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Abstract

The classical Poincaré Center-Focus problem asks about the characterization of planar
polynomial vector fields such that all their integral trajectories are closed curves whose
interiors contain a fixed point, a center. This problem is reduced to a center problem for
certain ODE . We present an algebraic approach to the center problem based on the study
of the group of paths determined by the coefficients of the ODE.
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1 Introduction

We describe an algebraic approach to the center problem for the ordinary differential equation

o
3—; = Zai(w)v’“, x € I :=1[0,T] (1.1)
=1

with coefficients a; from the Banach space L>°(Ir) of bounded measurable complex-valued func-
tions on I equipped with the supremum norm. Condition sup,¢;,. ey v/|ai(7)| < oo guarantees
that (1.1) has Lipschitz solutions on It for all sufficiently small initial values. By X we denote
the complex Fréchet space of sequences a = (ay, ag,...) satisfying this condition. We say that
equation (1.1) determines a center if every solution v of (1.1) with a sufficiently small initial
value satisfies v(T') = v(0). By C C X we denote the set of centers of (1.1). The center prob-
lem is: given a € X to determine whether a € C. It arises naturally in the framework of the
geometric theory of ordinary differential equations created by Poincaré. In particular, there is a
relation between the center problem for (1.1) and the classical Poincaré Center-Focus problem
for planar polynomial vector fields

dx dy

e _y4F
p y+ F(x,y),

e z+ G(z,y) (1.2)

where F' and G are polynomials of a given degree without constant and linear terms. This
problem asks about conditions on F' and G under which all trajectories of (1.2) situated in a
small neighbourhood of 0 € R? are closed. Passing to polar coordinates (x,%) = (r cos ¢, r sin ¢)
in (1.2) and expanding the right-hand side of the resulting equation as a series in r (for F', G
with sufficiently small coefficients) we obtain an equation of the form (1.1) whose coefficients
are trigonometric polynomials depending polynomially on the coefficients of (1.2). This reduces
the Center-Focus Problem for (1.2) to the center problem for (1.1) with coefficients depending
polynomially on a parameter.
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2 Group of paths

One of the main objects of our approach is a metrizable topological group G(X) determined by
the coefficients of equations (1.1) (the, so-called, group of paths in C*). It is defined as follows.
Let us consider X as a semigroup with the operations given for a = (a1, ag,...) and b =

(b1,b2,...) by
axb=(ay*bi,ag%by,...) €X and a'=(a;'a;",...)€X

where for i € N

(a;xb;)(x) = { 2@?(%;23:)T) i 21/§2x<§:62/§; and a;'(2) = —a;(T—z), 0<z<T

Let C* be the vector space of sequences of complex numbers (ci,co,...) equipped with
the product topology. For a = (aj,a2,...) € X by a = (ai,ag,...) : Iy — C®, ai(x) :=
fgc ar(t)dt for all k € N, we denote a path in C* starting at 0. The one-to-one map a — a
sends the product a * b to the product of paths a OZ, that is, the path obtained by translating a
so that its beginning meets the end of b and then forming the composite path. Similarly, a=1 is
the path obtained by translating a so that its end meets 0 and then taking it with the opposite
orientation.

For a € X consider the basic iterated integrals

L. (a) == // a;, (sk) - ai, (s1)dsg -+ dsy (2.1)
0<s1< <5 <T

By the Ree shuffle formula the linear space generated by all such functions on X is an algebra.
For a,b € X we write a ~ b if all basic iterated integrals vanish at a*b~!. Then a ~ b if and only
if I;, .. i, (a) = I;; .. i, (b) for all basic iterated integrals, see [1]. In particular, ~ is an equivalence
relation on X. By G(X) we denote the set of equivalence classes. Then G(X) is a group with
the product induced by the product * on X. By 7 : X — G(X) we denote the map determined
by the equivalence relation. By the definition each iterated integral I. is constant on fibres of
m and therefore it determines a function 1. on G(X) such that I. = I o . The functions I. are
referred to as iterated integrals on G(X). These functions separate the points on G(X).

Next, we equip G(X) with the weakest topology 7 in which all basic iterated integrals 21%
are continuous. Then (G(X),7) is a topological group. Moreover, G(X) is metrizable, con-
tractible, residually torsion free nilpotent (i.e., finite dimensional unipotent representations of
G(X) separate the points on G(X)) and is the union of an increasing sequence of compact
subsets, see [2].

By G¢(X) we denote the completion of G(X) with respect to the metric d. Then G¢(X) is
a topological group which is called the group of formal paths in C*°.

3 Representation of paths by noncommutative power series

Let C (X1, Xa,...) be the associative algebra with unit I of complex noncommutative polyno-
mials in I and free noncommutative variables X1, Xo,... (i.e., there are no nontrivial relations
between these variables). By C(Xj, Xo,...)[[t]] we denote the associative algebra of formal
power series in t with coefficients from C (X;, Xo,...). Let S € C(Xy, X2,...) be the mul-
tiplicative semigroup generated by I, X7, Xo,.... Consider a grading function w : S — Z4
determined by the conditions

w(I)=0, w(X;)=i¢ (€N) and w(z-y):=wx)+w(y), VYr,yes
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This splits S in a disjoint union S = LS° S, where S, = {s € S : w(s) = n}. By A C
C (X1, X2,...)[[t]] we denote the subalgebra of series f of the form

f= ant” where f, € V,, :=spanc(S,), n€Z; (3.1)

n=0

We equip A with the weakest topology in which all coefficients in (3.1) considered as functions
in f € A are continuous. Since the set of these functions is countable, A is metrizable. Moreover,
if d is a metric on A compatible with the topology, then (A, d) is a complete metric space. Also,
by the definition the multiplication - : A x A — A is continuous in this topology.

By G C A we denote the closed subset of elements f of form (3.1) with fo = I. Then (G,")
is a topological group. Its Lie algebra L5 C A consists of elements f of form (3.1) with fy = 0.
(For f,g € L their product is defined by the formula [f,g] := f-g — g - f.) Also, the map
exp: Lo — G, exp(f) :==e/ =322, f"/nl, is a homeomorphism.

Further, for an element a = (aj,as,...) € X consider the equation

F'(z) = (Zai(x) ti)g») F(z), z¢€lp (3.2)
=1

This can be solved by Picard iteration to obtain a solution Fy : It — G, F,(0) = I, whose
coefficients in expansion in X7, Xo,... and t are Lipschitz functions on I7. We set

E(a) :=F,(T), a€X (3.3)
By the definition we have
E(axb) = FE(a)-E(b), abeX (3.4)

Also, an explicit calculation leads to the formula

E(a)z[—l—i > Ly (@)X X | 7 (3.5)

n=1 t1+-+ig=n

From the last formula one obtains that there is a homomorphism E:G (X) — G such that
E = FE o, that is,

E(g)=1+)_ Yo L 9)Xi o X, | £, g€ GX) (3.6)

n=1 i14-+ig=n

Formula (3.6) shows that E: G(X) — G is a continuous embedding. Moreover, one can
determine a metric d; on A compatible with topology such that £ : (G(X),d) — (G, dy) is an
isometric embedding. Therefore F is naturally extended to a continuous embedding G(X) — G
(denoted also by E) By definition, E:G #(X) — G is an injective homomorphism of topological
groups and E(Gf(X)) is the closure of E(G(X)) in the topology of G.

In what follows we identify G(X) and G;(X) with their images under E.

4 Lie algebra of the group of formal paths

Recall that each element g € L can be written as g = Y 7 | gnt", gn € Vi, n € N. We say that
g is a Lie element if each g, belongs to the free Lie algebra generated by Xi,...,X,,. In this
case each g, has the form

gn = Z Ciq,...ig, [Xi17 [Xi27 [ T [Xikwai ] T H] (41)

W14 tip=n
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with all ¢;, . ;, € C. (Here the term with iy, = n is ¢, X,.)
Let L,, C V,, be the subspace of elements g, of form (4.1). Then

dimeLy, = %2(2 nd 1) pu(d) (4.2)
din

where the sum is taken over all numbers d € N that divide n, and p : N — {—1,0,1} is the
Moébius function.

By Lrie we denote the subset of Lie elements of Lg. Then Lz, is a closed (in the topology
of A) Lie subalgebra of L. The following result was proved in [3].

Theorem 4.1. The exponential map exp : Lo — G maps Lr;c homeomorphically onto Gf(X).

Thus L. can be regarded as the Lie algebra of Gf(X).

5 Center Problem for ODEs

Let C[[z]] be the algebra of formal complex power series in z. By D, L : C[[z]] — C][z]] we
denote the differentiation and the left translation operators defined on f(z) =37, cx2® by

(Df)(z) :== Z(k} + Degy12®, (Lf)(2) == Z Chy12F (5.1)
= k=0

k=0

Let A(D, L) be the associative algebra with unit I of complex polynomials in I, D and L.
By A(D, L)[[t]] we denote the associative algebra of formal power series in ¢ with coefficients
from A(D, L). Also, by Go(D, L)|[[t]] we denote the group of invertible elements of A(D, L)[[t]]
consisting of elements whose expansions in ¢t begin with I.

Further, consider equation (1.1) corresponding to an a = (a1, az,...) € X:

Z—; = Zai(m)vi"'l, x € Ip (5.2)
i=1

Using a linearization of (5.2) we associate to this equation the following system of ODZEs:

H'(z) = (iai(x)DLi_ltZ) H(z), xe€lr (5.3)
i=1

Solving (5.3) by Picard iteration we obtain a solution H, : It — Go(D, L)[[t]], H,(0) = I, whose
coefficients in the series expansion in D, L and t are Lipschitz functions on Ir. It was established
in [1] that (5.2) determines a center (i.e., a € C) if and only if H,(T) = I. This implies the
following result, see [3].

Theorem 5.1. We have

a€l < Z Piy,.igliy,..ip(@) =0, VieN (5.4)

where p;, ... i, @5 a complex polynomial of degree k defined by the formula

k

ph,...,ik(t) = (t—il—i-l)(t—il —ig—i—l)(t—il —ig—ig—i—l)---(t—i—i—l)
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Let G[[r]] be the set of formal complex power series f(r) = r+> oo, d;r'*!. Let d; : G[[r]] — C
be such that d;(f) is the (i + 1)st coefficient in the series expansion of f. We equip G[[r]|] with
the weakest topology in which all d; are continuous functions and consider the multiplication
o on G[[r]] defined by the composition of series. Then G[[r]] is a separable topological group.
Moreover, it is contractible and residually torsion free nilpotent. By G.[[r]] C G[[r]] we denote
the subgroup of power series locally convergent near 0 equipped with the induced topology.
Next, we define the map P : X — G][[r]] by the formula

o0
Pla) =1+ > Pirin @) iy i (a) | (5.5)
i=1 \d1++ip=i
Then P(a xb) = P(a)o P(b) and P(X) = G¢[[r]]. Moreover, let v(x;r;a), x € Ip, be the
Lipschitz solution of equation (5.2) with initial value v(0;7;a) = r. Clearly for every x € I we
have v(x;r;a) € Gc[[r]]. It is proved in [1] that P(a) = v(T;-;a) (i.e., P(a) is the first return
map of (5.2)). In particular, we have

a €l <— Z Din,...ix (Z) . Iil,...,ik (a) = 0, Vie N (5.6)

Also, (5.5) implies that there is a continuous homomorphism P : G(X) — G[[r]] such that
P = Ponr (where 7 : X — G(X) is the quotient map). We extend it by continuity to Gf(X)
retaining the same symbol for the extension. Then C:= w(C) =K erP is a normal subgroup of
Gf(X). By CAf we denote its closure in Gy(X). This group is called the group of formal centers
of equation (1.1).

Theorem 5.2 ([3]). The Lie algebra Eéf C Lrie of é} consists of elements

[e.9]

Z Z Ciy,... ig [Xilﬂ [Xi27 [ o [Xik—17Xi ] T ]H t"

n=1 11+-Fig=n
such that

Z Civyig " Viryip =0, Vn €N, where v,=1 and
i1+-+ig=n
Yityoosip = (—l)kfl(ik — ikfl)(ikfl + 1 — ik,Q) s (ig 4+ 40— il) for k>2

In particular, the map exp : £€f — CAf is a homeomorphism.

For further results and open problems we refer to papers [1]-[3] and references therein.
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