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Introduction
Indoor navigation schemes for use in robotic applications may 

rely on a suite of sensors to perform essential robot localization and 
mapping functions. In an autonomous robotic vehicle this is even more 
important as a lost robot has no more utility than a simple paperweight. 
Additionally, a suite of navigation sensors may provide streams of data 
to easily navigate the environment which can include sensors such 
as the Velodyne HDL-64E [1,2] multiple laser Light Detection and 
Ranging (LiDAR) sensor, or a 4k resolution at 60 frames per second 
video stream such as the one on the newly released iPhone X [3]. The 
data throughput for these can be much more than 2MB per second. This 
amount of data can provide for a well defined localization and mapping 
solution but the small form factor of an autonomous indoor UAS may 
not be able to accommodate these large amounts of data. The process to 
fuse multiple sources or to store the large amounts of data collected can 
be debilitating for a small processing system such as a Rasberry PI or 
Arduino. This presents a need to take a minimalistic approach towards 
the amount of sensors and data to be collected.

Minimizing the amount of sensors used in an autonomous UAS can 
bring along many benefits. Benefits such as longer flight time, reduced 
weight, increased maneuverability, and the ability to add additional 
capability. In order to reduce the number of sensors an operational 
design must be calibrated, characterized, and evaluated against the 
desired operational performance characteristics.

There are two main genres of LiDAR sensor characterizations: 
intrinsic and extrinsic. Intrinsic calibration and characterization can 
be accomplished cconcurrently if the sensor equipment allows for 
enough access to the internal parameters. Okubo presented a quality 
characterization of a Hokuyo sensor in 2009 [4]. In this Okubo 
characterized the transfer rate of the sensor output, as well as the 
effect of drift, surface properties, and incident angles to the sensor 
measurements. He went on to describe the concept of a “mixed" pixel, 
which is the result of taking a range measurement from a sensor return 
that has landed on two distinct surfaces and the resulting range is a 

combination of the two. Finally, Okubo recommends to use statistical 
analysis on the raw LiDAR data to perform mapping.

Intrinsic calibration has been described thoroughly [4-6], while 
extrinsic calibration can take on many forms and has been describe 
extensively [7-16]. Each different application may need a distinct 
extrinsic calibration procedure based on the individual application, and 
each paper underlines the need to perform this extrinsic calibration 
and corresponding characterization to utilize the sensor effectively.

LiDAR types, sensing techniques, and ranging calculations will not 
be discussed but more information can be found [17-25].

This paper assumes that a user defined UAS sensor suite 
configuration used for localization and mapping is able to be 
minimized. The next major assumption is that a newly modified 3D 
scanning LiDAR capability will meet the needs of the user if calibrated 
properly. In addition to the previous assumptions, the final major 
assumption is that other forms of beam steering is impractical and 
that the use of a reflective superstructure will provide an avenue to the 
required performance parameters. The Procedure describes the overall 
methodology in converting a 2D scanning LiDAR sensor into an 
effective 3D sensor. It simultaneously discusses a relevant set of specific 
experiments recommended for characterization of both the original 
sensor and of the newly modified system. Next in the Calibration 
Procedure section the general calibration procedure is summarized as a 
conclusion to the first two sections. This paper uses an application of the 
recommended procedure as an example which is illustrated throughout 
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Abstract
Autonomous indoor navigation is synonymous with military centric autonomous navigation in GPS-denied 

environments. Unmanned aerial systems (UAS) are routinely connected to autonomous navigation. This combination 
of technology has many disparate uses such as in kids toys, photography, and military applications. For each of these 
areas a major concern is size, weight, and power (SWaP) in the product design. SWaP has a direct effect on the 
operations of an autonomous UAS such as on the flight time, the maneuverability, controllability, and the durability. 
This paper presents a basic algorithm describing one aspect of reducing SWaP on an autonomous quad-rotor UAS, 
by converting a 2D scanning LiDAR sensor to a 3D sensor, thus eliminating the need for additional sensors used to 
perform localization and mapping. Much that is described here is derived from the thesis work presented by Cooper.  
The majority of work was performed during a Master’s Thesis investigation by M. A. Cooper titled “Converting a 2D 
Scanning LiDAR to a 3D System for Use on Quad-Rotor UAVs in Autonomous Navigation. The work presented 

here develops the generalized calibration procedure.
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result is the estimated range, ( )r x . 

( )= ( )Pr x f P ν+                      (2)

Taking eqn. (2) and applying the range error associated with target 
angle, Ea, target color, Ec, and target range, Er , then gives a correctable 
range, ˆ( )r x  as seen in eqn. (3) 

ˆ( )= ( ) a c rr x r x E E E− − −                   (3)

where ˆ( )r x  is the error corrected result of the range function estimate, ( )r x .

Because of these relationships it’s important to understand the 
beam divergence angle. An example test scenario and beam spot shape 
is shown in Figure 2, which may have similar results as drawn in Figure 
3 and in Table 1.

At each of the test scenes identified in this paper there is also an 
opportunity to collect data and evaluate the statistics. Recording the 
range data collected during this test for the Hokuyo UST-20LX sensor 
resulted in the statistics shown in Table 2.

The next major experimental test scene is the test to quantify 
the effects of target angle, with respect to the sensor, on the returned 
LiDAR sensor range. The resulting error may give an error function 
proportional to the cosine of the angle such as in egn. (4)

Ea=Aacos(θN)+Ba                     (4)

Where Ea is the range error caused by the target angle, Aa is a 
proportionality constant, Ba is a constant offset, and θN is the angle 
between the target normal and the LiDAR beam. An example test 
scenario is presented in Figure 4 which shows multiple LiDAR beam 
paths contacting the target boards. The target boards represent a 
spectrum of orientation angles ranging between -80° to 80° with respect 
to the LiDAR beam. 

Using a position measuring device such as a calibrated VICON 
chamber, the error by the LiDAR sensor due to the target angle can be 
measured. And example can be seen in Table 3.

The last major error source is caused by the target’s color. This part 
of the characterization can be exhaustive but is recommended to tailor 
it to the materials and color of the target to be used to calibrate the 
modified sensor.

the paper. A much more detailed application based around the Hokuyo 
UST-20LX 2D scanning laser rangefinder can be examined [1].

Procedure
Characterization of Base Sensor

This first major step is to characterize the original sensor to 
establish a baseline model with which to base any modifications upon. 
In this instance the Hokuyo UST-20LX has been chosen as seen in 
Figure 1 [24]. This particular model scans in a 270 planar area using 
1081 measurements at 40 scans per second.

In order to characterize the sensor a motion capture system, such as 
a VICON chamber, is recommended to reduce error in measurements. 
Once a base sensor system and position collection technique is 
implemented a series of tests can then be performed. The parameters 
of the most interest are the mean and standard deviation of the range 
returns, the beam divergence rate, the effect color has on the range 
returns, and how the effect the target orientation has on the range 
returns.

Sometimes, only a small percentage of a LiDAR beam will land on 
the object being ranged.  This depends on the size of the object, distance 
to the object, and the beam divergence angle. Only a fraction of the 
photons reaching the illuminated target will make it back to the sensor 
as described by the equation in eqn. (1) as simplified by Richard and 
Cain [19].

( )

2 2

22

( )= o a R t t
detector

R d

D dA PP
R R

τ τ ρ
θ θ

                (1)

where Pdetector is the power received by the LiDAR detector, 
τa=atmospheric transmission rate, τo is the transmission rate of the 
optics, DR is the receiving aperture diameter of the detector, ρt=target 
surface reflectivity, Pt=Laser transmitted power, θd=laser transmitted 
beam angular divergence, θR=the target surface angular dispersion. dA 
is the smaller of the angular area of the target, area of the field of view 
of the sensor, or the area of the beam on the target, and R is the distance 
between the source and the target.

If enough photons land on the sensor then a range measurement 
can be taken. The range function, which can be seen in eqn. (2), is a 
function of the target coordinates, PP, and some unknown noise, v. The 

Figure 1: Hokuyo UST-20LX sensor summary.
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Ec=AcR+Bc                    (5)

where Ac is the proportionality constant, and Bc is a constant offset. Eqn. 
(5) assumes a linear error profile along the operational range of interest.

The recommended test setup is to mimic the beam divergence 
scenario in Figure 2. Table 4 shows an example data set used when 
evaluating the Hokuyo UST-20LX sensor.

Once the characterization of the original sensor is finalized, a study 
on the required operational needs and what modifications are needed 

can be done.

Identify effects of modification

The effects of the modification will depend greatly on the modifications 
imposed and a recommended set of tests for every case would be too large 
for this paper to list. Figure 5 represents a possible modification. The base 
sensor is in the center and colored gray. The superstructure is in a lighter 
gray with the mirrored surfaces highlighted in red.

From the prototype design, the modifications may limit the 
original sensor’s field of regard so a new field of regard needs to be 

Figure 2: Beam divergence test scene.

Figure 3: Beam spot size at varying distances.

Distance (m) Height (mm) Width (mm) 
0.50  3.2  15.9 
1.00  4.0  33.3 
2.00  4.8  55.6 
3.00  5.6  98.4 
4.00  6.3  136.5 

Table 1: Triple beam size at multiple distances for UST-20LX.

Range  0.50 m  2.00 m  4.00 m 
Mean  STD Mean  STD Mean  STD 

Trial 1  -0.0017  0.0041  0.0070  0.0038  0.0008  0.0047 
Trial 2  -0.0032  0.0041  0.0058 0.0039  -0.0004  0.0046 
Trial 3  -0.0036  0.0042  0.0054  0.0039  -0.0007  0.0046 

Table 2: Mean error and standard deviation of UST-20LX.
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identified as in Figure 6 in green. To develop the new field of regard, 
the characterization process outlined in Section I-A should be repeated 
using the proposed modifications.

Develop parameter estimation for extrinsic characteristics

For each element within the identified field of regard of the modified 
sensor, some additional steps need to be taken in order to transform the 
raw data of the sensor into something usable. The sensor itself may not 
be programmable to incorporate the effects of the modification into the 
sensor output and therefore some post processing needs to occur. The 
first step is to calculate a range equation due to a potentially different 
beam path caused to the sensor modifications.

The range function, as seen in eqn. (6), is now a function of the 
target coordinates, PP, the base azimuth of the beam from the sensor 
origin, θB, the azimuth of the deflection angle due to the mirror, θa, 
the elevation of the deflection angle, φ, the distance to the deflection 
point on the superstructure mirror from the sensor origin, d, and some 
unknown noise, v. The result is the estimated range for the modified 
sensor, ( )r x . 

( )= ( , , , , )P br x f P dθ θ φ ν∆ + Δθ=θb+θa                                (6)

  Figures 7 and 8 represent a planar view of the X-Y, and X-Z planes, 
respectively, each describing the range function from a different view.

Figure 7 shows the base azimuth angle, θB, in green that ends at 
point PL1, which is the starting point of the intercept vector of the target. 
PL1 is also the point of deflection at distance d from the origin. The 
deflection angles, θa, and φ are shown in Figure 8. PL2 is used to create 
a vector from PL1 which intercepts a target board described by PP1, PP3, 
and PP3 at an unknown point Ptarget.

Taking this point-plane intercept concept [26,27] a little further it is 
possible to create another relevant test. Figure 9 shows an example test 
scenario using the laser source, bouncing the LiDAR beam off a mirror 
and intercepting a multitude of target boards. Only one target should 
be ranged against at a time, but each range measurement needs to range 
against a target at a different orientation. These range measurements 

ˆ( )r x , along with the orientation of the target board, θ, can be used to 
create a Jacobian matrix, H, as seen in eqn. (7) 

1 1

2 2

ˆ ˆ ˆ ˆ( , ) ( , )
2= , ˆ ˆ ˆ ˆ( , ) ( , )
2

n n

n

n n

n
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r r

θ φ
θ δθ φ θ δθ φ

θ δθθ φ
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φ δφ

θ φ

∂ ∂ 
 ∂ ∂  ∂    + − − ∂ ∂   ∂    ∂ ∂    ∂ + − −    ∂     ∂ ∂ 
 ∂ ∂ 

 



              (7)

δθ, and δφ are small perturbations on the scale of 1 × 10-3, and n is 
the number of target board orientations ranged against. A standard 
Recursive Least Squares parameter estimation technique [27-29] can 
now be developed using this Jacobian as in eqn. (8)

( ) ( )
1

ˆ= = ( )T Tx H H H z r x
θ
φ

−∆ 
∆ − ∆ 

                  (8)

Where ∆θ and ∆φ are from the current estimates. The error between 
the estimated range and the measured range from the sensor using eqn. 
(8) where ˆ( )r x  is the error corrected range measurements given by the 
sensor and ˆ( ( ))z r x−  are the residuals between the estimated range 

Estimated angle 0.0°  20.0°  -45.0°  RMS 
Calculated Angle  0.9°  18.5°  -44.7°  Error 

Trial 1 0.0099 0.0271  0.0354  0.0309 
Trial 2 0.0088 0.0274  0.0357  0.0300 
Trial 3 0.0090 0.0277 0.0330 0.0293 

Table 3: Mean error between range return and actual target distances.

Distance  Pure white Antique white  Pencil grey  Jet black 
0.493 m 4.39 mm  3.96 mm 3.85 mm  5.37 mm
1.011 m 4.64 mm  4.69 mm  4.71 mm  6.06 mm
1.600 m  3.52 mm  3.43 mm 3.96 mm  5.29 mm
2.007 m 3.71 mm 3.55 mm  4.18 mm 5.00 mm
Mean 4.09 mm 3.94 mm  4.19 mm  5.44 mm

Table 4: Standard deviation of sensor returns for gray level test.

Figure 4: Target positions for an angle test.

Figure 5: Illustration of modification prototype with the intended orientation 
for flight: x is along the forward flight path, and z is up.
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and the sensor measured range. The RLS algorithm will iteratively 
minimize x until a user defined threshold.

Figure 10 shows a series of 10 trials estimating the azimuth, θB, in 
blue, and the elevation, φ, in magenta for one of the deflecting mirrors 
illustrated in the prototype in Figure 5. In this instance the correction 
factors, Ec, Ea, and Er are applied and the results are shown in bold. It 

can be seen that the corrections applied do in fact alter the mean and 
decrease the variance of the parameters.

Once this is performed for each individual element identified in 
Figure 6 then the final step in performing a transformation of each 
point along the original two-dimensional X-Y plane to the newly 
deflected LiDAR ranging location in 3D space can be completed. The 
resulting transformations will lead to a 3D point cloud comprised of all 
the usable elements as seen in eqns. (9) and (10). 

( )ˆ ˆ1 0 1 1[ ]= [ ] [ ] [ ]n
L LPC n R P n P n P n

θφ
 − + 

                (9)

1 1 1 1[ ]= [ ], [ ], [ ]x y zPC n P n P n P n                  (10)

where ˆ ˆ
nR
θφ

 is the rotation matrix in a 3-2 sequence for the nth beam, 

P0[n] is the coordinate of the nth range element, and PL1[n] is the 
translation of the nth range element from the sensor beam frame to the 
new frame. PC1[n] corresponds to the nth point of the resulting 3D point 
cloud, PC1, relating to the nth beam element of the sensor range returns.

Figure 6: Usable element locations using prototype mirror structure.

Figure 7: X-Y Frame (horizontal) view of target intercept.

Figure 8: X-Z Frame view of target intercept.

Figure 9: Illustration of target positions for rls test from a mirror relative to 
laser source.
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Figure 10: RLS-2D algorithm results.

Calibration Procedure
The calibration procedure is the retelling of the results of the 

previous steps in the methodology to include the characterization 
of the sensor, data filtering, and the validation of the range and RLS 
functions. The algorithm is intended to wrap all the previous steps into 
a generalized, but sufficiently detailed, pattern to be able to replicate the 
process with new and unique modifications. 

Calibration algorithm

1. Characterize the operationally relevant parameters of the 
original sensor to form a baseline. 

2. Take the fabricated mirror structure and attach to the 2D 
scanning LiDAR sensor. Arrange a placement of VICON 
markers on the structure such that minimal or no erroneous 
reflections will be seen on the sensor. Create a VICON object 
from these points using the corresponding chamber and 
markers. 

3. Take initial measurements of each expected deflection point 
of the laser on the structure. It is preferable to take range 
measurements before any reflective surfaces are attached to 
the structure and then to add an offset to the returned range 
measurements due to the thickness of the reflective surface 
being added. 

4. Run data collection (10k+ data points) in a known environment 
using the estimated d, φ, and θ to calculate the initial range 
vector measurements, r. Eliminate any range scan elements that 
return with abnormal or inconsistent range statistics. 

5. Establish the transformation between the sensor object inside 
the fabricated mirror structure and the point of origin of the 
laser source (laser base frame). 

6. Convert target board coordinates with respect to the laser base 
frame. 

7. Place target in desired location that allows for the first set of 
elements in the sensor laser beam to intercept the target near 
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the center of mass. Collect range and position data. Adjust 
target to a new unique orientation such that the same elements 
of the sensor laser beam fall near the center of mass of the 
target. Repeat for a minimum of three target positions. 

8. Move target to a new location such that the next series of 
elements in the sensor beam intercept near the target’s center 
of mass. 

9. Adjust target to a new unique orientation such that the same 
elements of the sensor laser beam fall near the center of mass of 
the target. Repeat for a minimum of three target positions then 
move to the next series of elements in the sensor beam. 

10. Repeat the previous step until all desired elements of the laser 
scan field of regard have data collected as intercepted at a 
minimum of three targets in unique positions. 

11. Run RLS algorithm, separately for each beam to calculate the 
estimated φ, and θ


. 

12. Calculated the transformation for each scan element using the 
measured d, and the calculated φ, and θ from the RLS algorithm. 

13. Implement the transformations calculated and verify the 
expected output. Original 2-dimensional planar point cloud 
results from the sensor output should be realized as the 
3-dimensional point cloud of the target environment. 

Disclaimer 

The views expressed in this paper are those of the authors, and do not reflect 
the official policy or position of the United States Air Force, Department of Defense, 
or U.S. Government.
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