute Velocity

Herein, we present an approach based on rigid kinematics to
demonstrate that the absolute velocity of an observer can be determined
from the fact that light travels through a vacuum at speed ¢ regardless
of the motion of the light source or that of an observer's frame of
reference. Consequently, sometime is required for light to travel from a
light source to an observer in space, such that the emission of light and
the observance of the emitted light are not simultaneous.

In the proposed analysis, we first provide the following
conventions for the coordinate systems under consideration. We
assume a Cartesian coordinate system comprised of three pair-wise
perpendicular axes originating from point (0,0,0), where any point P
in space can be defined by its coordinates along the x, y, and z axes,
represented by an ordered pair of real numbers (x,y,2). An inertial
reference system S is assumed to be represented by a space rectangular
coordinate system (x,y,z) whose origin is O. A series of standard clocks
(denoted as S clocks) are located at stationary points in S. The S clocks
are mutually calibrated (i.e., they provide equivalent readings at the
same instant in time) based on the transmission and reception of a
light signal. Specifically, at time ¢, a light beam is projected from clock
A to clock B, which is then reflected at time £, by clock B back toward
clock A, and arrives at clock A at time ¢," If £, —f =1, — 1, the
two clocks are calibrated. For any event located at coordinates x,y,z, its
time coordinate ¢ is given by the reading of the event-related S clock.
Similarly, another inertial reference system S'is established based on a
second space rectangular coordinate system (x',y’,z") whose origin is O’,
and another series of mutually calibrated standard clocks (S’ clocks) are
located at stationary points in reference system S". For any event located
at coordinates x',y,z’, its time coordinate t'is given by the reading of the
event-related S’ clock.

Because the respective origins of the spatial and temporal
coordinates, as well as the directions of the coordinate axes can be

selected arbitrarily to a large extent, the relationships between S and S’
employed herein are based on the following conventions, which have
been applied for simplicity.

(1) At a particular instant in time, the origins and coordinate axes
of the two systems are superposed, and the clocks respectively
located at O and O’ are set to zero, i.e,. t=t'=0

(2) The x and x' axes are coincident in the direction of the relative
motion of S and S thus, x and x' are coincident at all times,
while y and y’, as well as z and z"are parallel.

(3) S' moves along the +x direction of S.

The proposed analysis is based on the fundamental principle
that light in a vacuum travels at a constant velocity ¢ regardless of
the motion of either the observer or the light source. Thus, we herein
define the absolute velocity U of the observer, which is assumed to be
linear and uniform, as U= c. flg), where f(¢) represents a function of
the geometrical relationship between the direction of a light signal and
the direction of U, denoted herein as ¢.

Two new explanations of the relativity of time and length are
provided in the proposed analysis, which differ from Einstein's
explanations (please refer to “On the Electrodynamics of Moving
Bodies”). These explanations are introduced in the following sections.

The relativity of time

Owing to the finite velocity of light, sometime is required for light
to travel from a light source to an observer in space. It can therefore be
deduced that the emission of light and the observance of light cannot
be simultaneous. Based on the constancy of the velocity of light and
the conditions illustrated in Figure 1, we define the following factors.
The positions of a light source and an observer at =0, at which time
the light source emits light (denoted as event R), are given respectively
as A and H,. During the period of light propagation from =0 to ¢=T,
the observer travels a distance U-T from position H, to H, whereupon
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Figure 1: Calculating the parameters with triangular relations.

the observer receives the emitted light. Accordingly, we define 4 as
the distance I between the position of the observer upon receiving the
light signal at t=T and the position of the light source when emitting
light at t=0. Owing to the constancy of the velocity of light, I=c .T
the distance H,H is equivalent to U-T. Finally, we define H A4 as the
distance [, between the position of the observer at t=0 and the position
of the light source at t=0. Here, we introduce a consideration of the
observer's position at =0, which was previously thought to have no
physical significance. If the states of motion of the observer and the
light source are equivalent, | is given, such that U can be calculated via
the triangular relations illustrated in Figure 1.

In the present work, the time of an event is measured using the
following method. Both the observer and a clock are placed at the
origin. When the light signal representing the occurrence of an event
reaches the observer, the light arrival time will correspond with the
time indicated by the clock. The advantage of the correspondence is
that it is always related to the position of the observer who employs
the clock. As seen in Figure 1, spatial point O, can be defined based on
the position of the light source when emitting light at =0, and spatial
point O, can be defined based on the position of the observer when
receiving light at t =T. However, the means of defining spatial point
O, at which the observer is located when the light source emits light
at t=0 is not obvious. To solve this problem, the concepts of absolute
rest (i.e., U =0) and absolute motion (i.e. , U#0) are introduced. We
respectively substitute the single moving observer at H and H with two
observers H, and H, at rest at spatial points O, and O,, respectively,
while light source A is at rest at spatial point O,. Each of the observers
and the light source employ calibrated standard clocks, and A emits a
light signal at t=0 denoted as event R. When observer H, receives the
light signal traveling at c, the clock reading is T;, and when H, receives
it, the reading is T. As such, the distances 0,0, and 0,0, canbe defined
based on the respective travel times of the light signal as follows:

0,0, =c-T,> (1)
and
0,0,=c-T- )

According to the triangular relations shown in Figure 1, the
transformation of event R between observers H, and H, is given as follows.

T
cosp=—(cosg' + 90, (3)
71) 0302
T 1
T, ,00, ,00, ., (4)
\/1 +2cos @’ 0.0, + (70302 )

Here, ¢ is the angle between the line 0,0, and the x axis, and " is the
angle between the line 0,0, and the x axis.

Returning now to the condition of a single moving observer,
we assume that, in system S, both the observer H and light source A
employ a calibrated standard clock [1]. At the instant of event R, light
source A is at spatial point O,, and observer H is at O,. The instant
at which the light signal reaches spatial point O, corresponds with an
S clock reading of T,. When observer H receives the light signal, the
reading is T, and H is at 0O,

Of course, H cannot observe event R at point O,. To solve this
problem, another observer His placed in system S at point O,
corresponding with t= T, where the position of H is employed to
define spatial point O,. Then, the transformation of event R between
observers H and H can be obtained through Equation (3) as follows.

90, U (5)
0,0, c¢
Hence, Equations (3) and (4) can be rewritten as follows.
cosQ = z(cosgp'+g) (6)
T c

1 _ 1

- U U %)

0 \/1 +2cos@ — +(—)°
C C

We also observe that, for ¢=n/2, Equations (6) and (7) simplify to
the following.

, U
cosQp =—— ®)
c
r_.t.
T, U? ©)
==
C

Therefore, based on the above analysis, a simple method for
determining U can be obtained from Equation (6), given that H,4 (¢)
is known.

For the purpose of simplicity, a light source with an equivalent state
of motion as that of the observers is chosen as the reference frame [2,3].
An observer is set in the center of a straight rigid bar in uniform linear
motion, and light signals from different positions on the bar arrive at
the observer at different times. The observer detects bar deflection at the
observer's position with a deflection angle 7-2¢" that can be obtained
from Equation (8).

Through this method, the state of motion of a spacecraft could be
determined from a closed cabin.

The relativity of length

In the above analysis, two lengths have been introduced, i.e., -1
and 0,0, - In this case, we consider the length of a bar that is assumed
to be a stationary rigid bar of length L within its coordinate system, for
which L is measured with a stationary staff gauge, and where the bar
axis is coincident with the x axis of a coordinate system that moves with
uniform linear motion along the +x direction at an absolute velocity U.
It is assumed that L is determined by the two operations defined below.
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(a) The observer resides in the same moving coordinate system as
does the bar and staff gauge, and L is measured by superposing
the bar and staff gauge [4-6].

(b) By the aid of several clocks positioned in stationary coordinates,
which move in synchronization, the observer measures the
positions of the two ends of the bar in stationary coordinates at
a specific moment t, and the distance between the two positions
is measured with the stationary staff gauge.

H-g is the length calculated from operation (a), which is denoted
herein as the bar length in the moving coordinate. 0,0, is the length
calculated from operation (b), which is denoted herein as the length of
a moving bar in the stationary coordinate. It is obvious that z-z and
0,0, are different.

We assume that, in system S, observer H is in the same state
of motion as H. Then, as shown in Figure 1, H is at point O, when
receiving the light signal at ¢ =T, and, simultaneously, observer H is
at point O,. Therefore, 0,0, is the distance between H and H at t =T,
and

00, =H H.,- (10)

m is the distance traveled by observer H in the interval from T,
to T, such that

0,0,=U(T -T,)- (11

00, is the distance between H- at t=T, and H at ¢ = T, such that

00,=H H+U(T -T,) (12)

As such, the following expression can be deduced.

00, UT T

HH UL, T,

Next, we will consider the coordinate and time transformations
between two moving coordinate systems, both of which move with

a uniform linear velocity, which represents a new explanation of the
Lorentz transformation.

(13)

Assuming that observer H (in system S), observer H' (in system S),
and light source A" (in system S") all employ calibrated standard clocks
individually, and, at t=t=t""=0, light source A" emits a light signal,
denoted as event R" [7]. At the instant of event R", A" is at point 0,
and observers H and H' are coincident. When observer H receives the
light signal, the reading of the S clock is T, and H is at point O,. When
observer H' receives the light signal, the reading of the S’ clock is T",
and H' is at point o,. Then, the transformation of event R" between
observers H' and H can be calculated from Equation (3), where

00, u (14)
0,0, c

Here, u is the relative velocity between observers H' and H, which
yields the following transformations.

’

cosgozl(cosgo#z) (15)
T c

T 1

\/1+200s¢'u+(u)2
c ¢

(16)

From H H = H'"H'+u(T"-T), the following relations can be derived:

HH _ul' T (17)
H-H ul T
When go=% and cos¢' = _ﬂ, Equation (16) simplifies to
c
T' 1
T 2 ‘ﬂ. (18)

Therefore, the following transformation relations can be deduced:

= pl-)> (19)
C

x'=p (x=ut) (20)

y'=y 21

z=7' (22)

Moreover, where, u=0

HH=HH" (23)

and

t'=t (24)

x'=x-ut (25)

=y (26)

Z'=z (27)
Conclusion

The method for measuring the absolute velocity of an observer

is proposed in the paper, which could be used for determining a
spacecraft's state of motion from inside a closed cabin. In this study,
a new explanation of the Lorentz transformation is also introduced.
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