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Introduction
A variety of numerical methods for finding eigenvalues of non-

negative irreducible matrices have been reported over the last decades, 
and the mathematical and numerical aspects of most of these methods 
are well reported [1-24]. In recent article of Tedja [19], it was presented 
the mathematical aspects of Collatz’s eigenvalue inclusion theorem for 
non-negative irreducible matrices. It is the purpose of this manuscript 
to present the numerical implementation of [19]. Indeed, there is the 
hope that developing new numerical method could lead to discovering 
properties that might be responsible for better numerical method 
in finding and estimating eigenvalues of non-negative irreducible 
matrices. Birkhoff and Varga [2] observed that the results of the 
Perron-Frobernius theory and consequently Collatz’s theorem could 
be slightly generalized by allowing the matrices considered to have 
negative diagonal elements. They introduced the terms “essentially 
non-negative for matrices, the off-diagonal elements of which are 
non-negative, and “essentially positive matrices” for essentially non-
negative, irreducible matrices. The only significant changes is that 
whenever Perron-Frobernius theory and Collatz’s theorem refer to the 
spectral radius of a non-negative matrix A, the corresponding quantity 
for an essentially non-negative matrix Ã is the (real) eigenvalue of the 
maximal real part in the spectrum of Ã, also to be denoted by  Λ[Ã]. 
Of course Λ[Ã] need not be positive and it is not necessary dominant 
among the eigenvalues in the absolute value sense.

Definition

Incidentally, if A is what you call an essentially positive matrix (so 
it is a real matrix with positive off-diagonal entries), then A + aI has 
positive entries for sufficiently large positive a, so A + aI has a Perron 
eigenvalue, p say, with corresponding eigenvector v, say, having 
positive entries. But p is the only eigenvalue of A + aI for which there is 
a corresponding eigenvector with positive entries. Thus p - a is the only 
eigenvalue of A with a corresponding eigenvector having all its entries 
nonnegative, but p - a is real and need not be positive (since a could 
be greater than p). In this manuscript the eigenvalue corresponding to 
a positive eigenvector is real. There probably is a term already in the 
literature for "essentially positive" For example: Z-matrix, tau-matrix, 
M-matrix, and Metzler matrix all refer to matrices with off-diagonal
entries all of the same sign, but having extra conditions.

Background

Let A be an n x n essentially positive matrix. The new method can 
be used to numerically determine the eigenvalue λA with the largest real 
part and the corresponding positive eigenvector x[A] for essentially 
positive matrices. This numerical method is based on previous 
manuscript [16]. A matrix A=(aij) is an essentially positive matrix if aij 
≥ 0 for all i ≠ j, 1 ≤ i, j ≤ n, and A is irreducible. 

Let x > 0 be any positive n components vector [19]. Let

1
( )i ir r

r
r i

z x a x
=
≠

= ∑ ;                (1)

( ) ( ),

1
( )

n
i j ji

i
ji i

Ax a x
f x i N

x X=

= ≡ ∈∑ ;                (2)

( ) ( )

( ) ( )

min
max

i
i N

i
i N

m x f x

M x f x
∈

∈

=

=
 [6, 8, 20, 23]*                (3)

( ) ( ) ( )x M x m x∆ = − ;   (4)

1
.

n

i
i

x x
=

= ∑ * In Ostrowsky [25] m(x) is defined as:

min
a x

x

µυ υ
υ

µ
µ

∑
  (5)

The following theorem is an application of corollary 2.3 from [16] 

*Corresponding author: Oepomo TS, Science, Technology, Engineering, and
Mathematics Division, Los Angeles Harbor College/West LA College, and School
of International Business, California International University. 1301 Las Riendas
Drive Suite: 15, Las Habra, CA 90631, USA, Tel: 310-287-4216; E-mail:
Oepomot@wlac.edu; oepomotj@lattc.edu; oepomots@lahc.edu

Received  November 10, 2016; Accepted December 23, 2016; Published 
December 27, 2016

Citation: Oepomo TS (2016) An Alternating Sequence Iteration’s Method 
for Computing Largest Real Part Eigenvalue of Essentially Positive Matrices: 
Collatz and Perron-Frobernius’ Approach. J Appl Computat Math 5: 334. doi: 
10.4172/2168-9679.1000334

Copyright: © 2016 Oepomo TS. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

An Alternating Sequence Iteration’s Method for Computing Largest Real 
Part Eigenvalue of Essentially Positive Matrices: Collatz and Perron-
Frobernius’ Approach
Tedja Santanoe Oepomo*
Mathematics Division, Los Angeles Harbor College/West LA College, and School of International Business, California International University, USA

Abstract
This paper describes a new numerical method for the numerical solution of eigenvalues with the largest real 

part of essentially positive matrices. Finally, a numerical discussion is given to derive the required number of 
mathematical operations of the new method. Comparisons between the new method and several well know ones, 
such as Power and QR methods, were discussed. The process consists of computing lower and upper bounds which 
are monotonically approximating the eigenvalue.
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to the design of numerical method using the Perron-Frobenius-Collatz 
mini-max principle for the calculation of x[A] [10].

Let {xp} (p=0, 1, 2,……) be a sequence of positive vectors and 

1 2, ,.........,
Tp p p p

nx x x x =  
.

Theorem 1 If the sequence {xp} (p=0, 1, 2,…) of positive unit 
vectors is such that either [ ]( )p

Am x A λ→ Λ ≡  or [ ]( )p
AM x A λ→Λ ≡  

as p → ∞ then xp → x[A]  ≡  ξ. Moreover, the sequence {m(xi)}, {xi} are 
equi-convergent in the sense that an index υ and a constant K > 0 exist 

such hat ( )i ix K m xξ λ − < −   if I ≥ υ. Similar statements can be 

expressed if ( ) [ ]i
AM x A λ→ Λ ≡  is known. ([19], theorem 2.4)

Numerical Implication of Theorem 1
We will now define a group of sequences, the “decreasing-

sequence.”

Decreasing-sequence

Let Yr(x) (r=1, 2, 3,…,n) be an n component vector valued function 
such that the following equation is valid:

i
r

i xxY =)(  if i ≠ r and Ωr(x) if i=r. 		                 (6)

Here Ωr(x) (r=1, 2, 3,…, n) are scalar valued functions which are 
having properties as follows:

•	 Ωr(x) is a continuous positive valued function which maps the 
set of positive vectors V+ into a set of real numbers R.

•	 Ωr(x) ≤ xr.

•	 Fr(Yr(x)) M(x).			                                    (7)

•	 Equality in c) may be applicable only if Yr(xr-1) converges to x; 
this yields that fr(x)=M (x).

•	 If for some x > 0 Ωr(x)=xr for each r∈ (N=1, 2, 3,…, n) then

1 2 1( ) ( ) ............ ( )nf x f x f x λ−= = = = . This will imply that 
fn(x)=λ according to Collatz, hence x=x[A]. In Faddeev [25], 
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Then n-component vector valued function Yr(x) defined in equation 
(6) will be referred to as the Decreasing-functions. A sequence {xp} 
(p=0, 1, 2, 3,…) of positive n-vectors is constructed which satisfy the 
conditions of theorem 1. The terms of the sequence {xp} are generated 
by the following recursive formula:

xp + 1=Yp + 1 					                      (8)

Where Yk(x)=Yk + n (x) (k=1, 2, 3,…). If x0 is given the sequence 
{xp} is completely defined. xp + 1 and xp differ only in the rth component 
where

r ≡ p + 1 (mode n) 				                     (9)

Such a sequence will be called a decreasing maximum ratio 
sequence or briefly decreasing-sequence.

Corollary 1: Any decreasing-sequence converges to xA.

Proof: From equation (6) and 0 ≤ Ωr(x) ≤ xr yield to imply 
0 ≤ Yr(x) ≤ x∀x∈V+. Finally, it follows from inductive construction in 
equation (8) that x0 ≥ x1 ≥ x2 ≥…≥ 0. Therefore convergence of xp 
as p → ∞ is always guaranteed. The condition that 0 ≤ xp <xp-1<…x0 

necessarily implies that infp||x
p|| < ∞ is satisfied.

Note: In any case, if we have an increasing bounded sequence, 
the limit always exists and is finite (the sup is an upper bound/ the 
sequence is bounded from above by a supremum). It does converge 
to the supremum. This criterion is also true for a decreasing bounded 
sequence and is bounded below by an infimum. It will converge to the 
infimum. But we need to be very careful to define the term bounded, 
it means bounded from above and bounded from below. These 
statements hold for sets of real numbers. We will now define a second 
group of sequences, the “Increasing-sequence”.

Increasing-sequence

Let yr(x) (r=1, 2, 3,…, n) be an n component vector valued function 
such that the following equation is valid:

i
r
i xxy =)(  if i ≠ r and ωr(x) if i=r. 			                (10)

Here ωr(x) (r=1, 2, 3,…, n) are scalar valued functions which are 
having properties as follows:

ωr(x) is a continuous positive valued function and bounded in 
( )x½	 	0; 	x³0

r
= >∑ .

ωr(x) ≥ xr

fr(yr(x)) ≥ m(x)					                   (11)

Equality in c) may be applicable only if yr(xr-1) converges to x; this 
yields that fr(x)=m(x).	

If for some x > 0 ωr(x)=xr for each r∈ (N=1, 2, 3,…, n) then

1 2 1( ) ( ) ............ ( )nf x f x f x λ−= = = = . This will imply that 
fn(x)=λ according to Collatz, hence x=x[A]. In Faddeev [25], 
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Then n-component vector valued function Yr(x) defined in equation 
(9) will be referred to as the Decreasing-functions. A sequence {xp} 
(p=0, 1, 2, 3,…,) of positive n-vectors is constructed which satisfy the 
conditions of theorem 1. The terms of the sequence {xp} are generated 
by the following recursive formula:

xp + 1=yp + 1(xp) 					                  (12).

Where yk(x)=yk + n(x) and y(x) is as defined in equation (9) (k=1, 
2, 3,…). If x0 is given the sequence {xp} is completely defined. Such a 
sequence will be called an increasing minimum ratio sequence or 
briefly increasing-sequence.

Corollary 2: Any Increasing-sequence converges to xA.

Proof: Since wr(x) ≥ x, so that yr(x) ≥ x. This yields to imply that, 
starting with x0 ≥ 0, we have xp + 1=yp + 1(xp) ≥ xp ≥…x0 ≥ 0, so that xp 
automatically converges as long a supp||x

p||<8.

Numerical tests indicate that an alternation of the application of the 
decreasing and increasing sequences will converge faster than either 
the decreasing or increasing sequence separately. Therefore, we will 
define a sequence of vectors {xp} which are constructed by alternating 
methods of the decreasing or increasing type functions.

We will describe a sequence of n steps which generate xj + 1…xj + n 
(j=0, n, 2n,…) in an iteration. If the decreasing functions (yr(x),r=1, 
2,…,n) are used to generate the n terms of the sequence {xp} during 
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iteration as defined in equation (8) then we will say that the iteration is 
in decreasing mode. Similarly, the iteration is in the increasing mode 
if increasing functions are used as defined in equation (12). Successive 
terms of the sequence {xp} can be defined recursively in the following 
respects:

( )1 1k k kx Y x+ +=  for k=0, 1, 2,…or ( )1 1k k kx y x+ +=  for k=0, 1, 2…  (13)

Where k=0 corresponds to the input vector. The first iteration 
could be either in the increasing or decreasing mode. We also define the 
sequence of real number {t



} and {T


} as follows: t0=m(x0) and T0=M(x0). 
At the end of each iteration we consider the following inequalities:

( ) 1
nm x t•

−≥



 and ( ) 1
nM x T•

−≤



                  (14)

Where (=1, 2, 3…) are indexes of the iteration. If inequalities (14-
1) and (14-2) are met, we may set

( )nt m x •= 



 and ( )nT M x •= 



                (15)

And the mode or sequence of the next ( + 1)st iteration will be 
different from the st iteration, i.e. the sequence of the st iteration is 
different from the ( + 1)st iteration. If either inequality (14-1) or (14-
2) is not satisfied then the mode or sequence of the ( + 1st) iteration 
is the same as that of the st iteration or unchanged and we set: t



=t
 –1 

and T


=T
–1.

A sequence having the above mentioned properties will be called 
the alternating sequence iteration.

Corollary 3: Any alternating sequence iteration converges to xA.

Proof: If inequalities (14-1) and (14-2) are satisfied, it means that 
the estimated result is located between the upper bound, M(xn + 1), 
and lower bound, M(xn + 1), so no change in the iteration sequence is 
required. Otherwise, the iteration sequence is required to be switched. 
Since if only either one of those inequalities is met then it means that 
the result is not between M(xn + 1) and m(xn + 1). The condition stated 
in inequalities (14-1) and (14-2) will ensure that the iteration results 
are located between the upper and lower bound. As the iterations are 
continuing, eventually, M(xn + 1) and m(xn + 1) are getting closer and 
closer. This condition will accelerate the rate of convergence. At the 
end, equation (4) would be almost zero.

Corollary 1, 2, and 3 described above lay the foundation of the 
procedure of an iterative method for the determination of the positive 
eigenvector of essentially positive matrices. The choices of the functions 
Ωr(x), ωr(x) are open, but are subject to the restrictions specified in 
connection with the decreasing and increasing sequences. In theorem 
2 and theorem 3 which follow, a possible choice for Ωr(x) and ωr(x) is 
given.

Theorem 2
Let Hr(x) (r=1, 2, 3,…, n) denote continuous, positive valued 

functions which map the set of positive vectors V+ into a set of real 
number R such that m(x) ≤ Hr(x) ≤ M(x)               (16)

and equality may hold on either side of equation (16) only if 
m(x)=M(x)=λA.

For r ε N (N=1, 2, 3,…, n), let Ωr(x)=x if fr > Hr or= r

r rr

z
H a−

 if 

fr< Hr                                   (17)

Where Hr ≡ Hr (x), fr ≡ fr (x), and all notations are defined in 
equations (1, 2, 3, 4, and 5). Then the functions Ωr(x) (together with a 
starting vector x0) define a decreasing sequence.

Proof: We will first show that if fr < Hr, the term (Hr – arr) in equation 
(17) is always positive. By definition from equations (1) and (2)

;r
r rr

r

zf a
x

= +  as fr < Hr the above equation yields r
r rr

r

z H a
x

< −    (18)

For an essentially positive matrix all the off diagonal elements 

cannot be zero and consequently for any vector x > 0; 0r

r

z
x

> . Therefore 
(18) becomes 0 < Hr – arr                          (19)

It is clear from equations (17) and (19) that Ωr(x) is a positive 
valued function. Equation (17) can also be used to derive estimates for 
the function θr ≡ θr(x)=fr(Yr(x)). With the abbreviation used before,

θr=fr if fr ≥ Hr or=Hr if fr < Hr                 (20)

The above inequalities are equivalent to θr=max[fr, Hr] (21)

θr is the maximum of two continuous functions and is therefore 
continuous. By definition fr, Hr are either less than or equal to M. 
Therefore from equation (21) θr ≤ M. Thus Ωr(x) has property of c in 
equation (7) of decreasing sequences. From the definition of θr, Ωr(x),zr 

we get 
( )
r

r rr
r

z a
x

θ = +
Ω

                   (22)

Equation (20) implies θr > fr                            (23)

From equations (22), (23) 
( )
r

rr r
r

z a f
x
+ ≥

Ω
, or ;

( )
r r

rr rr
r r

z za a
x x
+ ≥ +

Ω
 

therefore Ωr(x) ≤ xr. Thus Ωr(x) has property b in equation (7) of 

decreasing sequences.

Equation (22) is equivalent to ( ) r
r

r rr

zx
aθ

Ω =
−

                (24)

As stated before for an essentially positive matrix, zr is positive, and 
therefore it is obvious from (22) that θr > arr; and thus the denominator 
in equation (24) is positive. Therefore, by the established continuity 
of θr(x), Ωr(x) it is also continuous. Thus Ωr(x) has property of (a) of 
equation (7) of decreasing sequences. From equation (21) θr=M(x) is 
possible only if max(fr, Hr)=M(x). As Hr < M(x) by assumption unless fr 
(x)=M(x), so in any case θr(x)=M(x); fr(x)=M(x).

Thus Ωr(x) has property d in equation (12) of decreasing sequences.

Finally suppose that Ωr(x)=xr for r=1, 2, 3,…, n, and thus θr(x)=fr(x). 
From equation (20) θr ≥ Hr as θr=fr, we get fr ≥ Hr. The last inequality is 
equivalent to max

r
 .( )r rf M x H= ≥

Since M(x) ≥ Hr by definition, we have M(x)=Hr. By assumption 
this is possible only if m(x)=M(x). Hence Ωr(x) has property of e in 
equation (7) of decreasing sequences. This completes the proof of 
theorem 2.

Theorem 3
 Let hr (r=1, 2, 3,…, n) denotes a continuous bounded function 

mapping

r
∑→ R, such that m(x) ≤ hr(x) ≤ M(x)                  (25)

and equality may hold on either side of equation (24) only if 
m(x)=M(x)=λA, x=xA, 

r
∑  has been introduced in equation (11). We 

further define

wr(x)=xr                     (26)

 If fr ≤ hr, and
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= r

r rr

z
h a−

,					                   (27)

If r
r r rr

zf h a
x

> > +  or=||x|| otherwise Then the function wr 

(together with an x0 > 0) define an increasing sequence.

Proof: We will first show that if fr > hr, the term (hr – arr) in equation 

(17) is always negative. By definition ;r
r rr

r

zf a
x

= +  as fr >  hr the above 

equation yields r
r rr

r

z h a
x

> −  			                                (28)

For an essentially positive matrix, all the off diagonal elements 
cannot be zero and accordingly for any other vector x > 0; 0r

r

z
x

> ; 
therefore equation (28) becomes 0 >  hr – ar	

It is clear from equation (26) and (28) that ωr(x) is a negative valued 
function. Equation (26) can also be used to derive estimates for the 
function, θr=θr (x)=fr (yr(x)). With the abbreviation used before θr=fr if:

fr ≤ hr or=hr if fr > hr			    	              (29)

The above inequalities are equivalent to:

θr=min[fr, hr]					                    (30)

θr is the minimum of two continuous functions and is thus 
continuous. By definition fr, hr are either greater than or equal to m. 
Therefore, from equation (30) θr ≥ m. Thus ωr(x) has property of c 
in equation (11) of increasing sequences. From the definition of θr, 
ωr(x),zr we get:

( )
r

r rr
r

z a
x

θ
ω

= +  				                    (31)

Equation (29) implies

θr ≤ fr						                    (32)

From equation (31), (32) 
( )
r

rr r
r

z a f
xω
+ ≤ , or ;

( )
r r

rr rr
r r

z za a
x xω
+ ≤ +  

therefore ωr(x) ≥ xr.

Thus ωr(x) has property b in equation (11) of increasing sequences. 
Equation (31) is equivalent to:

( ) r
r

r rr

zx
a

ω
θ

=
−

				                 (33)

As stated before, for an essentially positive matrix, zr is positive, 
and hence it is obvious from (31) that θr < arr; and thus the denominator 
in equation (33) is negative. Accordingly by the established continuity 
of θr(x), ωr(x) it is also continuous. Thus ωr(x) has the property of (f) 
of equation (11) of increasing sequences. From equation (30) θr=m(x) 
is possible only if min(fr, hr)=m(x). As hr > m(x) by assumption unless 
fr(x)=m(x), so in any case θr(x)=m(x); fr(x)=m(x). Thus r(x) has property 
i in equation (11) of increasing sequence. Finally suppose that ωr(x)=xr 
for r=1, 2, 3,…, n, and thus θr(x)=fr(x). From equation (29) θr ≤ hr as 
θr=fr, we get fr ≥ hr.

The last inequality is equivalent to min ( )r rr
f m x h= ≤ . Since 

m(x)=hr by definition, we have m(x)=hr. By assumption this is possible 
only if m(x)=M(x). Hence r(x) has property of e in equation (11) of 
increasing sequences. This completes the proof of theorem 3.

The Requirements of Functions Hr(x), and hr(x)
The functions Hr(x), and hr(x) can be selected in many means. The 

following are a few of the possible choices:

a) [ ]1( ) ( ) ( ) ( )
2rh x M x m x xµ= + = ; * *1( ) ( ) ( ) ( )

2rH x M x m x xµ = + =   where 

r ∈ N (N=1, 2, 3,….,n) and M*(x)=min(m(x),M1) and M1 is an upper 

estimate of the eigenvalue λA, e.g., M1=M(x0) 0
1 ( )M M x= . In [8], m(x) 

is defined as 
i k

Min
∈

 Rk(x) and M(x) is defined as 
i k

Max
∈

 Rk(x). However in 

Tedja S [19], m(x) = ρ*(y), and M(x)=ρ*(y). While in Collatz [6], m(x) =

ii
Minµ , and M(x)= ii

Maxµ . 

b) For full matrices, a reasonable choice for Hr(x) and hr(x) are 

derived from the arithmetic mean of the fi′s. Hr(x)=
1

1( ) ( )
n

i
i

x f x
n

σ
=

= ∑ ; 

and hr(x)= * *

1

1( ) ( )
n

i
i

x f x
n

σ
=

= ∑  where fi
*(x)=min(fi(x), M1).

c) Another simple choice for hr(x); Hr(x) is a weighted arithmetic 
mean of fi′s:

)(xhr = 1
( )

( ) ( )

n

i i
i

r

f x x
H x x

x
υ== =

∑
. υ(x) can also be defined in the 

following mean: 1( )

n

i i
i

b x
x

x
υ ==

∑
, Where 

1

n

i ji
j

b a
=

= ∑ 	               (34)

New Alternating Iteration Method
A step of the alternating sequence iteration method consists in 

modifying a single component xr of x. As a result zi, fi, ||x||,υ(x) will 
have to be calculated at each iteration. Calculating zi, ||x|| from their 
definition in equations (1), and (5) will be referred as recalculating. A 
considerable reduction of calculation can be accomplished if instead 
of recalculating these terms are merely updated according to the 
following steps:

( )1 1p p p p
r rx x x x+ += + −  and ( )1 1p p p p

i i ir r rz z a x x+ += + −  I=1, 2, 

3,……,n

( )1 1( ) ( ) .p p p p
r r rx x b x xυ υ+ += + − 			                  (35)

These steps will be referred to as the updating iteration. The 
updating equations can be obtained easily from equations 1 through 
5. To prevent the accumulation of round off errors after a number of 
iterations, the variables will have to be recalculated instead of updating. 
If we are working in a double precision, our previous experiences 
indicate that it is more than sufficient to recalculate after every twenty 
five iterations.

Over-Relaxation Method
From various choices for functions Hr(x),hr(x) and υ(x) as indicated 

in equation (34) seems to give a rapid convergence at least for full 
matrices. The purpose of this section is to present a variant of equation 
(35) by introducing the over-relaxation technique. We consider the 
following equation

( ) ( )( ) 1 ( ) ( )r rh x f x xγ γ υ= − + 			                 (36)

As it well known, for several suitable values forγ, is the over-
relaxation factor, and 1 ≤ γ ≤ 2. Equation (36) may be useful in case of 
banded matrices. The over-relaxation method contains the following 
cases:
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•	 γ=1 for simultaneous over-relaxation method, and

•	 1 < γ < 2 for over-relaxation method.

Error vector in all methods the quantity ∆(x)=M(x)–m(x) as 
indicated in (4) is used as a measure of accuracy.

Discussion
Before we go any further, the following issues should be understood. 

Are both eigenvalues and eigenvectors required to be calculated, or are 
eigenvalues by itself enough? Is only the absolute largest eigenvalue 
of interest? Does the matrix have special characteristics such as real 
symmetric, essentially positive, and so on? If all eigenvalues and 
eigenvectors are required then this new cannot be used;

If a matrix (A) is essentially positive and the positive eigenvector 
(xA) and the corresponding eigenvalue (λA) are of particular interest, 
then the new method can be used. Each step of the numerical method 
requires n2 + 0(n) computations, if the parameters are chosen for 
the best rate of convergence. It is possible to assume that in half the 
steps practically no computations are needed, resulting thereby in 

2

0( )
2
n n+  computations for each iteration. As previously stated, 

after some iteration the variables will have to be recalculated instead 
of updating. Recalculations need n2 + 0(n) additional computations. If 
the computations are performed in double precision, recalculation will 
not have to be performed so often. As a result, recalculations do not 
increase the total number of computation significantly.

For our numerical comparisons all three methods, Power, New 
Method, and QR methods, were tried to solve eigenvalue of the 
following matrices:

All three methods were used to estimate the eigenvalue of Hilbert 
matrices of various orders. Let Hn be a Hilbert matrix of order n. The 
elements of Hilbert matrix are defined according to the following 

relation: 
( )

1
1ija

i j
=

+ −
1 ≤ i, j ≤ n.

The results of the 3 methods can be seen in Tables 1-3.

•	 We would like to find the efficiency of the three numerical 
methods, when a matrix had eigenvalues of nearly the same modulus. 
So it was decided to pick a matrix of order n that was almost cyclic (cn). 
Consider the below mentioned matrix

1,1 1,2

2,1 2,2

A A
A A
 
 
 

. The elements of A1, 2 and A2, 1 were defined as follows,

( ),
1

1i ja
i j

=
+ −

, A1, 2 is a (8, 12) matrix, and A2, 1 is a (12, 8) matrix.

The elements of A1, 1 and A2, 2 were defined in the following respects,

( )
2

,
10

1i ja
i j

−

=
+ −

, A1, 1 is a (12, 12) matrix, and A2, 2 is a (8, 8) matrix.

If the elements of A1, 1 and A2, 2 were replaced by zero, then the 
matrix would be nearly cyclic. For comparisons, the results of those 3 
methods can be seen in Tables 4-6.

•	 Introducing a proper shift of origin could speed up the 
convergence of power method [9]. So it was decided to try that kind 
of matrix by introducing a shift of origin would not help the speed of 
convergence. Such a matrix of order n(Qn) can be given by the following 
relations.

, max , ;i j
n i n ja

n n
− − =   

 1≤ i, j ≤ n. and ,

150
2

i i

ni
n ia

n n

 +  −  −    = −    
 
 

 1≤ 

i ≤ n.

The results of our tests are indicated in Tables 7-10 for Arnoldi.

We will assume that we are interested in the positive eigenvector and 
the corresponding eigenvalue of the essentially positive matrix. From 
our trials, it is obvious that in all three cases the rate of convergence of 
our new method is better than or at least as fast as the power [9]. The 
QR [26] method converges very slowly in the last two cases, when the 
separation between the eigenvalues is poor. Let us consider the results 
of case b, when the matrix is nearly cyclic. For a cyclic matrix there are 
some eigenvalues of equal modulus, and so for a matrix that is “near 
cyclic” it is plausible to assume the separation between the modules 
is very poor. The new method takes about 5, 700 multiplications and 
divisions to reach an accuracy of 8 digits; which is about 5 times the 
computations of the power method and the QR method reaches an 
accuracy of 2 digits and 4 digits respectively. We should remember 
that the QR method is not specifically designed to calculate just one 
eigenvalue; therefore, a comparable efficiency cannot be expected. Thus 
from our recent experience, we can conclude that the new method 
shows a good speed of convergence even when the separation of the 
eigenvalues is poor. However, in the case of banded matrices the 
new method converges slowly. The new was tried on various banded 
matrices arising from finite difference approximation to boundary 
value problems of ordinary differential equations. A computer code 
was written specially for banded matrices, to take advantage of the large 
number of zero elements in a banded matrix. We will here summarize 
the results of our computer runs with the following (20, 20) matrix

Operations ∆(x) Log∆(x)
1640 1.423 0.3528
4921 1.41 × 10-1 -1.958
8200 1.39 × 10-2 -4.275
11490 1.3441 × 10-3 -6.611
14764 1.296 × 10-4 -8.949
18040 1.25 × 10-5 -11.288
21322 1.208 × 10-6 -13.626
24600 1.116 × 10-7 -15.965
27880 1.123 × 10-8 -18.304

Table 1: Hilbert matrix H40 new method.

Operations ∆(x) Log∆(x)
4800 1.016 × 10-1 -2.288
9600 3.71 × 10-3 -5.597
14400 8.549 × 10-5 -9.368
19200 3.068 × 10-6 -12.693
24000 7.061 × 10-8 -16.467
28800 2.536 × 10-9 -19.289
29700 9.977 × 10-10 -20.628

Table 2: Hilbert matrix H40 power method.

Operations ∆(x) Log∆(x)
17400 2.423 × 10-2 -3.21
23400 1.007 × 10-4 -9.202
26600 8.263 × 10-9 -18.614
332000 2.422 × 10-2 -3.722
442000 1.0096 × 10-4 -9.212
506000 8.239 × 10-9 -18.615

Table 3: Hilbert matrix H40 QR method.
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aii= – 2 if 1 ≤ i ≤ n; ai + 1, i=ai, i + 1=1, 1 ≤ i ≤ n-1; ai, j=0 otherwise…   (37)

The over relaxation method as described in equation (36), was tried 
on the previously mentioned matrix with values of γ ranging from 1 to 
1.99. The speed convergence did not show a remarkable dependence 
of γ. An 8 digit of accuracy was obtained in 168 iterations for γ=1.73, 
whereas for full matrices the new method gave a 9 digit of accuracy in 
21 steps.

We will now return our attention to full matrices. Let Rn be a 
matrix (of order n) with pseudo-random entries. The new method 
and the power method were tried on each family of matrices (Rn, Cn, 

Operations ∆(x) Log∆(x)
3780 3.091 × 10-1 -1.174
7980 2.089 × 10-1 -1.566
1188 1.421 × 10-1 -1.950
16390 9.706 × 10-2 -2.334
20580 6.6381 × 10-2 -2.714
24780 4.5461 × 10-2 -3.092
28990 3.111 × 10-2 -3.478
33190 2.1341 × 10-2 -3.848
37380 1.4651 × 10-2 -4.228

Table 4: Almost cyclic matrix H40 power method.

Operations ∆(x) Log∆(x)
1400 2.76 × 10-2 -3.589
2800 7.607 × 10-4 -7.187
4200 2.293 × 10-5 -10.699
5600 6.3492 × 10-7 -14.277
7000 1.9246 × 10-8 -17.774
8400 5.3279 × 10-10 -21.358

Table 5: Almost cyclic matrix C40 new method.

Operations ∆(x) Log∆(x)
2400 3.091 × 10-1 -6.622
3260 2.089 × 10-1 -8.308
4000 1.421 × 10-1 -14.178
44680 9.706 × 10-2 -21.798
21340 6.6381 × 10-2 -6.620
29340 4.5461 × 10-2 -8.30892
37300 3.111 × 10-2 -14.178
41340 2.1341 × 10-2 -21.798

Table 6: Almost cyclic matrix C40 QR.

Operations ∆(x) Log∆(x)
4200 6.506 × 103 8.788
8.788 1.0023 × 102 4.608
3780 6.196 1.824
4.608 1.065 0.0609
7990 2.1967 × 10-1 -1.518
1.824 4.985 × 10-2 -2.988
12190 1.160 × 10-2 -4.458
0.0609 2.703 × 10-3 -5.916
16390 6.294 × 10-4 -7.372

Table 7: Matrix Q40 power method.

Operations ∆(x) Log∆(x)
2400 3.150 1.134
3260 2.089 10-4 -8.472
4000 4.778 10-7 -14.558
44680 3.124 10-10

Table 8: Matrix Q40 new method.

Operations ∆(x) Log∆(x)
4260 1.429 × 101 2.6591
5260 1.322 × 10-2 -4.3429
5870 4.664 × 10-5 -9.9722
41300 1.4294 × 10 2.6588
51300 1.324 × 10-2 -4.3262
55300 4.668 × 10-5 -9.9722

Table 9: Matrix Q40 new method.

Operations ∆(x) Log∆(x)
4350 1.439 × 101 2.5591
4500 1.322 × 10-2 -6.473
5000 4.5778 × 10-7 -15.558
54678 4.134 × 10-10

Table 10: Matrix Q40 arnoldi method.

Hn) of order n=20, 40 and 80. The speed of convergence is almost the 
same for the two methods remembering that each iteration step of the 
power method requires about twice as many computations. Within 
one method it is somewhat surprising that the number of iteration 
steps required for a given accuracy hardly depends on the order of the 
Hilbert matrix at all.

 No convergence rates are presented, but the experiments shown 
indicate a linear convergence comparable to classical methods, such as 
the power method. Of course other methods, such as

Rayleigh Quotient Iteration, exhibit faster convergence rates 
(usually cubic).

The table of computational results is presented for a special class 
of dense matrices, namely Hilbert matrices, and others of similar 
structure. The new proposed method is about 10% faster (in number 
of operations) than the power method (compare 24, 000 operations in 
Table 2 to 27,880 operations in Table 1 for an error of the order of 
10–8). For sparse matrices stemming for standard PDE problems, the 
new method is inferior.
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