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Introduction
Cadmium (Cd) is one of the most important metals in terms of 

food-chain contamination, because it is readily taken up by the cells 
of different plant species [1,2]. In plants, Cd is known to disturb 
growth, amino-acid biosynthesis [3], nitrogen metabolism [4,5] 
and photosynthesis [6,7]. Plants face constant risk from reactive 
oxygen species (ROS), which are inevitably generated as products of 
photosynthesis and other cellular metabolic processes [8]. In plants, 
ROS are produced continuously as byproducts of various metabolic 
pathways that are localized in different cellular compartments [9], 
but under stressful conditions, their formation might be in excess 
of antioxidant scavenging capacity, thus creating oxidative stress by 
reaction and damage to all biomolecules, especially proteins, due to 
the higher rate constants of the reaction of the superoxide anion with 
amino acid side chains [10]. In addition, one of the most damaging 
effects of oxygen cytotoxic species and their products in cells is the 
peroxidation of membrane lipids [9]. High ROS levels can damage 
proteins and DNA [11]. Thus, plants need to earnestly control ROS 
overall levels by the co-ordinated action of several antioxidant enzymes 
such as superoxide dismutase (SOD, E.C. 1.15.1.1), catalase (CAT, E.C. 
1.11.1.6), ascorbate peroxidase (APX, E.C. 1.11.1.11), and glutathione 
reductase (GR; EC 1.6.4.2). Superoxide dismutase is the major 
superoxide radical scavenger and its enzymatic action results in H2O2 
and O2 formation. The product of SOD activity (H2O2) is still toxic and 
must be eliminated by conversion to H2O in subsequent reactions. CAT 
and several classes of peroxidases like APX then scavenge the H2O2 
produced [9,12]. Inorganic nitrogen uptake into plant roots is under 
strict control in accordance with the nitrogen demand of the plant. 
Generally, plants prefers nitrate as nitrogen source. But, every other 
plant species grown in paddy fields predominantly utilizes ammonium 

during most of the growing period, since ammonium is the major form 
of inorganic nitrogen in hypoxic and anaerobic soils [13]. However, 
excessive ammonium uptake into plants can lead to toxic effects [5,14].

Among literature, oxidative stress is studied depending on the 
type of stress without return look at the form of nitrogen used. Since 
in nature, plants are in front of the various factors influencing his life. 
Study of antioxidative enzymes activity in plants cultivated in presence 
of different nitrogen forms and exposed to heavy metal might be for a 
great importance. In fact, today, environment pollution by heavy metals 
is a growing concern in the research community, since it may enter 
the environment through drainage water, river canal systems carrying 
industrial and different agricultural practices. Over that, ammonium 
nutrition is a widespread regime in the different ecosystems. 

In the present research we essay to evidence that ammonium 
alleviates cadmium induced-oxidative stress in tomato leaves. In the 
same conditions, activities of antioxidant enzymes, which can be 
implicated in the oxidative stress defense, were measured.

Materials and Methods
Plant material 

Seeds of the tomato (Solanum lycopersicon) were germinated in 
petri dishes in the dark. Seedlings were transferred and grown under 
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At the completion of electrophoresis, bands containing SOD activity 
were visualized with a tetrazolium assay [22]. After incubation at 30°C 
for 30 min in dark, the bands were revealed in phosphate tampon (50 
mM) containing TEMED and riboflavine.

Statistical analysis

The results are the means ± S.E. of at least three independent 
replicates. The analyses of variance were computed on statistically 
significant differences determined based on the appropriate F-tests. 
The mean differences were compared by utilizing Duncan’s multiple 
range test. 

Results
Dry weight production and Cd content

Cd effects on growth of tomato varied largely with nitrogen form. 
In fact, dry weight, leaf area and water tenors were negatively affected 
by Cd in NO3

--fed plants. In contrary, in ammonium-fed tomato those 
parameters were not significantly affected by Cd (Figures 1A, 1B, 
1C). Results shown in figure 1D demonstrated that cadmium was less 
accumulated in leaves of tomato grown with ammonium than with 
nitrate. 

Soluble protein content

A significant effect on soluble protein content per DW was observed 
by both Cd and N regimes. A decrease in soluble protein content by 
Cd was observed when plants were grown with NO3

-. However, plants 
grown under NH4

+ regime and treated with Cd exhibited a significant 
increase of soluble protein content (Figure 1E).

Photosynthetic pigments contents

 Photosynthetic pigments measurement showed that in control 
plants, Chla, Chlb and carotenoides were more accumulated in nitrate-
fed tomato. Cd reduced pigments contents in nitrate grown plants and 
increased them in ammonium-fed tomato (Figure 2A, 2B, 2C).

Estimation of lipid peroxidation (MDA) and H2O2 production

Estimation of lipid peroxidation was determined in terms of the 
thiobarbituric (TBA)-reactive substances, such as MDA. In control 
plants, MDA content was higher in ammonium-fed tomato compared 
to those grown with nitrate. Regardless the nitrogen form, Cd exhibited 
an increase in MDA level (Figure 3A). But, the MDA level was more 
important in nitrate-fed plants.

H2O2 was much higher produced in tomato leaves received 
ammonium as nitrogen source (Figure 3B). Cd-treated tomato 
content increase H2O2 tenor when Cd dose increased. Compared to 
ammonium-fed tomato, Cd induced a higher H2O2 production in 
nitrate-fed plants (Figure 3B). 

Antioxidant enzymes activities 

In control plants, SOD activity was higher in tomato receiving 
ammonium than in those grown with nitrate. Regardless nitrogen 
form, Cd stimulated SOD activity in tomato leaves (Figure 4A). 
However, in ammonium-fed plants SOD activity was more important 
than in nitrate-fed ones.

In parallel, native gel electrophoresis of SOD showed that Cd 
induced four isozymes (a,b,c,d) in leaves of tomato plants (Figure 4B). 
But, the different isozymes were highly accumulated in ammonium-fed 
tomato compared to nitrate fed ones.

continuous aeration in a nutrient solution containing 0.1 mM KNO3. 
Plants were grown in a growth chamber under controlled conditions: 
a 16h-light (150 µmol m-2 s-1 PAR)/8h dark cycle, 22°C (light) /18°C 
(night) and 65% relatively humidity. The 7-day-old seedlings were 
supplied with the nutrient solution containing 5 mM of KNO3

- or 
(NH4)2SO4. After 14 days of metal exposure (0, 5 or 25 µM CdCl2), 
leaves were harvested and used for chemical analyses.

Cadmium accumulation 

Desiccated samples were ground to a fine powder using a porcelain 
mortar and pestle, then digested with an acid mixture (HNO3/HClO4, 
4/1 cm3/cm3). Cd2+ concentration was determined by atomic absorption 
spectrophotometry (Perkin-Elmer, AAanalyst 300). 

Photosynthetic Pigment estimation

Chla, Chlb and carotenoides contents were determined by the 
method of [15]. The absorbance of a sample was read at 645 and 663 
nm. The pigment concentrations were calculated by equations allowing 
a simultaneous determination of Chla and Chlb, and carotenoids.

Soluble protein assays

Soluble proteins were measured after extraction of plant tissues (0.5 
to 1g FW) at 4°C in 2 ml of H2SO4 (0.3 mM) and 0.5% (w/v) Polyclar 
AT. The homogenate was then clarified by centrifugation for 15 min at 
30,000 g. Proteins were determined according to Bradford [16].

Estimation of lipid peroxidation

The malondialdehyde (MDA) content of leaves was determined by 
using the thiobarbituric acid method, as described by Alia et al. [17]. 
The leaves were homogenized in 5% (w/v) trichloroacetic acid (TCA). 
After centrifugation, a sample of the supernatant was added to 20% 
TCA containing 0.5% (w/v) thiobarbituric acid (TBA). The mixture 
was incubated at 95°C for 30 min. The concentration of thiobarbituric 
acid reacting substances was calculated using an extinction coefficient 
of 155 mM_1cm_1.

Measurement of H2O2

Content of H2O2 in leaves, tissues was determined based on 
the modified method of [18]. H2O2 contents were determined by 
colorimetric method from A508, using H2O2 (30% Sigma) (5-50 μM) 
as a standard.

Antioxidative enzymes assays

Total CAT (EC 1.11.1.6) activity was assayed in presence of H2O2, 
according to [19], by monitoring the decline in absorbance at 240 
nm, as H2O2 was consumed. Enzyme activity was calculated using the 
extinction coefficient of 40 mM-1 cm-1 for H2O2.

Total SOD (EC 1.15.1.1) activity was measured 
spectrophotometrically at 560 nm according to [20], based on the 
inhibition of the photochemical reduction of nitro blue tetrazolium 
(NBT). One unit of enzyme activity was defined as the quantity of SOD 
required for 50 % inhibition of NBT reduction.

Total APX (EC 1.11.1.11) activity was assayed in the presence 
of ascorbate by following the decline in absorbance of the oxidized 
ascorbate at 290 nm, according to [21]. Enzyme activity was calculated 
using the extinction coefficient of 2.8 mM-1 cm-1 for ascorbate.

Native polyacrylamide gel electrophoresis 

Native-PAGE was performed in slab gels containing 4% acrylamide. 
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Catalase activity was more pronounced with ammonium than with 
nitrate (Figure 5A). Independently of nitrogen supplied, the activity 
of catalase was stimulated by Cd (Figure 5A). But in ammonium-fed 
tomato activity of this enzyme was higher than in nitrate grown plants.

A rise of the APX activity was observed in ammonium-fed tomato 
compared to those grown on nitrate (Figure 5B). In the tomato leaves, 
after cadmium exposure, APX activity increased in different leaves 
derived from different nitrogen regime.

Discussion
The environmental degradation, promoted mainly by 

anthropogenic action, has imposed strong pressure on the quality 
of ecosystems. The pollution of soil and water by a wide range of 
contaminants for both plants and animals has become a matter of 
great concern to researchers. In this sense, the elevated levels of heavy 

metals such as Cd in the environment are a reality today. Increasing 
Cd concentration in growth medium enhanced Cd accumulation in 
roots and shoot. However, tomato accumulated significantly higher 
Cd concentration in roots than in shoot [7]. Furthermore, depending 
on the nitrogen nutrient, potential differences among the plant so far 
analyzed have been observed in relation to their tolerance to Cd. In 
data shown here, there is evidence suggesting that tomato plants are 
partially protected against Cd when received ammonium as nitrogen 
source. In fact, when Cd was added in culture medium containing 
ammonium as nitrogen source, tomato plants showed better growth 
than those control, as dry weight and Leaves area remained unchanged. 
More that, water, Chla, Chlb and carotenoides contents were increased 
in those seedlings. The lower sensitivity of photosynthetic pigments 
in NH4

+-fed tomato under Cd stress could be correlated to the lower 
content of Cd2+. This previous phenomena was explained by Chaignon 

Figure 1: Dry weight (A), leaves area (B), water content (C) and cadmium content (D) in the leaves of tomato plants fed with nitrate (black  symbol) or ammonium 
(white symbol) as nitrogen source and treated with different doses of CdCl2. Each point represents the mean ± SD of triplicates from five independent experiments.

1.4
1.2

1

0.8

0.6
0.4

0.2
0

0µM Cd 5µM Cd 25µM Cd

A
NH03-

NH04-

D
ry

 w
el

gh
t  

(g
)

D
ry

 w
el

gh
t  

(g
)

LE
A

F 
ar

ea
 (c

m
2 )

600

500

400

300

200

100

0
0µM Cd 5µM Cd 25µM Cd

14
12

10

8
6

4

2

0
0µM Cd 5µM Cd 25µM Cd

H
2O

 (g
/g

D
W

)

C N03-

NH4+
6

5

4

3

2

1

0
0µM Cd 5µM Cd 25µM Cd

NH03-

NH04-

B

D N03-

NH4+

400

350
300

250
200
150
100

50
0

0µM Cd 5µM Cd 25µM Cd

S
ol

ub
le

 P
ro

te
in

s 
(µ

m
ol

/g
FW

)

N03-

NH4+

E



Citation: Nasraoui-Hajaji A, Gouia H, Carrayol E, Haouari-Chaffei C (2012) Ammonium Alleviates Redox State in Solanum Seedlings under Cadmium 
Stress Conditions. J Environ Anal Toxicol 2:141. doi:10.4172/2161-0525.1000141

Page 4 of 9

Volume 2 • Issue 5 • 1000141
J Environ Anal Toxicol
ISSN:2161-0525 JEAT an open access journal

et al. [23], suggesting that decline in absorption and accumulation of 
Cd2+ were probably the result of decline of pH of culture medium. It 
should be noted that in general, metal uptake is inhibited in acidic pH 
[24].

Despite being a non-redox metal, and thus not directly producing 
ROS [12], Cd can interfere with antioxidant defense systems. Under 
stressful conditions the protective system can be overridden by a rapid 
production of large amounts of ROS, leading to various structural 
modifications in proteins [25]. These oxidative modifications are 
characterized by the formation of carbonyl derivatives on side 
chains of histidine, arginine, and proline residues [26]. Our data 
demonstrated that the seedling received ammonium and exposure 
to Cd caused a remarkable increase in total soluble protein content 
in tomato seedlings. In another study, Cargnelutti et al. [25] showed 

that Hg-treated cucumbers presented increased total soluble protein 
content. To explain this result Verma and Dubey [27] suggested that 
the increase in protein content is possible due to de novo synthesis of 
stress proteins provoked by metal exposure. These stress proteins may 
constitute enzymes involved in GSH and phytochelatin biosynthesis 
and those required for Krebs cycle, as well as antioxidants and some 
heat shock proteins [28]. 

Figure 2: Tenors of Chl a (A), Chl b (B) and carotenoides (C) in the leaves 
of tomato plants fed with nitrate(black symbol) or ammonium (white symbol) 
as nitrogen source and treated with different doses of CdCl2. Each point 
represents the mean ± SD of triplicates from five independent experiments.
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To estimate oxidative stress, the MDA tissue content had been 
widely used as an indicator of lipid peroxidation and, thereby, of 
oxidative damage in heavy-metal-exposed plants [29]. It was suggested 
that Cd may be involved in lipid peroxidation and membrane damage 
which was obvious from the significantly higher MDA content in leaves 
[30]. Our results in MDA contents showed that, regardless of nitrogen 
form used, presence of Cd induced a dramatic increase in the amount of 
lipid peroxidation product. But when fed with ammonium as nitrogen 
source, tomato accumulated lesser amount of MDA compared to 
in those grown with nitrate. This suggested that, NH4

+ reduced the 
untimely oxidative stress situation generally generated by Cd. The 
exposure of plants to Cd results in free radical production (H2O2, OH). 
This relationship between metallic stress and H2O2 production was 
well discussed in previous study [31]. To control the level of ROS and 
to protect the cells, plants possess antioxidant enzymes such as SOD, 
APX and CAT that scavenge ROS [9]. Superoxide dismutase, the first 
enzyme in the detoxifying process, converts superoxide radicals to H2O2 
at a very fast rate [9]. The enhanced SOD activity observed in consistent 
with previous reports in which tomato and other plant species were 
treated with Cd [1,30]. Increase in SOD activity may be linked to an 
increase in superoxide radical formation as well as to de novo synthesis 
of enzyme protein [18,26], which in turn may be associated with an 
induction of genes of SOD by superoxide-mediated signal transduction 
[32]. In these data, we showed that the enhancement of SOD activity by 
Cd, shown in tomato derived from the two nitrogen regimes, was more 
pronounced in ammonium-fed tomato than in nitrate-fed seedlings. 
These results confirmed the fact that SOD plays an important role to 
alleviate oxidative stress by scavenging ROS from cell compartment. 
More that, it seems that NH4

+-fed tomato were more stressed by 
Cd2

+, since SOD activity was dependent in the intensity of oxidative 
stress in plant cells [30]. However, this response suggested that 

antioxidant system might participate in protecting tomato biochemical 
structures against oxidative damages and minimizing the sensitivity 
of the photosynthetic machinery. In previous data we showed that 
photosynthesis process was more protected in Cd-stressed tomato 
when ammonium was used as nitrogen source [7]. 

In another way, the increased CAT activity as found herein, which 
can be associated with H2O2 scavenging, was also observed by [1] in 
Coffea arabica and by [30] in Solanum lycopersicom under Cd-stress 
conditions. Independently of nitrogen form, this increase suggests a 
compensatory mechanism of defense against oxidative stress caused 
by this metal and can be explained by increase in its substrate to 
maintain the level of H2O2 as an adaptive mechanism of the plants 
[25]. Furthermore, the combined action of CAT and SOD is critical 
in mitigating the effects of oxidative stress, since their roles in the cell 
metabolism are complementary [12]. In this sense, it is interesting 
to note that both SOD and CAT activities increased in Cd treated 
tomato and that it is widely agreed that plants resist oxidative stress 
by increasing components of their intrinsic defensive system [12]. 
Another enzyme that can be activated to control and re-establish 
the homeostatic equilibrium of the redox status in cells is APX. In 
our study, the APX activity dynamics was similar to CAT and SOD 
in nitrate-fed tomato. Therefore, we suggest that also this enzyme 
participate to ROS scavenging. In fact, it was suggested that decline in 
H2O2 level in pumpkin plants is mainly due to the scavenging action 
of APX [33]. In another hand, APX activity, a H2O2-scavenger that 
belongs to the ascorbate-glutathione cycle, was slightly decreased by 
Cd in ammonium regime case. It seems that the reduction in APX 
activity may be due to GSH depletion and a subsequent reduction in 
the ascorbate–glutathione cycle [1]. This reduction in GSH could be 
caused by an increased rate of phytochelatin synthesis induced by Cd 
ions as suggested by [1]. Ascorbate peroxidase could be responsible 
for the fine modulation of ROS for signaling, and its reduced activity 
would lead to a deleterious imbalance in ROS production and 
scavenging. Furthermore, the decreased activity of APX was apparently 
compensated for by the increased activity of other H2O2-degrading 
enzymes like CAT [34]. 

Our findings added new comparative information on the 
metabolism response of plants under heavy metal stress. These data 
indicated that regardless nitrogen form, the oxidative stress was 
induced with cadmium. But, it was more pronounced in ammonium-
fed tomato compared to nitrate-fed ones. However, H2O2 and MDA 
contents were more important in nitrate-fed tomato upon addition of 
Cd.

We must emphasize that cadmium provoked a more important 
oxidative stress situation in tomato leaves cultivated with ammonium 
nitrogen and therefore suggest that antioxidative response was related 
to the intensity of oxidative stress induced rather than to the plant 
sensitivity to this metal. Also, it can be assumed that ammonium 
regime strongly protects Solanum Lycopersicum from Cd toxicity 
through reducing Cd uptake, and lipid peroxidation and improving 
the ROS scavenging antioxidant enzymes activities.
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