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Introduction
Optimal Control Systems (OCS) with linear and nonlinear inequality 

constraints with delays in state and/or control variables play important 
roles in the modeling of real-life phenomena [1]. Many papers over 
the years have been devoted to developing the maximum principles 
for optimal control problems with constant and variable delays 
because the time delay effects in control systems cannot be neglected 
especially when it involves the transmission of information between 
different parts of a system [2]. This hereditary effect which frequently 
occur in economical, physical, chemical and biological processes 
have been deliberated upon by Bashier and Patidar [3]. Bertsekas 
[4] generalized the classical Pontryagin’s maximum principle for 
optimal control problems with delay in the state only. Contemporarily, 
Boley [5] obtained the maximum principle for the non-autonomous 
linear-quadratic optimal control problem with multiple delays in the 
state only [6]. Maximum principle for control systems with a time-
dependent delay in the state variable was also derived in Boyd et al. [7]. 
The maximum principle for linear-quadratic optimal control problems 
with multiple constant delays in both state and control variables was 
obtained by Chyung and Lee [8]. Colonius and Hinrichsen [9] provided 
a unified approach to control problems with delays in the state variable 
only while Ghadimi et al. [10] established maximum principle for the 
delay optimal control problem with multiple variable delays by the 
theory of optimal fields. The direct numerical approach was developed 
by Gilbert [11] using the Quasi-Newton embedded augmented 
Lagrangian functional for the proportional control class of Optimal 

Control Problems. Goldfarb and Schneiberg [12] did an extensive 
work on mixed control-state inequality constraints with single delay 
on both state and delay variables with the initial and terminal boundary 
conditions in a general mixed form [13]. Later, Gollmann and Maurer 
[14] extended their work to multiple time delays in the control and 
state variables with mixed control-state constraints. The Pontryagin-
type minimum principle for the class of delayed control problems 
was derived to ascertain their solutions [15]. It is therefore the aim of 
this paper to introduce the Douglas-Rachford (D-R) splitting method 
called the Alternating Direction Method of Multipliers (ADMM) as a 
direct numerical approach in solving Multiple Delay Optimal Control 
Problems [16]. ADMM therefore enjoys the strong convergence 
properties of the method of multipliers and the decomposability 
property of dual ascent [17]. It has the potential to solve large-scaled 
structured convex optimization problems by solving the primal and 
dual feasibility updates in parallel [18]. The method gained wide 
acceptability due to its simplicity, versatility, scalability and ability to 
solve constrained optimization problems. A number of authors such 
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Abstract
Purpose: This study presents an algorithm for solving Optimal Control Problems (OCPs) with objective function 

of the Lagrange-type and multiple delays on both the state and control variables of the constraints.

Design/Methodology/Approach: The full discretization of the objective functional and the multiple delay 
constraints was carried out using the Simpson numerical scheme. The discrete recurrence relations of both the 
objective function and constraints were generated and used to develop the matrix operators of the optimal control 
system. The spectral and convergence analyses of the developed matrix operators and formulated unconstrained 
optimal control problem were carried out respectively to ascertain the well-posedness of the Modified Alternating 
Direction Method of Multipliers (M-ADMM). The primal-dual feasibility and their residuals were derived in other to 
obtain the point of convergence of the algorithm.

Findings: The direct numerical approach for handling the multi-delay control problem was observed to obtain 
a very accurate result at a super-linear rate of convergence. This makes the algorithm faster when compared to the 
classical Pontryagin maximum principle.

Research limitations/Implications: The research is limited to linear constraints and objective functional of the 
Lagrange-type.

Practical implications: This research can address real-life models with multiple delays in epidemiology.

Originality: The novelty of this research paper lies in the method of discretization of the multiple delay constraints 
and the adaptation of the modified ADMM algorithm in handling linearly constraint multiple delay optimal control 
problems for better performance in terms of speed and accuracy.
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as Laarabi et al. [19], Nesterov [20], O’Donoghu et al. [21], Olotu et al. 
[22], Rihan and Anwar [23] and Soliman [24] further worked on the 
linear convergence of the ADMM with strictly convex inequality [25]. 
Others include: Yang and Zhang [26], Zhang et al. [27], who worked 
on the acceleration of the ADMM, called the Accelerated Alternating 
Method of Multipliers (A-ADMM), to improve on its efficiency and 
rate of convergence. Nesterov [20] and Zhang et al. [27] improved 
on the ADMM by deriving the optimal parameter using the Gauss-
Seidel relaxation factor. However, the A-ADMM will be deployed and 
modified as an optimization tool for solving the discretized continuous 
multiple control problem.

Statement of Problem
The general form of the multiple delay optimal control problem is:

( ) ( ) ( )( )
0

1Minimize ,u , ,
2

T

t
J x F t x t u t dt= ∫ 		                (1)

( ) ( ) ( ) ( ) ( )( ) [ ]0, , , ,u ,h hSubject to x t f t x t u t x t t t t T= ∈

            (2)

( ) ( ) [ ]0 0, , ,x t t t t r tϕ= ∈ − 			                 (3)

( ) ( ) ( )0 0, , ,u t t t t q tψ= ∈ − 			                (4)

( )0 0 ,x t x= 					                   (5)

where, x ∈ ℝn, u ∈ ℝm, r=max{rj}
d

j=1, q=max{q}e
l=1 F:[t0,T] × ℝn × ℝm → ℝ

f :[t0, T] × ℝ(d+1)n × ℝ(e+1)m → ℝn, 𝝋(t) : [t0-r; t0] → ℝn, 𝟁(t): [t0-q; t0] 
→ ℝm, rj < rj+1 and

ql <ql+1.

However, with respect to all arguments, the functions F and f 
are assumed to be at least twice continuously differentiable while 
the functions 𝝋 and 𝟁 are only continuous. The pair of functions 
(x,u)∈Ω:=([t0,T],Rn) × ([t0,T],Rm) is an admissible pair of the problem 
above such that the conditions of eqn. (1) to eqn. (5) are satisfied. 
However, it is imperative to develop the numerical approach to solving 
the case where the continuous nonlinear functional F and constraint 
function f are quadratic and linear in nature respectively; hence the 
optimal control model below:

( ) ( )0
1,
2

T T TMin J x u t x Px u Qu dt= +∫ 		                (6)

( ) ( ) ( ) 0
1 1

.
d e

j j l
j l

s t x t Ax Bu x t r u t ql t t Tα β
= =

≤ + + − + − ≤ ≤∑ ∑

  (7)

( ) ( ) 0 0,x t t t r t tϕ= − ≤ ≤ 			                   (8)

( ) ( ) 0 0,u t t t q t tψ= − ≤ ≤ 			                (9)

( )0 0x t x= 					                     (10)

where, 
( ) ( )1 2 1 21 1

max , max , , ,..., , , ,...,u

, , , , , ,

T Tn
j n mj d j e

m n n m m p n p m p n p m
j j l

r r q ql x x x x u u u

P Q A B lα β
≤ ≤ ≤ ≤

× × × × × ×

= = = ∈ = ∈

∈ ∈ ∈ ∈ ∈ ∀ ∈ ∀

ℝ

ℝ ℝ ℝ ℝ ℝ ℝ ℝ

while, all assumptions are as in the general form of the multiple delay 
control model above.

Materials and Methods
The concept of "first discretize fully and then optimize" approach 

was adopted in obtaining the optimal solution of the multiple delay 
OCP. This involves applying an existing numerical scheme to discretize 

the continuous-time multiple delayed constraint, thereby generating 
a recurrence relation that was used to obtain the large sparse matrix 
operators. The Augmented Lagrangian functional was used to convert 
the discretized constrained problem to an unconstrained form. An 
accelerator variant (relaxation factor) was introduced in the formulation 
of the modified ADMM algorithm to accelerate its rate of convergence. 
The spectral analyses of the matrix operators and the convergence 
analysis of the modified ADMM were carried out to ensure it is well-
posed and implementable on the MATLAB subroutine.

Background and preliminaries

The state variable x(t)=(x1,x2,...xn)∈Rn and the control variable 
u(t)=(u1,u2,....,um) ∈ Rm defined over the intervals [t0-r,t0] and [t0-q,t0] 
respectively are sets of n and m dimensional Banach spaces of the 
continuous functions of the state and control vectors respectively. 

Suppose the time interval is discretized by letting ( )0T t
N

δ +−
= ∈

such that N∊+ and tk=t0+kδ, (for k=0, 1, …N), then the discretization 
operator fx maps each discrete point in the time interval [t0,T]⊆ℝ into 
each discrete point of the concatenated state vector xi

(k)(.)∊RnN for all 
i=1, 2, …, n; while, the operator fu maps the points into each discrete 
point of the concatenated control vector uj

(k)(.)∊Rm(N+1) for all j=1, 2, …, 
m as expressed below:

[ ] ( ) ( )0: , .k
x if t T x x⊆ → ∈ℝ 			                (11)

[ ] ( ) ( )0: , .k
u jf t T u u⊆ → ∈ℝ 			                (12)

where, ( )1 2, ,..., nN
nx x x x= ∈ℝ

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 0 1 1
1 2, ,..., ,u u ,u ,...,u u u ,u ,...,uN m N NN N

i i i i m j j j jx x x x and+ += ∈ = ∈ = ∈ℝ ℝ ℝ .

Considering the existence of single delay constants r and q on 
the state and control variables over the interval [t0-r,T] and [t0-q,T], 
respectively, such that r=υδ and q=wδ; the discretized delay state and 
delay control variables are hereby represented in the equations below:

( ) ( ) [ ] ( ) ( )
( ) ( ) ( ) [ ] ( )

h

h
k v k v 0 0 0 0

x
k v k v 0

x t t : k v;k 0,1,2,..., , t t r, t , x t x known state
f

x t x : k v;k v 1 , v 2 ,..., N, t t ,T Unknownstate
− −

− −

 = ϕ ≤ = υ ∈ − == 
= > = + + ∈

  (13)

and
( ) ( ) [ ]( )
( ) ( ) ( ) [ ]h

h
k w k w 0 0

u
k w k w 0

u t t : k w;k 0,1,2,..., , t q, t known control
f

u t u : k w; w 1 , w 2 ,..., N, t ,T Unknownstate.

w t

k t
− −

− −

 = ψ ≤ = ∈ −= 
= > = + + ∈

  (14)

For the case of multiple delay constants rj∊R (for j=1, 2,..., d) and 
ql∊R (for l=1, 2,..., e) on the state and control variables respectively, 
it is assumed that the numbers are monotonically increasing; that 
is, (rj<rj+1) and (ql<ql+1). Therefore, the multiple state and control 
variables for eqns. (13) and (14) for j=1,2,...,d and l=1,2,...,e are 
represented in eqns. (15) and (16):

( ) [ ] ( )

( ) [ ] ( )
( )

j j

j j

h
k v k v j j 0 0

k n k v j j 0

0 0

x t : k v k 0,1,2,..., t r, t known

x : 0;k v 1 ,.., N, t ,T unknown

x t x given

v

x k - v t

− −

− −

 = ϕ − ≤ = −

= > = + ∈


=

  (15)

and

( ) ( ) [ ] ( )
( ) [ ] ( )

l l

l

l

h
k w k w l l 0 0

k w

k w l l l 0

u t : k w 0;k 0,1,2,,..., w 1 , t t q, t , known
u

u : k w 0fork w , w 1 ,..., N, t t ,T , unknown
− −

−

−

 = ψ − < = − ∈ −= 
− ≥ = + ∈

  (16)

where, 1 1max{r } max{q }d e
d j j e l lr r and q q= == = = =  are the largest 

delays on the state and control variables respectively. In other words, 
the discretized delay state and control variables are represented in the 
form below:
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( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1 2

1 1

ˆ , ,...., 1,2,..., ,

ˆ , ,...., 1,2,...,e,

j j j

l l l

v v N v nN

w w N w m N

x x x x for all j d

u u u u for all l

− − −

− − − +

= ∈ =

= ∈ =

ℝ

ℝ

where, for any arbitrary k (for k = 0,1,2,....,N), the discretized delay state 
and control vectors are concatenated giving,

( ) ( ) ( ) ( )( )j j j jk v k v k v k v n
1 2 nx x ,x ,..., x , for any j,− − − −= ∈ℝ 	             (17)

( ) ( ) ( ) ( )( )j l l lk v k w k w k w m
1 2 nu u , ,..., , for anyl,u u− − − −= ∈ℝ 	              (18)

while x(t) and u(t) are estimated within their respective delay intervals 
by the given delay functions ϕ(t) and ψ(t) respectively such that ϕ(t) ≃  
(t−k) and ψ(t) ≃ ψ(t−k) where tk=t0-kh for k=1,2,...,vd(≥ we).

Discretization of the objective function

In the discretization of the continuous-time objective function, the 
third order one-third Simpson rule in eqn. (19) below was used:

( ) ( ) ( ) ( ) ( )
0

1
2 2

0 2 2 1
1 1

, ) 2 4
3

N N

T

k k Nt
k k

F x t dt f x f x f x f xδ
−

−
= =

 
 + + + 
  

∑ ∑∫ 

  (19)

Then the discretized objective function of the optimal control 
problem in eqn. (6) using eqn. (19) is expressed below as:

( )
1

2 2

0 0 2 2 2 1 2 1, 1 1

1
2 2

0 0 2 2 2 1 2 1
1 1

1 2 4min , min
2 3 3 3 3

1 2 4min
2 3 3 3 3

T

T

N N

T T T T
k k k k N Nx u x K k

x Px

N N

T T T T
k k k k N Nu K k

u Qu

J x u x Px x Px x Px x Px

u Qu u Qx u Qx u Qu

δ δ δ δ

δ δ δ δ

−

− −
= =

−

− −
= =

 
 

+ + + 
  
 

+ + + +

∑ ∑

∑ ∑





 

,

1 1min
2 2

T T

x u
x Px u Qu R

 
 
 
 
 
 

+ +





  (20)

where, 
0 06
TR X Pxδ

= ∈ℝ and the concatenated state and control variables 

are ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 2 0 1 1
1 1 1 1, ,..., , ,...,N N m NnN

n mx x x x and u u u u += ∈ = ∈ℝ ℝ  

respectively. However, the block-diagonal coefficient matrices 
( ) ( )1 1m N m NnN nNP and Q + × +×∈ ∈ℝ ℝ are the block-matrix operators of 

the objective functional stated below as:
0 0

4 30 0
23 0

2 30
43
3

0
4 00
33

0 0
3

Q
P

Q
P

Q
P and Q

QP

Q

δ
δ

δ
δ

δ

δδ

δ

 
                   = =                   
  

  



   

 

    

   

     

  

   

 

  

  (21)

Discretization of the constraints

The 1
3

Simpson’s rule in eqn. (22) was used for the discretization of 

the multi-delay constraints:

( ) ( )2 1 24 .
3

k k k k kx x f f fδ+ + + = + + + 
		               (22)

( ) ( ) ( ) ( )k k k k k kˆ ˆx t f t, x,u implies that f t, x,u f t ,x ,u ,x ,u f where= ≈ =

( ) ( ) ( ) ( )

1 1
,j l

d e
k vk k k wk

j l
j l

f Ax Bu x uα β− −

= =

= + + +∑ ∑ 	               (23)

Adapting eqns. (22) and (23) to eqn. (7) of the optimal control 

problem then yielded the recurrence relation below:
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 2 2

1 2 1 2

1 1

4 4

3 3

k k k k k
x x

d e
k j k j k j k l k l k l

j l
j l

I x x I x u u

x x x u u u

σ σ σ γ γ

δ δα β

+ + +

− + − + − − + − + −

= =

+ + + − + + =

− + + − + +∑ ∑
  (24)

where, 

, , 0,1,..., 2
3 3

p n p m p n
x

A B I and k Nδ δσ γ× × ×= ∈ = ∈ ∈ = −ℝ ℝ ℝ

Setting k=0 in eqn. (24) yielded:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

0 1 2 0 1 2

1 2 1 2

1 1

4 4

3 3

x x

d e
j j j l l l

j l
j l

I x x I x u u u

x x x u u u

σ σ σ γ γ γ

δ δα β− − − − − −

= =

+ + + − + + + =

− + + − + +∑ ∑
Expanding and collecting like-terms of x and u yielded

(1) (2) (0) (1) (2)
1 1 2 1

(0) ( 1) ( 2)
1 2 1 2 3 2 3 4 2 1

(2 ) (1 ) ( ) ( 1)
1 1 2 3 2 3

(4 ) ( ) [ ( )] (4 ) = [
3 3 3

( )] ( ) ( ) (
3 3 3 3

) ( ) ( ) (
3 3 3 3

x x

d d

d d d
d d d d

x I x u u u I

x x x

x x x u

δ δ δσ α σ γ β β γ β γ σ

δ δ δ δα α α α α α α α α α

δ δ δ δα α α α β β β β β

− −
− −

− − − −
−

+ + − + + + + + + − + +

+ − + + − + + − − + +

− + − − + + − +



( 2)
4

(2 ) (1 ) ( )
2 1 1

)

( ) ( ) .
3 3 3

e e e
e e e e e e

u

u u u

β

δ δ δβ β β β β β

−

− − −
− − −

+ −

− + + − + −

  (25)

Setting k=1 in eqn. (24) yielded:

(1) (2) (3) (0)
1 2 1 1 2 3

(1) (2) (0) ( 1)
1 2 1 3 1 2 3 2 3 4

(3 ) (2 ) (1 )
2 1 1 2 3 4

[ ( )] (4 ) ( ) ( ) [
3 3 3

( )] (4 ) = ( ) ( )
3 3 3 3

( ) ( ) (
3 3 3 3

x x

d d d
d d d d d d

I x x I x u

u u u x x

hx x x

δ δ δσ α α σ α σ β β β γ

δ δ δ δβ β γ β γ α α α α α α

δ δ δα α α α α α β β β

−

− − −
− − −

+ + + + + + − + + + + +

+ + + + − + + − + + −

− + + − + − − + +



( 1)

( 2) (3 ) (2 ) (1 )
3 4 2 1 1

)

( ) ( ) ( ) .
3 3 3 3

e e e
e e e e e e

u

u u u uδ δ δ δβ β β β β β β β β

−

− − − −
− − −− + + − − + + − + −

  (26)

Setting k=d-4=e-4 in eqn. (24) yielded:

( 4) ( 3) ( 2) ( 4) ( 3) ( 3)

( )
( 4 ) ( 3 ) ( 2 ) ( 4 ) ( 3 ) ( 2 )

=1 =1

( ) 4 ( ) 4 =

[ ( ) ( )]
3

d d d d d d
x x

e dd
d j d j d j e l e l e l

j l
j l

I x x I x u u u

x x x u u u

σ σ σ γ γ γ

δ α β

− − − − − −

≤
− − − − − − − − − − − −

+ + + − + + +

+ + + + +∑ ∑

Expanding and collecting the like-terms yielded:

(1) (2)
5 4 3 6 5 4 4 3

( ) ( 5) ( 4) ( 3)
2 1 2 3 1 2 1

( 2) (0) (1)
4 3 2 5 4 3

( ) ( ) (
3 3 3

) ( ) [ ( ) ] [ 4 ]
3 3 3

( ) ( ) ( ) (
3 3 3

d d d d d d d s d s

s d d d
d s x

d
x e e e e e e

x x

x x I x x

I x u u

δ δ δα α α α α α α α

δ δ δα α α α α α σ α σ

δ δ δσ β β β β β β β

− − − − − − − − − −

− − −
− −

−
− − − − − −

+ + + + + + + + +

+ + + + + + + + + + +

− + + + + + + +





6 5

(2) ( ) ( 5)
4 4 3 2 1 2 3 1 2

( 4) ( 3) ( 2) (0)
1 4 3 2 3 2

( 2) ( 3)
1 1 2 1 1

) ( ) ( ) [ ( )
3 3 3

] [ 4 ] = ( ) (
3 3 3

) ( ) ( )
3 3

e e

s e
e e s e s e s

e e e
d d d d d

d d d d d d

u u u

u u u x

x x x

β

δ δ δβ β β β β β β β β

δ δ δγ β γ γ α α α α α

δ δα α α α α α

− −

−
− − − − − − −

− − −
− − − − −

− −
− − − − −

+ +

+ + + + + + + + + + +

+ + + − + + − + +

− + + − + −

 

( 4)
3 2

( 1) ( 2) ( 3) ( 4)
1 2 1 1

(
3 3

) ( ) ( )
3 3 3

d e e

e e e e e e e

x

u u u u

δ δα β β

δ δ δβ β β β β β β

−
− −

− − − −
− − − −

− + +

− + + − + −

  (27)

Setting k=d=e in eqn. (24) yielded:

(1) (2) (3)
1 2 1 3 2 1 4 3

(4) ( ) ( 1)
2 1 2 1 2 3 1 2

( ) ( 2) (0)
1 1 1

( ) ( ) ( ) (
3 3 3 3

) ( ) ( ) [ ( )
3 3 3

] [ 4 ] ( ) (
3 3 3

d d d d d d d d d d

s d
d d s d s d s

d d
x d x e e e

x x x

x x x

I x x I x u

δ δ δ δα α α α α α α α α α

δ δ δα α α α α α α α α

δ δ δσ α σ σ β β β

− − − − − − − −

−
− − + − + −

+
+ −

+ + + + + + + + + +

+ + + + + + + + + + +

+ + + + − + + +

 

(1)
2 1

(2) (3) (4) (5)
3 2 1 4 3 2 5 4 3

( ) ( 1) ( )
1 2 1 2 3 1 2

( 1) ( 2) (0)
1

) (
3

) ( ) ( ) ( )
3 3 3

( ) ( ) [ ( ) ]
3 3 3

( 4 ) = .
3 3

e e

e e e e e e e e e e

s e e
e s e s e s

e e
d

u

u u u u

u u u

u u x

δ β β

δ δ δβ β β β β β β β β β

δ δ δβ β β β β β β β γ

δ δβ γ γ α

− −

− − − − − − − − −

−
− + − + −

+ +

+ + +

+ + + + + + + + +

+ + + + + + + + + + +

+ + +

 

  (28)

Setting k=d+t(1≤t<N−2−d) in eqn. (24) yielded:
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( ) (1 ) (2 ) (3 )
1 2 1 3 2 1

( ) ( 1)
1 2 1 2 3 1 2

( ) ( 1) ( 2) ( )
1 1

( ) ( ) ( )
3 3 3 3

( ) ( ) [ ( )
3 3 3

] [ 4 ] ( ) (
3 3 3

t t t t
d d d d d d d d d

s t d t
d s d s d s

d t d t d t t
x x e e

x x x x

x x

I x x I x u

δ δ δ δα α α α α α α α α

δ δ δα α α α α α α α

δ δ δσ α σ σ β β

+ + +
− − − − − −

+ + −
− + − + −

+ + + + +
−

+ + + + + + + +

+ + + + + + + + + + +

+ + + − + +

 

( 1)
2

( 2) ( 3) ( )
1 3 2 1 1 2

( 1) ( ) ( 1)
1 2 3 1 2 1 ( 2)

) (
3

) ( ) ( )
3 3

( ) [ ( ) ] ( 4 ) = 0
3 3 3

t
e e

t t s t
e e e e e e s e s e s

e t e t e t
e t

u

u u u

u u u u

δβ β

δ δβ β β β β β β β

δ δ δβ β β β β γ β γ γ

+
−

+ + +
− − − − − + − + −

+ − + + +
+ +

+ +

+ + + + + + + + + +

+ + + + + + + + +





  (29)

Setting k=N-2 in eqn. (24) yielded:

( 2 ) ( 1 ) ( )
1 2 1 3 2

( 1 ) ( 2 ) ( 3)
1 1 2 1 2 3

( 2) ( 1) ( ) ( 2
1 2 1

( ) ( ) (
3 3 3 3

) ( ) ( )
3 3

[ ( ) ] [ 4 ] ( )
3 3 3

N d N d N d
d d d d d d d d

N d N s d N
d d s d s d s

N N N N e
x x e

x x x

x x x

I x x I x u

δ δ δ δα α α α α α α α

δ δα α α α α α α

δ δ δα α σ α σ σ β

− − − − −
− − − − −

+ − + − − −
− − + − + −

− − − −

+ + + + + + + +

+ + + + + + + +

+ + + + + + + − +

 

)
1

( 1 ) ( ) ( 1 )
2 1 3 2 1

( 2 ) ( 3) ( 2)
1 2 1 2 3 1 2

( 1) ( )
1

(
3

) ( ) ( ) (
3 3 3

) ( ) [ ( ) ]
3 3

( 4 ) = 0
3

e

N e N e N e
e e e e e e e e s

N s e N N
e s e s

N N

u u u

u u u

u u

δ β

δ δ δβ β β β β β β β

δ δβ β β β β β β γ

δ β γ γ

−

− − − + −
− − − − − −

+ − − − −
+ − + −

−

+

+ + + + + + + + +

+ + + + + + + + +

+ + +





  (30)

The combination of all the equations for various values of k forms 
the linear inequality below:

=h hAx Bu Ex Fu C+ ≤ +                  (31)
where A  is a multi-diagonal matrix with  p(N-1) rows and nN columns 

(i.e., ( 1)p N nNA − ×∈ℝ ); B  is also a diagonal matrix with p(N-1)
( 1)p N −  rows and ( 1)m N +  columns (i.e., ( 1) ( 1)p N m NB − × +∈ℝ ), x  is 

the concatenated vector of the state variable with dimension nN × 1 
while u  is the concatenated row vector of the control variable with 
dimension m(N+1) × 1. The dimensions of the matrices , ,hE x F  
and hu  are ( 1) ( 1), ( 1) 1, ( 1)p N n d n d p N me− × + + × − ×  and me × 
1 respectively. The respective structures of the concatenated vector-
matrices are represented below:

(1)
1

(2)

0 (3)

1

( )

( 1)

( )
1 0 1

(4 ) ( ) 0 0
3

( ) 0
0

0 0
= ,

0

0 ( ) (4 ) ( )
3

x

x

d

d

N

N
d x x

xI
x

I
x

Ax x

x
I I x

δσ α σ

σ α
α

α

δα α σ α σ α σ

−

   + −      + +                           + + + −        

   

     

     



     

      



      

 

(0)0 1

(1)
1

2
( )

2 1

0 1 ( 1)

( )

2 1 0 1

( ) (4 ) 0 0
3 3

0 0
0 0

0 0
=

.
( ) (4 ) 0

3 3

0 ( ) (4 )
3 3

e

e

N

N

e

u
u

u
Bu

u
u

δ δγ β γ β γ

β
β

β β β
δ δγ β γ β γ

δ δβ β β γ β γ β γ

−

 + +   
   
   
   
   
   
  
  
  

+ +  
  
  + +  

   
  

   

     



     

      



     

    

 

,








(0)

0 1 1 ( 1)

1 1 ( 2)

1

1

1

1

(2 )

(1 )

( )

( )
0

0
0

0
=

0
0 0

0 0
0

0 0 0

x s d d

s d d

s d d

s d d

d dh

d d

d d

d

d

x
I

x
x

Ex

x
x
x

σ α α α α α
α α α α

α α α
α α α

α α
α α
α

− −

− −

−

−

−

−

−

−

−

− + + − − − − 
 − − − − 
 − − −
 

− − − 
 − −
 

− − 
 − 
 
 
 
  

 

 

  



  



   



   



   

    

     

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

and

(0)

1 2 1 ( 1)

2 1 ( 2)

1

1

(1 )

( )

0
0

0
= ,

0
0

0 0

e e

e e

e e

h e e

e

d

d

u
x
u

Fu

u
u

β β β β
β β β

β β
β β
β

− −

− −

−

−

−

−

 
 − − − −  
   − − −   
   − −
   − −   
   −   
   
   
   
       





 



 



  



   

    

  

where the delay coefficients kα  and kβ , for k=0,1,2,…,d are defined 
below as:

1 2

1 2

1

( ) = 0
3

( ) = 1,2,..., 2
3=

( ) = 1
3

=
3

k k

k k k

k

k k

k

k

k d

k d

k d

δ α α

δ α α α
α

δ α α

δ α

+ +

+ +

+

 +

 + + −

 + −





            (32)

and

1 2

1 2

1

( ) = 0
3

( ) = 1,2,..., 2
3=

( ) = 1
3

=
3

k k

k k k

k

k k

k

k

k e

k e

k e

δ β β

δ β β β
β

δ β β

δ β

+ +

+ +

+

 +

 + + −

 + −





          (33)

However, the entries [ ] ,[ ] ,[ ] [ ]ij ij ij ija A b B e E and f F∈ ∈ ∈ ∈  of the 
various matrix structures are described below as follows:

x 0

x

ij x 0

k

( I ) i = j 1 i N 1
( I ) j = i 1 1 i N 1

[a ] = ( I ) j = i 1 2 i N 1
j = i 1 k 2 k i N 1; k = 1,2,...,d

0 elsewhere

σ + + α ≤ ≤ −
 σ − + ≤ ≤ − σ + + α − ≤ ≤ −
 α − − + ≤ ≤ −


  (34)

0

1ij

k

( ) i = j 1 i N 1
3

(4 ) j = i 1 1 i N 1[b ] =
3

j = i k 1 k i N 1; k = 1,2,...,e
0 elsewhere

δ γ + β ≤ ≤ −


δ γ + β + ≤ ≤ −

β − + ≤ ≤ −




  (35)

x 0

ij k

( I ) i = j = 1 1 i N 1;
[e ] = j = k 2 i 1 i k 1; k = 1,2,...,d

0 elsewhere

− σ + + α ≤ ≤ −
 − α + − ≤ ≤ +



  (36)

k
ij

j = i k 1 1 i k; k = 1,2,...,e
[f ] =

0 elsewhere
 − β + − ≤ ≤



            (37)

Analysis of matrix operators

The well-posessness and optimal parameter selections are 
dependent on the nature and properties of the discretized matrices 

, ,P Q A  and B . It is then imperative that P  and Q  be real symmetric 
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and positive definite to avoid ill-conditioning during the convergence 
of the algorithm.

Theorem 3.1 (Sylvester's criterion): A real, symmetric matrix 
is positive definite if and only if all the principal minors are positive 
definite [11].

Corollary 3.1: Given a matrix 1 2= diag[ , , ]nP p p p  with pi’s the 
principal diagonal entries and zeros elsewhere. Then the matrix P is 
positive definite if and only if all the pi’s are strictly positive (i.e., no zero 
principal diagonal entry).

Proof: Let , = 1,2, ,jM j n  be the principal minors of the real, 
symmetric matrix P. Then,

1 1 1

1
2 1 2

2

1

1 2
1 =11

= = > 0

0
= = > 0

0

0 0
0

= = = > 0
0

0 0

n

n n j
j n jn

n

M p p

p
M p p

p

p

M p p p p
p

p
≤ ≤ −

∈∏





  



 



ℝ

Since all the Mj’s are positive, then P is strictly positive definite. 
Considering the matrices P  and Q , all the principal diagonal entries 
p,2p and 4p are strictly positive and as such they are positive definite.

The modified ADMM formulation

The original ADMM formulation was modified to accommodate 
both the state and control variables before imposing the Karush-Khun-
Tucker (KKT) optimality conditions. It was later accelerated using the 
Gauss-Seidel accelerator variant to speed up the rate of convergence 
of the M-ADMM algorithm. The re-formulated compact convex 
quadratic optimization problem is then stated thus:

,

1 1 .min
2 2

T T

x u
x Px u Qu R s t Ax B C+ + + ≤ 		               (38)

Where,

( 1) ( 1) ( 1) ( 1) ( 1) ( 1), , , , ,nN m N nN nN m N m N p N nN p N m Nx u P Q A B+ × + × + − × − × +∈ ∈ ∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ ℝ ℝ  

and ( 1)p NC −∈ℝ  and P  and Q  are real, symmetric and positive-definite. 
The associated augmented Lagrangian of eqn. (38) is then given as:

, ,

2
2

1 1( , , , ) = { ( ) ( )min min
2 2

} . . 0,
2

T T T

x u x u
L x u z x Px u Qu R l z Ax Bu C z

Ax Bu C z s t z

ρ λ λ

ρ

++ + + + + − +

+ + − + ≥ 

  (39)

where λ is the Lagrange multiplier, ρ>0 is the penalty parameter, ||.||2 
is the euclidean (spectral) norm of a vector (matrix) argument, z is 
the introduced slack vector and ( )l z+  is the indicator function for the 

non-negative orthants defined as ( ) = 0l z+  for z≥0 and ( ) =l z+ +∞  
otherwise.

The scaled augmented Lagrangian is of the form:

, ,

2
2

1 1( , , , ) = { ( )min min
2 2

} . . 0,
2

T T

x u x u
L x u z v x Px u Qu R l z

Ax Bu C z v s t z

ρ

ρ

++ + + +

+ + − + + ≥ 

	           (40)

where v=λ/ρ is the scaled dual variable.

The following Karush-Kuhn-Tucker (KKT) optimality conditions 
in eqn. (4) below were imposed on the Augmented Lagrangian for the 
derivation of the ADMM algorithm.

( ) ( )

( ) ( )

( ) ( )

1
1

1 1 1
1 1

, ,
, , 0

, ,
, , 0

, ,
, ,

k k
pk k

x

k k
pk k

u
u

k k k k
pk k

L x u
L x u

x
L x u

KKT L x u

L x u
L x u

ρ

ρ

λ ρ

λ
λ

λ
λ

λ λ λλ
λ ρ

+
+

+ + +
+ +

 ∂
∇ = =

∂
 ∂⇔ ∇ = =

∂
 ∂ −∇ = = ∂

  (41)

In the derivation of the ADMM algorithm, the optimality 
conditions were then applied to eqn. (40) above through the sequential 
minimization of x  and u . The update of the state variable x  is of 
the form:

( , , , ) = [ ]T T
x L x u z v Px A Ax A Bu C z vρ ρ ρ∇ + + − + + 	              (42)

Then at optimum, ( , , , ) = 0k k k
x L x u z vρ∇  such that 1= kx x +  

yielded:

( ) ( )1k 1 T T k k kx = P A A A Bu C z v x update
−+ −ρ + ρ − + + −    (43)

Likewise, the update of the control variable u  is of the form:

( , , , ) = [ ]T T
u L x u z v Ru B Bu B Ax C z vρ ρ ρ∇ + + − + + 	                (44)

Then at optimum, 1( , , , ) = 0k k k
u L x u z vρ

+∇  such that 1= ku u +  
yielded:

( ) ( )1k 1 T T k 1 k ku = Q B B B Ax C z v u update
−+ +−ρ + ρ − + + −    (45)

The update of the slack variable is of the form:

( , , , ) = ( )zL x u z v Ax Bu C z vρ ρ∇ + − + + 		                (46)

Then at optimum, 1 1( , , , ) = 0k k k
zL x u z vρ

+ +∇  such that 1= kz z +  
yielded:

k 1 k 1 k 1 kz =max{0, (Ax Bu C v )} z update+ + +− + − + − 	              (47)

Introducing the over-relaxation factor [1.5,1.8]α ∈  into the 
augmented lagrangian, in the sense of Nesterov [20], by replacing 

1kAx +  with 1 1= (1 )( )k k k k k kh Ax Bu C zα α+ + − − − +  in eqn. (45) 
yielded:

1 1 1= ( ) [ ( ) (1 ) ],k T T k k k ku Q B B B Ax C z Bu vρ ρ α α+ − +− + − + − − +   (48)

while eqn. (47) yielded:
1 1 1= {0, }.k k k kz max h Bu C v+ + +− − + − 		                (49)

Upon expansion and re-arrangement of eqn. (49) yielded the over-
relaxed z −  update 

1 1 1 1

1 1 1

= {0, ( ) (1 ) ( ) (1 ) }
= {0, ( ) (1 )[ ( ) ] }

k k k k k k k

k k k k k k

z max Ax Bu C B u u z v
max Ax Bu C B u u z v

α α α

α α

+ + + +

+ + +

− + − − − − + − −

− + − − − − − −
  (50)

Updating the dual variable v requires that

1 1 1 1=k k k k kv v Ax Bu C z+ + + ++ + − + 		               (51)

When 1kh +  was substituted in place of 1kAx +  in eqn. (51) yielded:

1 1 1 1=k k k k kv v h Bu C z+ + + ++ + − +  		                                    (52)

Upon expansion and re-arrangement of eqn. (52) yielded:
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1 1 1 1 1

1

= ( ) (1 ) ( )
(1 )( )

k k k k k k k

k k

v v Ax Bu z C B u u
z z
α α

α

+ + + + +

+

+ + + − + − −

+ − −
    (53)

The over-relaxed M-ADMM computes the new iterates as follows:

( ) ( )
( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( )

k 1 T T k k k

1k 1 T T k 1 k k k

k 1 k 1 k 1 k 1 k k k

k 1 k k 1 k 1 k 1 k 1 k

x P A A A Bu C z v x update

u Q B B B Ax C z 1 Bu v ,

z max 0, Ax Bu C 1 B u u z v

v v Ax Bu z C 1 B u u

+

−+ +

+ + + +

+ + + + +

 = −ρ + ρ − + + −

  = −ρ + ρ α − + − − α +  


  = −α + − − − α − − − 
 = + α + + − + − α −

    (54)

Convergence analysis of the modified ADMM

In the development of the M-ADMM algorithm, the augmented 
Lagrangian functional(ALF) will be deployed because the penalty 
term associated with the ALF in order to improve the convergence of 
the M-ADMM algorithm. In literature, the convergence of ADMM 
algorithm to a solution, in general convex optimization problems, is 
guaranteed provided the solution exists. Hence the need to carry out 
spectral analyses regarding the spectrum, symmetry, consistency and 
positive-definiteness of the matrix operators to ascertain that they 
were well-posed for the algorithm. However, the limit of the proposed 
M-ADMM iterates which satisfied the set of first-order optimality 
conditions produced a certificate of either primal or dual feasibility or 
both as illustrated below.

In the derivation of the convergence residues, the objective 
function of the multi-delay optimal control problem was assumed to 
be pk at the kth iteration(cycle), which converges to the optimal value 
p*(pk→p*) for large values of k (k→∞). Suppose the objective function 
is a closed, proper, convex and sub-differentiable function of f and g 
expressed on the form pk=f k+gk, then the residuals generated at each 
iteration, known as the dual residual, converges to zero. In the same 
light, the primal residual =k k kr Ax Bu C+ −  of the constraint at the kth 
iteration approaches zero as the algorithm approaches optimality. The 
derivation of the residuals is presented in theorem 5.1 below:

Theorem 5.1: Let = ( ) ( )k k kp f x g u+  be the k-th iterate value 
of the closed, proper, convex and sub-differentiable objective functions 
f and g such that it converges to its optimal objective value p*. Given 
the constraint Ax Bu C+ ≤  and multiplier λ, then there exists a dual 

residual 1 1 1= [ ( ) ( )]k T k k k kd A B u u v vρ+ + +− + −  that converges to zero 
for a given penalty parameter ρ. 

Proof: Given the objective function = ( ) ( )k k kp f x g u+  and 
linear inequality constraint Ax Bu C+ ≤ , the associated Lagrangian 
with slack z is stated thus:

2
2( , , , ) = ( ) ( ) ( ) ,

2
TL x u z f x g u Ax Bu C z Ax Bu C zρ

ρλ λ+ + + − + + + − + 

  (55) 

Applying the optimality conditions (KKT) to obtain

1 1

1 1 1 1

1

1 1

( ) ( 2 ) = 0
( ) ( ) = 0
( ) ( )

= 0,

T k T T T T

k T k T k k k

k T k T k k k

kr
T k T k T k T k

f x A A Ax A Bu A C A z
f x A A Ax Bu C z
f x A A Ax Bu C z

A Bu A z A Bu A z

λ ρ

λ ρ

λ ρ

ρ ρ ρ ρ

+ +

+ + + +

+

+ +

∂ + + + − +

∂ + + + − +

∂ + + + − + −

− + +



where the primal residual is given below as:
1 1 1 1= ( ).k k k kr Ax Bu C z+ + + ++ − +                   (56)

Therefore,

1 1 1 1

1 1 1 1

1

( ) ( ) ( ) = 0
[ ( ) ( )] = ( ) [ ]

k T k T k T k k T k k

T k k k k k T k k

k

f x A A r A B u u A z z
A B u u z z f x A r

λ

λ ρ ρ ρ

ρ λ ρ

+ + + +

+ + + +

+

∂ + + − − − −

− + − ∂ + +


Since at the ADMM, the update 1 1( ) 0k T kf x A λ+ +∂ + → , then its 
dual residual

1 1 1= [ ( ) ( )] 0k T k k k kd A B u u z zρ+ + +− + − →                   (57)

which completes the proof. Q.E.D.

The convergence of the primal-dual feasibility to zero in eqn. (57) is 
a clear indication that the algorithm is superlinearly convergent.

Theorem 5.2: Given a convex quadratic programming 

(QP) problem 1min
2

T Ty Py q y+  such that Ay b≤ , where 

, , ,n n n m n mP y A b× ×∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ , then the optimal step-size for the 

QP is

( ) ( )
1

* 1 1
min max= T TAP A AP Aρ λ λ

−
− − 

  
                (58)

and the convergence factor 

( ) ( ) ( )
( ) ( ) ( )

1 1 1
max min max*

1 1 1
max min max

=
T T T

R T T T

AP A AP A AP A

AP A AP A AP A

λ λ λ
ξ

λ λ λ

− − −

− − −

−

+
               (59)

for 1
min(0,2], ( )TAP Aα λ −∈  and 1

max ( )TAP Aλ −  are the minimum and 
maximum eigenvalues of the matrix 1( )TAP A−  respectively, Ghadimi 
et al. [10].

The result of optimal parameter selection (stepsize) of the convex 
optimization problem stated above by Ghadimi et al. [10] can be 
extended to a convex optimal control problem of the form,

1 .
2

T TMin x Px u Qu R s t Ax Bu C+ + + ≤                                    (60)

where 1nNx ×∈ℝ , ( 1) ( 1)m N m Nu + × +∈ℝ , 
( 1) ( 1) ( 1) ( 1) ( 1), , , ,nN nN m N m N p N nN p N m NP Q A R B× + × + − × − × +∈ ∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ ℝ

and ( 1) 1p NC − ×∈ℝ . Therefore, eqn. (60) above can be re-formulated 
into a convex optimal control problem of the form:

1 ˆˆˆ ˆ ˆ.
2

TMin w Pw R s t Aw C+ ≤                 (61)

where, 

( 1) ( )ˆ = ( , ) p N nN mN mw x u − × + +∈ℝ , ( 1) ( )ˆ = , p N nN mN mA A B − × + + ∈  ℝ ,

 
( ) ( )

ˆ[ | ] 0ˆ =
0̂

nN mN m nN mN m

T

c c P
P

Q
+ + × + +

 
∈ 

  
ℝ  and 

( 1)0̂ nN m N× +∈ℝ . Then, the optimal stepsize for the concatenation of the 

DOCP, by theorem (5.2) above, is:

( ) ( )
1

* 1 1
min max

ˆ ˆ ˆ ˆˆ ˆ= T TAP A AP Aρ λ λ
−

− − 
  

              (62)

and the convergence factor is then,

( ) ( ) ( )
( ) ( ) ( )

1 1 1
max min max*

ˆ
1 1 1

max min max

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
=

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

T T T

R T T T

AP A AP A AP A

AP A AP A AP A

λ λ λ
ξ

λ λ λ

− − −

− − −

−

+
              (63)
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for *
ˆ(1,2],0 < < 1
R

α ξ∈  and P̂  is symmetric and positive definite.

The primal > 0Primε  and dual > 0Dualε  residuals, selected as 
termination (stopping) criterion for the convergence of the ADMM, 
were so small such that 1

2|| ||k Primr ε+ ≤  and 1
2|| ||k Duald ε+ ≤ . However, 

the choices of our tolerances depend on the relative and absolute 
criteria on account that the 2  norms are in nℝ  and pℝ , respectively. 
Usually in practice or literature, the following values, 3= 10relε −  and 

4= 10absε − , are used as reasonable stopping criteria for the ADMM 
algorithms. Stated below are basic computations in literature as in 
Boyd et al. [7].

1 1 1
2 2 2 2= . {|| || ,|| || ,|| || ,|| || }Prim abs rel k k kp max Ax Bu z Cε ε ε + + ++  (64)

2= . || |Dual abs reln uε ε ε ρ+                (65)

The formulated algorithm:

Algorithm 3.3: Modified-ADMM For multiple DOCP,

Step 0 : Input , , , , , , , , ., ,Prim DualA B C P Q R Tolρ α ε ε

Step 1 : Initialize 0,0 0,0 0,0 0,0, , ,x u Vλ

Step 2 : Set = 0k

Step 3 : Compute 
1, 1 , , ,= ( ) ( )k i T T k i k i k ix P A A A Bu C z vρ ρ+ −− + − + +  eqn. (43)

Step 4 : Stop if , 1 ,|| || .k i k ix x Tol+ − ≤

Step 5 : Compute 
, 1 1 1, , , ,= ( ) [ ( ) (1 ) ]k i T T k i k i k i k iu Q B B B Ax C z Bu vρ ρ α α+ − +− + − + − − +  eqn. (48)

Step 6 : Stop if , 1 ,|| || .k i k iu u Tol+ − ≤

Step 7 : Output 1 1,k kx u+ +  and go to step 9 otherwise

Step 8 : Repeat steps 3 & 5 for = 1,2,i   until steps 4 & 6 are 
satisfied 

Step 9 : Compute
1 1 1 1= {0, ( ) (1 )[ ( ) ] }k k k k k k kz Max Ax Bu C B u u z vα α+ + + +− + − + − − − − eqn. (50)

1 1 1 1 1

1

= ( ) (1 ) ( )
(1 )( )

k k k k k k k

k k

v v Ax Bu C z B u u
z z

α α

α

+ + + + +

+

+ + − + + − − +

− −
eqn. (53)

Step 10 : Stop if k 1 k 1 k 1 k Prim
2|| r || = (Ax Bu C z )+ + ++ − + ≤ ε  and 

eqn. (56)

. k 1 T k 1 k k 1 k Dual
2|| d || = A [B(u u ) (z z )]+ + +ρ − + − ≤ ε  else go to step 

12 eqn. (57)

Step 11 : Output 1 1,k kx u+ +  and Compute
*ρ  (optimal steplength) eqn. (58)

*
Rξ  (Convergence profile) eqn. (59)

Step 12 : Set = 1k k +  and go to Step 2.

Results and Discussion
The multi-delay optimal control problem below was considered for 

the implementation of the algorithm:

0.5 2 2 2 2
1 1 2 2 1 1 2 20

1( , ) = [2 ]
2

MinJ x u x x x x u u u u dt+ + + + +∫

1 1 2 1 2 1 2 1

2 1 1 2 1 2

. ( ) = 2 ( ) ( ) ( ) 3 ( ) ( 0.1) ( 0.1) 2 ( 0.2)
( 0.2) ( 0.3) ( 0.1) ( 0.1) ( 0.3) 2 ( 0.2),

s t x t x t x t u t u t x t x t x t
x t x t u t u t u t u t

+ + + + − + − + − +
− − − + − + − + − + −



2 1 1 2 1 1 2 1

2 1 2

( ) = ( ) ( ) 2 ( ) ( 0.1) ( 0.2) 2 ( 0.2) ( 0.3)
( 0.1) ( 0.2) 3 ( 0.2),

x t x t u t u t x t x t x t x t
u t u t u t

− + − − + − + − − − +
− + − + −



(0) = (0,0); 0 0.5,x t≤ ≤
2( ) = (2 1, 1); 0.3 0,x t t t t+ + − ≤ ≤

( ) = (2,2 ); 0.2 0,u t t t+ − ≤ ≤

where 2( )x t ∈ℝ  and 2( )u t ∈ℝ

In adopting the M-ADMM algorithm, the coefficient matrices are 
defined below as:

1

4 1 2 1 2 1 1 3 1 1
= , = , = , = , = ,

1 2 1 2 1 0 1 2 1 0
P Q A B α

         
         − −         

2 3 1 2

2 1 1 0 1 1 1 2
= , = , = = .

1 2 1 0 0 1 1 3
andα α β β

−       
       −       

The coefficient matrices, P  and Q , of the quadratic functional are 
symmetric, invertible (non-singular) and positive definite (i.e., 0P   
and 0Q  ) since their respective eigenvalues 1 2( = 1.585, = 4.4142)λ λ  
and 1 2( = 1, = 3)λ λ  are all positive. This ensures that the operators are 
well-posed for the algorithm. However, the algorithm runs for various 
numbers of iterations plotted against 29 values of the relaxation 
parameters α evenly spaced between 0.85 and 1.13. At each iteration 
(cycle), the penalty parameter ρ was kept fixed at its optimum 

* = 0.2743ρ , based on the step-size heuristically computed from 
eqn. (58). As shown in Figure 1A, 5 values of the dual and primal 
tolerances 10-k for k=4,5,..8 geometrically spaced between 10-4 and 
10-8. Each line on the graph corresponds to a fixed value of the dual 
and primal tolerance (10-k), where the relaxation factor runs over the 
entire chosen feasible values α∊[0,2]. Clearly, each line converges at 
the point * = 1.05α , which demonstrates the optimum over-relaxation 
factor for reducing values of α, though few values of k were chosen to 
keep the plot manageable and the cycle of the algorithm not exceeding 
200 iterations Figure 1B illustrates the convergence of the M-ADMM 
iterations for the Quadratic program at the optimum step-size ρ* and 
over-relaxation factor [0,2]α ∈ . It demonstrates the responses of the 
dual and primal residuals for various iteration counters at the optimum 
relaxation factor * = 1.05α  and at the optimum penalty parameter of 

* = 0.2743ρ . When comparing the convergence of the dual and 
primal residuals at start, the dual residual rk is far lower than that the 
primal residual dk which gives it high propensity to satisfy the feasibility 
conditions than that of the primal. However, the rate of convergence 
of the primal residual towards zero for large iteration ( 2

2|| || 0kd →  
as k →∞ ) is faster than that of the dual as demonstrated in Figure 1B.

Figure 2A demonstrates the responses of the state-control 
trajectories and the objective values to increasing iterations at chosen 
tolerance, fixed relaxation factor and optimal penalty parameter 
( * * 810 , , ) = (10 ,1.05,0.2743k α ρ− − ). However, it was observed that the 
objective values increase with increasing values of the state and control 
variables until the optimum objective value * = 0.93p  was arrived 
at with the optimum trajectories * * *= ( , ) = (2.8058,0.2356)w x u . 
Moreover, Figure 2B is the feedback law which demonstrates the degree 
of relationship between the state x(t) and control u(t) trajectories 
within the specified time domain [0,0.5]. The control (feedback) law is 
a time-variant measure unlike the proportional control system where 
the feedback law is time-invariant (real constant).

The formulated algor: 

algoritialize
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Conclusion and Future Work
The solution to optimal control problem with multiple constant 

delays using the modified alternating direction method have been 
established. The convergence of the algorithm was discovered to be at a 
superlinear rate and provides an explicit expressions for the optimum 
convergence parameter. We also considered the over-relaxation 
of the M-ADMM, for various values of the penalty parameters, for 
which the algorithm is guaranteed to convergence at its optimum. 
Numerical example was given to establish the effectiveness and 
general performance of the algorithm in terms of its lower iteration 
cycle and time in obtaining the optimal solution to the multi-delay 
control problem. In the future, the algorithm can be extended to other 
classes of control problems with objective functional of the Bolza-type 
constrained by bounded or mixed inequality constraints.
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