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Introduction
The use of Markov chains is of interest in a wide range of 

applications. For example, the web ranking and information retrieval 
[1-3], queuing systems [4-7], stochastic automata networks [8,9], 
manufacturing systems and inventory control [10] and communication 
systems [11,12] and so on. In order to analyze their performance 
measures, it is required to find their stationary probability distributions 
π by solving the linear system

 0,   0,   1,π π π= > =Q e                 (1)

where  ( ) R ×= ∈ n n
ijQ q  is a generator and ( )T 1,1,  ...,1= ∈ne  is a column 

vector.

For a finite irreducible and aperiodic Markov chain, there exists 
a unique stationary probability distribution π  whose elements are 
strictly greater than zero; see, e.g., [13,14]. Hence, for simplicity, we 
rewrite (1) as the following homogeneous linear system

T T 0,  , ,π= = =Ax with A Q x               (2)

where A and x are the transposes of the generator matrix Q and the 
stationary probability distribution π, respectively. Here the coefficient 
matrix A has zero column sum, positive diagonal entries and non-
positive off diagonal entries.

Recently, there are large amounts of works have devoted to solving 
the linear system (2). For instance, the matrix splitting iterative 
methods [13,15-17] Krylov, subspace methods [18-21] and some 
preconditioning techniques [6,9,17] and so on. What is more, based 
on the aggregation of Markov states, multigrid methods have been 
studied in the literature [22-27]. However, with the size of the Markov 
chains becomes large, the cost of multigrid methods is likely to have 
an increase. Therefore, it is natural to consider certain strategies to 
improve their applications.

In this paper, our concern is the two-level multigrid method. Starting 
from its basic framework [28,29], an accelerated two-level multigrid 
method is pro-posed for speeding up the numerical computation of 
the stationary probability vector of an irreducible Markov chain, by 
applying the quadratic extrapola-tion method discussed by Kamvar, 
Haveliwala, Manning and Golub [2] and its generalization presented by 
Sidi [30] to be the accelerators. It shows how to efficiently combine the 
two-level multigrid method with these vector extrapo-lation methods 
on the coarse level in detail. The new method is denoted as the two-

level-extrapolation (TLE) method. Note that, the idea of improving 
some iterative methods by combining with vector extrapolation 
methods is not new [2,30-32]. As a matter of fact, the main algorithmic 
contribution of the TLE method is that the computation of the coarse-
level equation  0=c cA x is improved. Numerical experiments on two 
Markov chain problems are used to illustrate the efficiency and stability 
of the proposed method.

The rest of this paper is organized as follows. In Section 2, we briefly 
review and analyze the two-level multigrid method. In Section 3, the 
accelerated two-level multigrid method for Markov chains is proposed. 
In Section 4, numerical experiments are provided. Finally, conclusions 
are made in Section 5.

Two- evel Multigrid Method for Markov Chains
In this section, the two-level multigrid method is briefly introduced 

to solve the stationary probability distribution of Markov chains.

For computing numerical solutions of the linear system Ax b=  
with b the right-hand vector, certain multigrid methods have been 
presented in [24,28,29]. It is easy to find that the linear system (2) is 
in fact a special case of Ax b=  when b = 0. Without loss of generality, 
let P be the full rank prolongation matrix of size ,cn n× and R be the 
restriction operator of size ,×cn n where nc is the size of the coarse-
level matrix Ac. Here operators P and R are created by an automatic 
coarsening process described below. Then, starting from the description 
of multigrid methods for the linear system Ax b=  [24,28,29], the two-
level multigrid method for Markov chains is proposed in Algorithm 1, 
where the matrix A is known in the linear system (2), G is an aggregation 
matrix generated by Algorithm 2, and iter denotes the number of cycles 
until the one-norm residual 1 Ax reaches the prescribed tolerance ϵ. 
Note that the approximate solution x only is normalized at the end of 
Algorithm 1 rather than in each iteration, since doing like this not only 
is advantageous for efficient computer implementation, but also is able 
to save the computing cost.
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Algorithm 1: Two-level multigrid method for Markov chains

1. Give an initial guess x and a prescribed accuracy ϵ. Set iter = 0. 

2. Do v1 times ( )Relax ,  .←x A x % the pre-smoothing. 

3. Rebuild aggregation matrix G based on x and A in every cycle. 
Obtain T←R G  and ( )diag .←P x G

4. Form the coarse-level operator T 1diag( )−←cA RAP G x

and compute the corresponding coarse-level vector T¯ .←cx G x

5. Solve the coarse-level equation  0=c cA x  by an iterative method 
with ¯cx  being the coarse-level initial vector. 

6. Coarse-level correction T 1diag( diag( ) ).−← cx G G x x x

7. Do ν2 times ( )Relax ,  .←x A x  % the post-smoothing. 

8. Let  1iter iter← +  and check convergence. If 
1 1, then / ,≤ ←   Ax x x x  otherwise go to step 2.

At steps 2 and 7 of Algorithm 1, the weighted Jacobi method with 
the weight ω , a variant of Jacobi method, is employed to the pre- and 
post-smoothing processes. Let the coefficient matrix A of (2) be split 
into

    ,= − −A D L U

where D is the diagonal part of the matrix A with 0 ,> ∀iid i  L 
and U are the negated strictly lower- and upper-triangular parts of 
A, respectively. Then the weighted Jacobi relaxation method can be 
written as

( )1(1 )ω ω −← − + +x x D L U x                   (3)

with weight ( )0,1 .ω∈

At step 3 of Algorithm 1, it is of vital importance how the 
aggregation matrix G is built based on x and A, that is, we need to 
understand which nodes should be aggregated into a block and which 
nodes should be split between their neighbors. Here, in Algorithm 2, 
we adopt a strength-based aggregation procedure that proposed by De 
Sterck et al. as our aggregation method, since it is able to improve an 
algebraically smooth error that varies slowly in a local neighborhood by 
scaling the original problem matrix A [24,25].

Algorithm 2: Aggregation based on the strength matrix S

1. Set J = 0. 

2. Choose state j, which is an unassigned state and has the largest 
value in the current iterate xk, as the seed point of a new aggregate 

1.+JG
3. Put all unassigned states i that are strongly influenced by the seed 

point (  1)=ijj S  into the new aggregate 1.+JG

4. Let  1.← +J J  If all the states are assigned, stop. 

Otherwise go to step 2.

5. Obtain the aggregation matrix :  if ,  1,2,···,  ,∈ =jG i G j J  then 
 1,=ijG otherwise  0.=ijG

Note that the computation of the strength matrix S is 
based on the problem matrix scaled by the current iterate, i.e., 

diag ( )  ( ),= = ijkA A x a rather than the original coefficient matrix A 
(for details see [24]), where diag(·) denotes a diagonal matrix formed 
with the current iterate xk. Taking the similar way of defining the 
strength matrix S [24], then it follows that

1,if and max ( ),
   

0,otherwise,

θ
≠

 ≠ − ≥ −=


ik
i j

ik

i k a aij
S

where θ is a strength of connection parameter. In Algorithm 2, the 
letter J denotes the number of aggregates, and the aggregation matrix 
G has the following form

1 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 0 . . .

.
0 0 0 1 . . .
0 0 0 1 . . .
. . . . .
. . . . .
. . . . .

×

 
 
 
 
 
 
 
 = ∈
 
 
 
 
 
 
  



n JG                 (4)

From (4), the matrix G has the properties that there exists only 
one element  1=ijG  in each row, but each column may have several 
elements  1,=ijG and the sum of the elements in the jth column denotes 
the number of the nodes which are combined into the jth aggregate.

At step 5 of Algorithm 1, it is necessary to discuss the computation 
of the coarse-level linear system  0.=c cA x  Clearly solving the coarse-
level equation  0=c cA x  is easier than computing the original system 

 0,=Ax since the size of Ac is smaller than that of A. When the size 
of Ac is small, the direct methods such as Gaussian elimination are 
effective. While when the size of Ac is large, iterative methods may be 
a better choice. Here we employ the Gauss-Seidel method to solve the 
coarse-level equation  0,=c cA x since this method makes use of these 
most recently available component approximations. Let the matrix Ac 
be split into

  ,= − −c c c cA D L U

where Dc is the diagonal part of the matrix ,c cA L  and cU  are the 
negated strictly lower- and upper-triangular parts of Ac, respectively. 
Then the Gauss-Seidel method for the homogeneous systems  0=c cA x
can be written as

1 1 (  ) .+ −= −k k
c c c c cx D L U x                   (5)

Let 1 ( ) ,−= −GS c c cH D L U  then (5) is equivalent to 1 .+ =k k
c GS cx H x

Hence, the Gauss-Seidel method for  0c cA x = is found to be identical 
to the power method applied to HGS [13]. With the initial approximation 

¯cx  obtained at step 4 of Algorithm 1, Gauss-Seidel method given 
in (5) modifies this approximation such that it becomes closer and 
closer to the true solution at each iteration. However, the procedure 
has a major disadvantage, that is, it often requires a very long time to 
converge to the desired solution. In order to overcome this problem, it 
is natural to consider improving the coarse-level computation by some 
strategies.

Accelerated Two-level Multigrid Method
In this section, we first give a short introduction to the 

generalization of the quadratic extrapolation method proposed by Sidi 
[30], and then show how to combine this vector extrapolation method 
with the two-level multigrid method on the coarse level for accelerating 
the numerical computation of the stationary probability distribution 
for Markov chains.
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As far as we know, various kinds of vector extrapolation 
methods have been discussed in SIAM Review [33]. For example, 
the polynomial-type vector extrapolation methods which include the 
minimal polynomial extrapolation (MPE) of Cabay and Jackson [34], 
and the epsilon vector extrapolation methods which utilize the scalar 
and vector epsilon methods of Wynn [35,36], and the topological 
epsilon method of Brezinski [37].

It should be noted that the starting point of the vector extrapolation 
algo-rithms is to accelerate the convergence of the sequences { }jx
generated from such a fixed-point iterative method of the form

1 ( ),  0,1,  ···;  : R R ,+ = = −→n n
j jx F x j F                  (6)

where x0 is an initial vector. In recent years, applications of the 
vector extrap-olation methods to compute the stationary probability 
distribution of Markov chains have been reported in [2,30-32]. 
Numerical simulations have also illus-trated that the polynomial-
type methods are in general more economic than the epsilon vector 
extrapolation methods with respect to the computing time and storage 
requirements. Therefore, in this paper, we apply the polynomial-type 
vector extrapolation methods, i.e., the quadratic extrapolation method 
and its generalization, to be our accelerators.

In fact, using vector extrapolation methods as the accelerators is 
com-mon. For instance, Kamvar et al. have considered the quadratic 
extrapola-tion method to speed up the computation of the dominant 
eigenvector of the PageRank problem [2]. Based on Ritz values, Wu 
and Wei discussed its close connection with the Arnoldis method 
[32]. Moreover, Sidi reported that it was closely related to the MPE 
of Cabay and Jackson [34] and thus proposed a generalization of the 
quadratic extrapolation (GQE) method along with the implementation 
of MPE [30]. According to [30], the algorithm of the GQE is provided 
in Algorithm 3.

Algorithm 3: The generalization of quadratic extrapolation 
method

1. Input the vectors 0 1 1,  ,···,  .+kx x x

2. Compute 1 0 0 1,   0,1,···,  ,  set  [ ,  ,···,  ].+= − = =i i k ku x x i k U u u u  
Compute the QR-factorization of ,kU namely, .=k k kU Q R

Obtain ( ) ( )1 1: 1 : ,1 : , : :,1 : .− −= =k k k kR R k k Q Q k

3. Solve the linear system T T
1 1 0 1 1,  [ ,  ,···,  ] .− − −= − =k k k kR d Q u d d d d

4. Set  1=kd  and compute 
T

0 1 [ ,  ,···,  ]= kc c c c  by 

, 0,1,..., .
=

= =∑
k

i j
j i

c d i k

5. Compute 1 0
0

ˆ  ( ) ( ).+
=

= +∑
k

k i k k
i

x c x Q R c

It is clear that the case k = 2 corresponds to the quadratic 
extrapolation method proposed in [2]. One feature of Algorithm 3 is 
that there exists a QR-factorization at step 2 for ,=k k kU Q R  where 

( )1R +×∈ kn
kQ is unitary, and ( )1+×∈ kn

kQ  is an upper triangular matrix 
with positive diagonal elements. Precisely, they have

( )
( ) ( )

1 T
0 1 1 1 ( ,  ,  ··· ,  ) , .+×

+ × += ∈ =

kn
k k k k k kQ q q q Q Q I

00 01 02 0

11 12 1

22 2

. . .

. . .

. . .

. . , 0 .
. .

. .

 
 
 
 
 

= > ∀ 
 
 
 
 
 

k

k

k

k ii

kk

r r r r
r r r

r r
R r i

r

To develop an efficient implementation for the QR-factorization, 
we apply the modified Gram-Schmidt process (MGS) to vectors 

0 1,  ,···,  ;ku u u  [30,38]. The MGS algorithm is given as follows.

MGS algorithm

Step 1. Compute 1/2
00 0 0 ( ,  ) ,=r u u and set 0 0 00/ ;=q u r

Step 2. For  1 : ,=j k set ( )0 ;=
j ju u

Step 3. For  1 : ,=i j compute ( ) ( ,  )= i
ij i jr q u  and 

( 1) ( ) ;
+

= −
i

j

i
j ij iu u r q

Step 4. Compute ( ) ( ) 1/2 ( ,  )= j j
jj j jr u u and ( ) / .= j

j j jjq u r

From Algorithm 3, we observe that the updated iterate 1kx +
is given only in terms of the previous iterates ,   0,1,···,   1,= +jx j k
and no other input is required. For example, when  2,=k  there are 
only four vectors 0 1 2 3,  ,  ,  x x x x  are needed to storage and as the input 
vectors. Furthermore, according to their analytic properties discussed 
in [2,30], these vector extrapolation methods are naturally considered 
as the effective accelerators in order to improve the convergence of the 
vector sequence { }.jx In particular, given the vector 0 1 1,  ,  ··· ,  kx x x +
and the QR-factorization in the MGS algorithm, the opera-tion 
counts of Algorithms 3 consist of 21 / 2( 5 2)+ +k k vector additions, 

21/2( 5 )+k k scalar-vector multiplications and 21/2(  3  2)+ +k k inner 
products [30].

Motivated by the study of [2,24,30,32]. Since using iterative 
methods like Gauss-Seidel method given in (5) to calculate the coarse-
level linear system  0=c cA x may require a very long time to converge 
to the desired solution. Our main contribution is to apply the vector 
extrapolation method (Algorithm 3) to modify the two-level multigrid 
method (Algorithm 1) on the coarse level, such that the convergence 
of calculating the stationary probability distribution of Markov chains 
becomes faster. The proposed method is denoted as the two-level-
extrapolation (TLE) method and given in Algorithm 4.

Algorithm 4: Accelerated two-level multigrid method by GQE

1. Obtain the coarse-level matrix cA  and vector cx  by the steps 1-4 
of Algorithm 1. 

2. Compute the coarse-level equation  0=c cA x by Algorithm 3. 

(a). Set 0 = cx x  as the coarse-level initial vector,

(b). Obtain the input vectors 0 1 1,  ,···,  +kx x x by (5),

(c). Compute the coarse-level approximate solution cx  by 
Algorithm 3.

3. Obtain the approximate solution x of (2) by the steps 6-8 of 
Algorithm 1 and check convergence. 

Comparing Algorithm 1 with Algorithm 4, the main difference 
between our proposed method and the standard two-level multigrid 
method is that, in the process of computing the coarse-level equation 

 0,=c cA x the former takes advantage of Algorithm 3 to obtain the 
approximate coarse-level solution xc, while the latter only exploits the 
Gauss-Seidel method to get the approximate coarse-level solution xc. 
Let nc be the size of the coarse-level operator Ac. Assume m to be the 
number of using Gauss-Seidel method to solve  0=c cA x  in Algorithm 
1. Then in each cycle of Algorithm 1, the dominant cost spent in 
calculating the coarse-level equation  0=c cA x  is 2( ).cO mn  However, 
as analyzed above, given the input vectors and QR-factorization, 
the total cost of Algorithm 3 is almost 2( )cO k n  plus ( ) 2(  1 )+ cO k n  
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[30]. Hence, in each cycle of Algorithm 4, the dominant cost spent in 
solving the coarse-level equation  0=c cA x is ( ) 2( 1 )+ cO k n  because 
of .cn k z Generally speaking, since the size of k is often taken to be 
smaller than that of m in numerical experiments, and thus it follows 

( ) 2 2(  1 ) ( ),+ ≤c cO k n O mn  which indicates that the total cost of the TLE 
method should be less than that of the TL method. For illustrating this 
point, numerical experiments are given in the next section.

Numerical Experiments
In this section, we report numerical results obtained by using 

Matlab 7.0.1 implementation on a Windows XP with 2.93GHz 64-bit 
processor and 2GB memory. The main goal is to examine the accelerated 
two-level multigrid method and show its efficiency in improving 
the numerical solution of the stationary probability distribution for 
Markov chains. In Algorithm 1, let the number of using Gauss-Seidel 
method to solve the coarse-level equation  0=c cA x be m = 10 and m 
= 20, then for simplicity, we denote the standard two-level multigrid 
method as TL(10) and TL(20), respectively. In Algorithm 3, we set the 
letter k as  2,3,4,5,6,7,=k and then the corresponding methods in 
Algorithm 4 are denoted as TLE(2), TLE(3), TLE(4), TLE(5), TLE(6) 
and TLE(7), respectively. Here two Markov chain problems studied in 
[9,25] are considered in our experiments.

Now, some special sets of parameters are supplied in this 
paragraph from [24,25]. As mentioned in the previous sections, the 
weighted Jacobi method has been used as the pre- and post-smoothing 
approaches in Algorithm 1. Let 1 2  1ν ν= = and set the relaxation 
parameter  0.7 ω = in our experiments since this value works well 
for all tests that we have considered, even though it is likely to be 
problem-dependent. The strength of connection parameter is chosen 
as  0.8θ = and the initial guess is generated by randomly sampling the 
uniform (0, 1) distribution and normalized to one in the one norm. 
All the iterations are terminated when 6

1  10−≤ = Ax   with x the 
current approximate solution, or when the computing time (referred 
to as CPU) exceeds 600 seconds. Finally, numerical results in terms 
of iteration counts (referred as to IT) and CPU are reported by means 
of tables, while convergence histories are shown in figures with the 
number of iterations on the horizontal axis versus Relres (defined as 
log10 of the updated relative 1-norms, i.e., 10 1log  Ax ) on the vertical axis.

Example one: Uniform 2D lattice

 This test problem is a 2D lattice with uniform weights [25]. It is 
similar to an isotropic elliptic PDE problem. Here we let the 2D lattice 
be square and use h to denote the number of nodes in every row or 
column, e.g.,  20,40,60,=h then the size of rows of the coefficient 
matrix A in the linear system (2) is 2.=n h

Table 1 has provided the IT and CPU of the TL and TLE methods 
for Example one. By making comparisons, we observe that, the IT and 
CPU of our accelerated two-level multigrid method are less than those 
of the stan-dard two-level multigrid method. Particularly, the TLE(7) 
has given the best results. Taking n=400 as an example, the iteration 
counts of the TL(10) and TL(20) are reduced about 91% and 87% by 
comparing with that of the TLE(7) respectively (Figure 1).

For obtaining an intuitive comparison, Figure 1 has plotted the 
convergence histories of the TL(10), TL(20), TLE(3), TLE(5) and 
TLE(7) methods for Example one with n=400. It is not difficult to find 
that the accelerated two-level multigrid method has faster convergence.

Example two: Two-queue over flow networks

 This test problem is the two-queue overflow networks with the 

customer arrival rate and service rate of the servers being λi  and 
( ) 1,2 ,=iµ i  respectively. Suppose the number of serves is is  and 

the waiting space is ( )1  1,2 .− − =i il s i Then the size of rows of the 
matrix A in the linear system (2) is given by 1 2.=n l l Here we let (l1, 
l2) = (16, 16), (32, 32) and (64, 32) in the test. The queueing discipline 
is First-come-first-served. Specifically, we allow the overflow of 
customers to occur from queue 2 to queue 1 when queue 2 is full and 
there is still waiting space in queue 1. The description of the two-queue 
overflow networks and the form of its generator matrix have been 
presented in a few papers; e.g., [9]. For simplicity, in this test, we set 

1 2 1 2 1 2 1,  1 and  1.λ λ= = = = = =s s µ µ

Numerical results of the TL and TLE methods for this test problem 
have been given in Table 2. Again, we see that the IT and CPU of 
our accelerated two-level multigrid method are less than those of the 
standard two-level multigrid method. Moreover, the higher order 

 

Figure 1: The convergence histories of the TL(10), TL(20), TLE(3), TLE(5) 
and TLE(7) methods for Example one with n=400.

n              400              1600                           3600
IT CPU   IT  CPU         IT    CPU          IT          CPU

TL(10)   35  6.6144      97  115.8304       115    545.7664
TL(20)   23  3.6280      54   67.9160         66     332.7826
TLE(2)   7    0.9480      7      8.6851          7       35.2121
TLE(3)   5    0.6528      5      6.1523          5       26.2183
TLE(4)   4    0.5580      4      4.9210          4       21.9744
TLE(5)   4    0.5315      4      4.8115          4       20.9744
TLE(6)   3    0.3956      3      3.6160          3       16.8174
TLE(7)   3    0.3718      3      3.5030          3       15.9021

Table 1: IT and CPU of the TL and TLE methods for Example one.

n              256            1024                      2048
                IT    CPU        IT     CPU           IT         CPU
TL(10)   36  3.7404   103   60.7502    218  245.0183
TL(20)   27  2.1347     62   38.4012    188  201.2844
TLE(2)     6  0.4518       6     3.6774        7       7.4840
TLE(3)     5  0.3851       5     3.0647        5       5.3628
TLE(4)     4  0.3045       4     2.4517        4       4.2915
TLE(5)     4  0.3002       4     2.4083        4       4.2887
TLE(6)     3  0.1854       3     1.8926        3       3.2419
TLE(7)     3  0.1786       3     1.8712        3       3.2005

Table 2: IT and CPU of the TL and TLE methods for Example two.
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vector extrapolation methods are used, the less iteration counts and 
computing time are needed. In particular, the TLE(7) has supplied the 
best results. For instance, when n=256, the TLE(7) only needs about 
8% 11%− of the iteration steps and computing time of the TL method. 
Therefore, we can say that our proposed methods can efficiently speed 
up the convergence of the standard two-level multigrid method.

In order to further compare their numerical behavior from an 
intuitive point, Figure 2 has described the convergence histories of 
the TL(10), TL(20),TLE(3), TLE(5) and TLE(7) methods for Example 
two with n=256. These curves illustrate that the accelerated two-level 
multigrid method outperforms the standard two-level multigrid 
method once again (Figure 2). 

Conclusions
In this paper, an accelerated two-level multigrid method by the use 

of the quadratic extrapolation method and its generalization has been 
proposed for improving the numerical calculation of the stationary 
probability distribution of an irreducible Markov chain. The main 
algorithm has been given in Algorithm 4. It has shown how to combine 
Algorithm 1 with Algorithm 3 on the coarse level in detail. Numerical 
results in Tables 1 and 2 have indicated that the TLE method is superior 
to the TL method in terms of decreasing the IT and CPU. On the other 
hand, Figures 1 and 2 have illustrated the fast convergence of the 
accelerated two-level multigrid method.
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Figure 2: The convergence histories of the TL(10), TL(20), TLE(3), TLE(5) 
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