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Abstract

The classical Poincaré Center-Focus problem asks about the characterization of planar
polynomial vector fields such that all their integral trajectories are closed curves whose
interiors contain a fixed point, a center. This problem is reduced to a center problem for
certain ODE . We present an algebraic approach to the center problem based on the study
of the group of paths determined by the coefficients of the ODE.
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1 Introduction

We describe an algebraic approach to the center problem for the ordinary differential equation

dv

dx
=

∞∑

i=1

ai(x)vi+1, x ∈ IT := [0, T ] (1.1)

with coefficients ai from the Banach space L∞(IT ) of bounded measurable complex-valued func-
tions on IT equipped with the supremum norm. Condition supx∈IT , i∈N i

√
|ai(x)| < ∞ guarantees

that (1.1) has Lipschitz solutions on IT for all sufficiently small initial values. By X we denote
the complex Fréchet space of sequences a = (a1, a2, . . . ) satisfying this condition. We say that
equation (1.1) determines a center if every solution v of (1.1) with a sufficiently small initial
value satisfies v(T ) = v(0). By C ⊂ X we denote the set of centers of (1.1). The center prob-
lem is: given a ∈ X to determine whether a ∈ C. It arises naturally in the framework of the
geometric theory of ordinary differential equations created by Poincaré. In particular, there is a
relation between the center problem for (1.1) and the classical Poincaré Center-Focus problem
for planar polynomial vector fields

dx

dt
= −y + F (x, y),

dy

dt
= x + G(x, y) (1.2)

where F and G are polynomials of a given degree without constant and linear terms. This
problem asks about conditions on F and G under which all trajectories of (1.2) situated in a
small neighbourhood of 0 ∈ R2 are closed. Passing to polar coordinates (x, y) = (r cosφ, r sinφ)
in (1.2) and expanding the right-hand side of the resulting equation as a series in r (for F , G
with sufficiently small coefficients) we obtain an equation of the form (1.1) whose coefficients
are trigonometric polynomials depending polynomially on the coefficients of (1.2). This reduces
the Center-Focus Problem for (1.2) to the center problem for (1.1) with coefficients depending
polynomially on a parameter.
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2 Group of paths

One of the main objects of our approach is a metrizable topological group G(X) determined by
the coefficients of equations (1.1) (the, so-called, group of paths in C∞). It is defined as follows.

Let us consider X as a semigroup with the operations given for a = (a1, a2, . . . ) and b =
(b1, b2, . . . ) by

a ∗ b = (a1 ∗ b1, a2 ∗ b2, . . . ) ∈ X and a−1 = (a−1
1 , a−1

2 , . . . ) ∈ X

where for i ∈ N

(ai ∗ bi)(x) =
{

2bi(2x) if 0 ≤ x ≤ T/2,
2ai(2x− T ) if T/2 < x ≤ T

and a−1
i (x) = −ai(T −x), 0 ≤ x ≤ T

Let C∞ be the vector space of sequences of complex numbers (c1, c2, . . . ) equipped with
the product topology. For a = (a1, a2, . . . ) ∈ X by ã = (ã1, ã2, . . . ) : IT → C∞, ãk(x) :=∫ x
0 ak(t) dt for all k ∈ N, we denote a path in C∞ starting at 0. The one-to-one map a 7→ ã

sends the product a ∗ b to the product of paths ã ◦ b̃, that is, the path obtained by translating ã

so that its beginning meets the end of b̃ and then forming the composite path. Similarly, ã−1 is
the path obtained by translating ã so that its end meets 0 and then taking it with the opposite
orientation.

For a ∈ X consider the basic iterated integrals

Ii1,...,ik(a) :=
∫
· · ·

∫

0≤s1≤···≤sk≤T
aik(sk) · · · ai1(s1) dsk · · · ds1 (2.1)

By the Ree shuffle formula the linear space generated by all such functions on X is an algebra.
For a, b ∈ X we write a ∼ b if all basic iterated integrals vanish at a∗b−1. Then a ∼ b if and only
if Ii1,...,ik(a) = Ii1...,ik(b) for all basic iterated integrals, see [1]. In particular, ∼ is an equivalence
relation on X. By G(X) we denote the set of equivalence classes. Then G(X) is a group with
the product induced by the product ∗ on X. By π : X → G(X) we denote the map determined
by the equivalence relation. By the definition each iterated integral I· is constant on fibres of
π and therefore it determines a function Î· on G(X) such that I· = Î· ◦ π. The functions Î· are
referred to as iterated integrals on G(X). These functions separate the points on G(X).

Next, we equip G(X) with the weakest topology τ in which all basic iterated integrals Îi1,...,ik

are continuous. Then (G(X), τ) is a topological group. Moreover, G(X) is metrizable, con-
tractible, residually torsion free nilpotent (i.e., finite dimensional unipotent representations of
G(X) separate the points on G(X)) and is the union of an increasing sequence of compact
subsets, see [2].

By Gf (X) we denote the completion of G(X) with respect to the metric d. Then Gf (X) is
a topological group which is called the group of formal paths in C∞.

3 Representation of paths by noncommutative power series

Let C 〈X1, X2, . . . 〉 be the associative algebra with unit I of complex noncommutative polyno-
mials in I and free noncommutative variables X1, X2, . . . (i.e., there are no nontrivial relations
between these variables). By C 〈X1, X2, . . . 〉[[t]] we denote the associative algebra of formal
power series in t with coefficients from C 〈X1, X2, . . . 〉. Let S ⊂ C 〈X1, X2, . . . 〉 be the mul-
tiplicative semigroup generated by I,X1, X2, . . . . Consider a grading function w : S → Z+

determined by the conditions

w(I) = 0, w(Xi) = i (i ∈ N) and w(x · y) := w(x) + w(y), ∀x, y ∈ S
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This splits S in a disjoint union S = t∞n=0Sn, where Sn = {s ∈ S : w(s) = n}. By A ⊂
C 〈X1, X2, . . . 〉[[t]] we denote the subalgebra of series f of the form

f =
∞∑

n=0

fntn where fn ∈ Vn := spanC(Sn), n ∈ Z+ (3.1)

We equip A with the weakest topology in which all coefficients in (3.1) considered as functions
in f ∈ A are continuous. Since the set of these functions is countable, A is metrizable. Moreover,
if d is a metric on A compatible with the topology, then (A, d) is a complete metric space. Also,
by the definition the multiplication · : A×A → A is continuous in this topology.

By G ⊂ A we denote the closed subset of elements f of form (3.1) with f0 = I. Then (G, ·)
is a topological group. Its Lie algebra LG ⊂ A consists of elements f of form (3.1) with f0 = 0.
(For f, g ∈ LG their product is defined by the formula [f, g] := f · g − g · f .) Also, the map
exp : LG → G, exp(f) := ef =

∑∞
n=0 fn/n!, is a homeomorphism.

Further, for an element a = (a1, a2, . . . ) ∈ X consider the equation

F ′(x) =

( ∞∑

i=1

ai(x) tiXi

)
F (x), x ∈ IT (3.2)

This can be solved by Picard iteration to obtain a solution Fa : IT → G, Fa(0) = I, whose
coefficients in expansion in X1, X2, . . . and t are Lipschitz functions on IT . We set

E(a) := Fa(T ), a ∈ X (3.3)

By the definition we have

E(a ∗ b) = E(a) · E(b), a, b ∈ X (3.4)

Also, an explicit calculation leads to the formula

E(a) = I +
∞∑

n=1


 ∑

i1+···+ik=n

Ii1,...,ik(a)Xi1 · · ·Xik


 tn (3.5)

From the last formula one obtains that there is a homomorphism Ê : G(X) → G such that
E = Ê ◦ π, that is,

Ê(g) = I +
∞∑

n=1


 ∑

i1+···+ik=n

Îi1,...,ik(g)Xi1 · · ·Xik


 tn, g ∈ G(X) (3.6)

Formula (3.6) shows that Ê : G(X) → G is a continuous embedding. Moreover, one can
determine a metric d1 on A compatible with topology such that Ê : (G(X), d) → (G, d1) is an
isometric embedding. Therefore Ê is naturally extended to a continuous embedding Gf (X) → G

(denoted also by Ê). By definition, Ê : Gf (X) → G is an injective homomorphism of topological
groups and Ê(Gf (X)) is the closure of Ê(G(X)) in the topology of G.

In what follows we identify G(X) and Gf (X) with their images under Ê.

4 Lie algebra of the group of formal paths

Recall that each element g ∈ LG can be written as g =
∑∞

n=1 gntn, gn ∈ Vn, n ∈ N. We say that
g is a Lie element if each gn belongs to the free Lie algebra generated by X1, . . . , Xn. In this
case each gn has the form

gn =
∑

i1+···+ik=n

ci1,...,ik [Xi1 , [Xi2 , [ · · · , [Xik−1
, Xik ] · · · ]]] (4.1)
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with all ci1,...,ik ∈ C. (Here the term with ik = n is cnXn.)
Let Ln ⊂ Vn be the subspace of elements gn of form (4.1). Then

dimCLn =
1
n

∑

d|n
(2 n/d − 1) · µ(d) (4.2)

where the sum is taken over all numbers d ∈ N that divide n, and µ : N → {−1, 0, 1} is the
Möbius function.

By LLie we denote the subset of Lie elements of LG. Then LLie is a closed (in the topology
of A) Lie subalgebra of LG. The following result was proved in [3].

Theorem 4.1. The exponential map exp : LG → G maps LLie homeomorphically onto Gf (X).

Thus LLie can be regarded as the Lie algebra of Gf (X).

5 Center Problem for ODEs

Let C[[z]] be the algebra of formal complex power series in z. By D, L : C[[z]] → C[[z]] we
denote the differentiation and the left translation operators defined on f(z) =

∑∞
k=0 ckz

k by

(Df)(z) :=
∞∑

k=0

(k + 1)ck+1z
k, (Lf)(z) :=

∞∑

k=0

ck+1z
k (5.1)

Let A(D, L) be the associative algebra with unit I of complex polynomials in I, D and L.
By A(D,L)[[t]] we denote the associative algebra of formal power series in t with coefficients
from A(D, L). Also, by G0(D, L)[[t]] we denote the group of invertible elements of A(D, L)[[t]]
consisting of elements whose expansions in t begin with I.

Further, consider equation (1.1) corresponding to an a = (a1, a2, . . . ) ∈ X:

dv

dx
=

∞∑

i=1

ai(x)vi+1, x ∈ IT (5.2)

Using a linearization of (5.2) we associate to this equation the following system of ODEs:

H ′(x) =

( ∞∑

i=1

ai(x)DLi−1ti

)
H(x), x ∈ IT (5.3)

Solving (5.3) by Picard iteration we obtain a solution Ha : IT → G0(D, L)[[t]], Ha(0) = I, whose
coefficients in the series expansion in D,L and t are Lipschitz functions on IT . It was established
in [1] that (5.2) determines a center (i.e., a ∈ C) if and only if Ha(T ) = I. This implies the
following result, see [3].

Theorem 5.1. We have

a ∈ C ⇐⇒
∑

i1+···+ik=i

pi1,...,ikIi1,...,ik(a) ≡ 0, ∀i ∈ N (5.4)

where pi1,...,ik is a complex polynomial of degree k defined by the formula

pi1,...,ik(t) = (t− i1 + 1)(t− i1 − i2 + 1)(t− i1 − i2 − i3 + 1) · · · (t− i + 1)
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Let G[[r]] be the set of formal complex power series f(r) = r+
∑∞

i=1 dir
i+1. Let di : G[[r]] → C

be such that di(f) is the (i + 1)st coefficient in the series expansion of f . We equip G[[r]] with
the weakest topology in which all di are continuous functions and consider the multiplication
◦ on G[[r]] defined by the composition of series. Then G[[r]] is a separable topological group.
Moreover, it is contractible and residually torsion free nilpotent. By Gc[[r]] ⊂ G[[r]] we denote
the subgroup of power series locally convergent near 0 equipped with the induced topology.
Next, we define the map P : X → G[[r]] by the formula

P (a) := r +
∞∑

i=1


 ∑

i1+···+ik=i

pi1,...,ik(i) · Ii1,...,ik(a)


 ri+1 (5.5)

Then P (a ∗ b) = P (a) ◦ P (b) and P (X) = Gc[[r]]. Moreover, let v(x; r; a), x ∈ IT , be the
Lipschitz solution of equation (5.2) with initial value v(0; r; a) = r. Clearly for every x ∈ IT we
have v(x; r; a) ∈ Gc[[r]]. It is proved in [1] that P (a) = v(T ; ·; a) (i.e., P (a) is the first return
map of (5.2)). In particular, we have

a ∈ C ⇐⇒
∑

i1+···+ik=i

pi1,...,ik(i) · Ii1,...,ik(a) ≡ 0, ∀i ∈ N (5.6)

Also, (5.5) implies that there is a continuous homomorphism P̂ : G(X) → G[[r]] such that
P = P̂ ◦ π (where π : X → G(X) is the quotient map). We extend it by continuity to Gf (X)
retaining the same symbol for the extension. Then Ĉ := π(C) = KerP̂ is a normal subgroup of
Gf (X). By Ĉf we denote its closure in Gf (X). This group is called the group of formal centers
of equation (1.1).

Theorem 5.2 ([3]). The Lie algebra LbCf
⊂ LLie of Ĉf consists of elements

∞∑

n=1


 ∑

i1+···+ik=n

ci1,...,ik [Xi1 , [Xi2 , [· · · , [Xik−1
, Xik ] · · · ]]]


 tn

such that
∑

i1+···+ik=n

ci1,...,ik · γi1,...,ik = 0, ∀n ∈ N, where γn = 1 and

γi1,...,ik = (−1)k−1(ik − ik−1)(ik−1 + ik − ik−2) · · · (i2 + · · ·+ ik − i1) for k ≥ 2

In particular, the map exp : LbCf
→ Ĉf is a homeomorphism.

For further results and open problems we refer to papers [1]–[3] and references therein.
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