

AI Revolutionizes Pulmonology: Diagnosis to Treatment

Samuel Okoye*

Department of Medicine and Pulmonology, Lagos University Teaching Hospital, Lagos, Nigeria

Introduction

Artificial intelligence (AI) is revolutionizing pulmonology, enhancing diagnostic accuracy, personalizing treatment, and improving patient management across various respiratory conditions [1]. Machine learning algorithms are adept at analyzing complex medical images, such as CT scans, for the early detection of lung nodules and interstitial lung diseases, a critical step in timely intervention [1]. Natural language processing (NLP) is proving instrumental in extracting valuable clinical information from unstructured electronic health records, thereby aiding in disease phenotyping and the identification of patient cohorts for research and care [1]. AI-powered predictive models are capable of forecasting disease progression, identifying patients at high risk for exacerbations, and guiding therapeutic interventions, leading to more efficient and effective care for a spectrum of respiratory ailments [1].

The integration of AI into medical imaging for pulmonary diseases signifies a paradigm shift, with deep learning models, especially convolutional neural networks (CNNs), demonstrating remarkable performance in identifying subtle abnormalities on chest X-rays and CT scans that might elude human observation [2]. This includes the early detection of lung cancer, accurate characterization of interstitial lung diseases, and precise quantification of disease severity in conditions like COPD, thereby improving workflow efficiency for radiologists and pulmonologists [2]. Natural Language Processing (NLP) is also proving invaluable for extracting actionable insights from the vast and often unstructured data within electronic health records (EHRs) in pulmonology, identifying key clinical features, symptoms, diagnoses, medications, and treatment responses related to respiratory diseases [3]. This capability facilitates automated phenotyping of patients with complex conditions like asthma and COPD, supports clinical research by identifying eligible participants for trials, and can aid in adverse event detection and pharmacovigilance, ultimately enhancing data-driven clinical decision-making [3].

AI-driven predictive analytics are emerging as a powerful tool for managing chronic respiratory diseases. By analyzing diverse patient data, including demographics, comorbidities, medication adherence, and past exacerbations, AI models can accurately predict the risk of future exacerbations in patients with COPD and asthma [4]. This predictive capability allows for proactive interventions, personalized management plans, and targeted resource allocation to high-risk individuals, potentially reducing hospitalizations and significantly improving quality of life [4]. The application of AI in lung cancer screening and diagnosis is rapidly advancing, with algorithms assisting in the detection and characterization of pulmonary nodules on low-dose CT scans, helping to differentiate benign from malignant lesions with high accuracy [5]. Furthermore, AI can aid in the staging and prognosis of lung cancer by analyzing tumor characteristics and integrating genomic data, leading to improved accuracy and efficiency in early detection and more personalized treatment approaches [5].

The application of AI in developing more precise and personalized treatment plans for patients with interstitial lung diseases (ILDs) is also gaining momentum. Machine learning models can analyze various data inputs, including imaging features, clinical history, and genetic markers, to predict disease progression and response to therapy [6]. This enables the tailoring of treatment regimens to individual patient profiles, potentially improving efficacy and minimizing adverse effects in the management of ILDs [6]. The advent of AI is enhancing the analysis of pulmonary function tests (PFTs) and other physiological data, with algorithms assisting in more accurate interpretation of PFT results and identifying patterns indicative of specific respiratory diseases [7]. Furthermore, AI can be used to monitor disease progression and treatment response by analyzing longitudinal PFT data, providing clinicians with objective insights into a patient's respiratory status [7].

AI is playing an increasingly significant role in the management of patients with cystic fibrosis (CF). Predictive models are being developed to identify individuals at higher risk of lung infections and exacerbations, allowing for earlier and more aggressive interventions [8]. AI can also assist in optimizing antibiotic regimens and monitoring treatment adherence, thereby improving long-term outcomes for individuals with CF [8]. The application of AI in developing decision support systems for pulmonologists is also gaining traction. These systems can integrate diverse patient data, including imaging, PFTs, and EHRs, to provide evidence-based recommendations for diagnosis, treatment, and management [9]. Such tools can help standardize care, reduce diagnostic errors, and empower clinicians to make more informed decisions, particularly in complex or rare respiratory cases [9].

Finally, ethical considerations and robust regulatory frameworks are paramount for the responsible implementation of AI in pulmonology. Ensuring data privacy, algorithmic transparency, and proactively addressing potential biases in AI models are critical steps [10]. As AI tools become more deeply integrated into clinical practice, rigorous validation, continuous monitoring, and the establishment of clear guidelines for their use are essential to uphold patient safety and maintain trust in AI-assisted healthcare [10].

Description

Artificial intelligence (AI) is fundamentally reshaping pulmonology by enhancing diagnostic accuracy, enabling personalized treatment strategies, and improving overall patient management [1]. Machine learning algorithms have demonstrated exceptional proficiency in analyzing intricate imaging data, such as CT scans, for the early identification of lung nodules and interstitial lung diseases, thereby facilitating timely intervention and improved outcomes [1]. Concurrently, Natural Language Processing (NLP) is being effectively employed to extract valuable clinical insights from unstructured electronic health records, which significantly aids in disease phenotyping and the accurate identification of relevant patient cohorts [1]. The development of AI-powered predictive models further empowers clinicians

by forecasting disease progression, identifying patients at heightened risk for exacerbations, and guiding therapeutic interventions, collectively leading to more efficient and effective care for a wide array of respiratory conditions [1].

The integration of AI into medical imaging specifically for pulmonary diseases represents a significant paradigm shift. Deep learning models, particularly convolutional neural networks (CNNs), exhibit remarkable performance in pinpointing subtle abnormalities on chest X-rays and CT scans that might otherwise be overlooked by the human eye [2]. This capability extends to the early detection of lung cancer, precise characterization of interstitial lung diseases, and quantitative assessment of disease severity in conditions like COPD. AI's ability to automate repetitive tasks, minimize inter-observer variability, and expedite the interpretation of large imaging datasets enhances workflow efficiency for both radiologists and pulmonologists [2]. Natural Language Processing (NLP) is also proving to be an invaluable asset for extracting actionable insights from the often unstructured and vast repositories of data found within electronic health records (EHRs) in the field of pulmonology [3]. NLP algorithms are adept at identifying key clinical features, symptoms, diagnoses, medications, and treatment responses pertinent to various respiratory diseases [3]. This advanced capability facilitates the automated phenotyping of patients with complex conditions such as asthma and COPD, provides crucial support for clinical research by identifying eligible trial participants, and assists in the detection of adverse events and pharmacovigilance, ultimately bolstering data-driven clinical decision-making [3].

AI-driven predictive analytics are rapidly emerging as a potent tool for the proactive management of chronic respiratory diseases. By meticulously analyzing a comprehensive range of patient data, encompassing demographics, comorbidities, medication adherence patterns, and historical exacerbation records, AI models can accurately forecast the risk of future exacerbations in individuals diagnosed with COPD and asthma [4]. This predictive foresight enables the implementation of proactive interventions, the development of highly personalized management plans, and the strategic allocation of resources towards high-risk individuals, thereby holding the potential to significantly reduce hospitalizations and enhance the overall quality of life for affected patients [4]. The application of AI in the screening and diagnosis of lung cancer is also progressing at an accelerated pace. AI algorithms are proving adept at assisting in the detection and characterization of pulmonary nodules visualized on low-dose CT scans, thereby improving the accuracy in differentiating between benign and malignant lesions [5]. Moreover, AI can significantly contribute to the staging and prognosis of lung cancer by analyzing critical tumor characteristics and integrating genomic data, leading to enhanced accuracy and efficiency in early detection and the formulation of more personalized treatment strategies [5].

Furthermore, the application of AI in the development of more precise and individualized treatment plans for patients suffering from interstitial lung diseases (ILDs) is becoming increasingly prominent. Machine learning models are capable of analyzing a diverse array of patient data, including detailed imaging features, comprehensive clinical history, and relevant genetic markers, to accurately predict disease progression and anticipate responses to various therapies [6]. This sophisticated analysis allows for the tailoring of treatment regimens to specific individual patient profiles, which has the potential to significantly improve therapeutic efficacy and minimize the occurrence of adverse effects in the management of ILDs [6]. The advent of AI is also markedly enhancing the analysis of pulmonary function tests (PFTs) and other vital physiological data. AI algorithms provide valuable assistance in achieving more accurate interpretations of PFT results and are adept at identifying subtle patterns that are indicative of specific respiratory diseases [7]. Additionally, AI can be effectively utilized to monitor disease progression and assess treatment response by analyzing longitudinal PFT data, thereby furnishing clinicians with objective and actionable insights into a patient's respiratory status [7].

AI is increasingly playing a vital role in the comprehensive management of patients diagnosed with cystic fibrosis (CF). Predictive models are being developed to identify individuals who are at a higher risk of developing lung infections and experiencing exacerbations, which facilitates the implementation of earlier and more aggressive interventions [8]. AI can also provide crucial support in optimizing antibiotic regimens and monitoring patient adherence to treatment protocols, ultimately contributing to improved long-term outcomes for individuals living with CF [8]. The application of AI in the creation of decision support systems for pulmonologists is also gaining significant momentum. These advanced systems are designed to integrate a wide spectrum of patient data, including medical imaging, PFT results, and electronic health records, to furnish evidence-based recommendations for diagnosis, treatment selection, and ongoing management [9]. Such tools are instrumental in standardizing the quality of care, reducing the incidence of diagnostic errors, and empowering clinicians to make more informed and effective decisions, particularly when dealing with complex or rare respiratory conditions [9].

Crucially, the ethical considerations and the establishment of robust regulatory frameworks are indispensable for the responsible and effective implementation of AI within the specialized field of pulmonology. Ensuring stringent data privacy, promoting algorithmic transparency, and proactively addressing any potential biases inherent in AI models are paramount objectives [10]. As AI tools become increasingly integrated into the fabric of clinical practice, the necessity for rigorous validation, continuous performance monitoring, and the clear articulation of guidelines for their appropriate use cannot be overstated. These measures are essential to safeguard patient safety and foster enduring trust in AI-assisted healthcare systems [10].

Conclusion

Artificial intelligence (AI) is revolutionizing pulmonology, enhancing diagnostic accuracy in medical imaging (CT scans, X-rays) and enabling personalized treatment strategies. Machine learning excels at early detection of lung nodules and interstitial lung diseases, while Natural Language Processing (NLP) extracts crucial information from electronic health records for disease phenotyping. AI-powered predictive models forecast disease progression and identify high-risk patients, leading to more efficient care. Deep learning models improve abnormality detection in imaging, and NLP aids in clinical decision-making by analyzing patient data. Predictive analytics help manage chronic respiratory diseases like COPD and asthma by forecasting exacerbations. AI assists in lung cancer screening, nodule characterization, and staging. For interstitial lung diseases, AI tailors treatment plans based on diverse patient data. Pulmonary function tests are more accurately interpreted with AI, aiding disease monitoring. In cystic fibrosis, AI identifies high-risk patients and optimizes treatment. AI-driven decision support systems integrate patient data to provide evidence-based recommendations. Ethical considerations, including data privacy and bias, are paramount for responsible AI implementation in pulmonology.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Abidin, Mohd Nor Azlan Zainal, Pramoon, Yasin, Riaz, Muhammad Usman. "Artificial intelligence in pulmonary medicine: A systematic review." *Respir Med* 195 (2022):106772.
2. Jong, Hsin-Chien, Hsiao, Chung-Yuan, Chang, Chih-Ping. "Artificial intelligence for image analysis in pulmonary diseases: Current challenges and future directions." *Respirology* 28 (2023):1045-1057.
3. Wang, Rui, Chen, Jian, Li, Jing. "The role of natural language processing in advancing respiratory medicine research and clinical care." *JAMA* 326 (2021):1663-1671.
4. Hu, Xiaoxu, Zhang, Guozhu, Wang, Xiaomin. "Predicting exacerbations in COPD using machine learning: A systematic review." *Int J Chron Obstruct Pulmon Dis* 18 (2023):1365-1379.
5. Shen, Yizhen, Chen, Yifan, Li, Kai. "Artificial intelligence in lung nodule detection and characterization: current status and future prospects." *Eur Radiol* 33 (2023):7761-7773.
6. Lee, Jin Mo, Kim, Ji Hyun, Kim, Sung-A. "Artificial intelligence in interstitial lung diseases: a systematic review." *Thorax* 77 (2022):321-330.
7. Kuroda, Masashi, Sato, Akio, Arai, Shingo. "Artificial intelligence applications in pulmonary function testing: A review." *Respir Investig* 59 (2021):114-122.
8. Moran, Anne, Dodd, Sarah, McDonough, Jennifer. "Artificial intelligence and machine learning for cystic fibrosis: a narrative review." *Pediatr Pulmonol* 58 (2023):3073-3084.
9. Gao, Chenyu, Wang, Yifei, Liu, Yuting. "Artificial intelligence-driven clinical decision support systems in respiratory medicine: a systematic review." *BMC Med Inform Decis Mak* 23 (2023):12.
10. Price, Will, Cohen, Isaac G., Vayena, Effy. "Ethical and regulatory considerations for artificial intelligence in healthcare." *NPJ Digit Med* 4 (2021):12.

How to cite this article: Okoye, Samuel. "AI Revolutionizes Pulmonology: Diagnosis to Treatment." *J Lung Dis Treat* 11 (2025):329.

***Address for Correspondence:** Samuel, Okoye, Department of Medicine and Pulmonology, Lagos University Teaching Hospital, Lagos, Nigeria, E-mail: sokoye@lutesh.edu

Copyright: © 2025 Okoye S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Sep-2025, Manuscript No. Idt-25-178455; **Editor assigned:** 04-Sep-2025, PreQC No. P-178455; **Reviewed:** 18-Sep-2025, QC No. Q-178455; **Revised:** 23-Sep-2025, Manuscript No. R-178455; **Published:** 30-Sep-2025, DOI: 10.37421/2472-1018.2025.11.329