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Introduction
The olive tree (Olea europaea L.) is the most important evergreen 

tree in Tunisia with 60 million olive trees covering 1.6 million hectares 
of land, where it is grown traditionally in rain-fed conditions [1]. 
In recent years, there has been a growing interest in olive oil, due to 
its antioxidant and health-improving properties that has led to an 
augmentation in olive production [2,3]. The production of olive oil 
leads to the co-production of large amounts of olive mill wastewaters 
(OMW). The annual olive oil production in the Mediterranean basin 
exceeds two million tones and the respective OMW co-produced may 
exceed 10 million tones. Tunisia, like other arid countries, has to face 
the increase of the scarcity of water [4,5]. Moreover, water of good 
quality is used to irrigate crops more sensitive to water shortage [6,7]. 
In these conditions, the reuse of OMW may lead to higher and more 
consistent levels of olive production, thus minimizing the exploitation 
of fresh water resources. 

Soluble fertilizer phosphates are usually too expensive for 
agriculture in developing countries. Rock phosphates (RP), although 
relatively insoluble, are abundantly found and easily mined. RP does 
not provide P available to plants where the pH of the soil is greater than 
5.5-6 and even under optimal conditions, plant yields are lower than 
those obtained with soluble phosphate [8]. It is well established that RP 
application is not economically feasible, particularly at soil conditions 
characterized by a high P sorption capacity, low cation exchange 
capacity, high pH, low rainfall, low organic matter content and low 
microbial activity [9]. The OMW is a foul smelling acidic wastewater 
composed of water (83–92%), organic matter (4–16%) and minerals 
(1–2%) [10]. The combination of RP and OMW presents an attractive, 

ecologically sound alternative to the intensive use of manufactured P 
fertilizers for subsistence farmers in the developing world. This would 
enable the development of agricultural practices to optimize plant 
growth and production in calcareous soils with low P.

Olive plants are known to form arbuscular mycorrhizal (AM) 
fungi [11,12]. They play an essential role in enhancing plant growth in 
semiarid agro-ecosystem [13]. Their effects were well-documented on 
the enhancement of the phosphorus uptake [14], and on other macro- 
and micro-elements [15]. Mycorrhiza also has a significant role in 
plants protection against pathogens, increasing the resistance of plants 
to drought stress, and improving soil texture [16].

Plant mineral nutrition depends mainly on the phosphorus content 
of soil, which can be assimilated only as soluble phosphate. Hence the 
use of RP as a fertilizer for P-deficient soils has received significant 
interest in recent years since they are natural, inexpensive and available 
fertilizers. However their solubilization rarely occurs in non acidic 
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soils [17]. Physical and chemical weathering of mineral phosphates is 
mainly realised along plant roots in the rhizosphere. This part of soil 
supports large microbial communities that facilitate weathering of 
minerals by producing organic acids, phenolic compounds, protons 
and siderophores [18,19]. The P-solubilizing activity is determined 
by the ability of the microbes to release metabolites such as organic 
acids, which through their hydroxyl and carboxyl groups chelate the 
cations bound to phosphate, the latter being converted to soluble forms 
[20]. Kpomblekou and Tabatabai [21] indicated that P-solubilizing 
capacities of organic acids are highly correlated with the amount of 
OH and COOH groups and their relative positions on the main carbon 
chain. The use of organic acids and phenolic compounds that are 
present in OMW represents a new perspective in RP research and a 
possible solution for the recycling of the OMW. This report suggests 
that agronomic application of OMW with RP enhances the fertilizer 
value of RP especially in alkaline soils where solubilization of RP as 
such is not possible.

Little is known about the efficiency of the direct application of 
Gafsa (Tunisia, West sector) RP on tree growth. A possible long-term 
solubilization of RP could favour their utilization as low external inputs 
for olive trees culture in semi-arid zones. However, the alkaline soils 
are often encountered to the use of RP as fertilizers. This could be 
detrimental to the solubilization of RP [22]. The objectives of this paper 
were: 1) To provide information on the ability of OMW to release P 
from RP after 5 years of agronomic application of OMW and RP. 
2) To study the impact of the potential use of OMW with RP as soil 
amendment on physiological and biochemical changes in olive trees. 
Specific attention was paid to the development of colonisation in the 
olive tree roots. 

Materials and Methods
Field site and sampling

Experimental design used in this work was described previously 
[23]. Briefly, the study area consisted of a field, with trees spaced 12 
× 12 m apart, located in Sidi Bou Ali (Sahel of Tunisia). The climate 
is temperate and semi-arid. The mean annual temperature ranges 
between 17 and 19ºC and the mean annual rainfall between 250 and 
350 mm. Physico-chemical characteristics of the olive trees soil used in 
this study were as follows - pH (H2O): 8.71; sand: 81%; clay: 12%; silt: 
7%; organic C: 0.26%; N: 0.032%; olsen P: 21.57 mg kg-1; exchangeable 
K: 5.04 mg kg-1. 

The experimental design was completely randomised with three 
treatments and three replications (n=3; field plots of 1152 m2). The 
treatments were: (1) M0: 0 m3 ha-1 of OMW+0 kg ha-1 of RP; (2) 
M1PN: 30 m3 ha-1 of OMW+150 kg ha-1 of RP; (3) M2PN: 60 m3 ha-1 

of OMW+150 kg ha-1 of RP. This amendment was realised during 
two successive years. All sampling events included the collection of a 
composite soil sample (0–20 cm deep) from each plot at approximately 
after 5 years of agronomic application of OMW and RP. In the 
laboratory, soil subsamples were sieved (<2 mm) and used for soil 
nitrogen, phosphorus, potassium and fatty acids measurements. Roots 
and leaves were collected at this time. A composite root sample was 
collected from each plot at 10–20 cm depth. The roots were washed 
and were then divided into two fractions, one for fatty acid analysis 
and the other used for soluble carbohydrate measurements. From each 
plot, approximately 100 mature leaves were collected in paper bags 
and stored in a portable ice chest. Once in the laboratory, leaves were 
washed with 0.03% Triton X-100 and rinsed in deionized water.

Soil nitrogen, phosphorus and potassium

Total nitrogen (Ntot) was determined by Kjeldahl digestion [24]. 
Available phosphorus (Pavail) analysis was measured by the method of 
Olsen and Sommers [25]. Exchangeable K (Kexch) was extracted with 
NH4OAC at pH 7 and measured by emission spectroscopy.

Total microbial biomass, AM fungal biomass and 
development of colonisation in the olive tree roots 

Soil FAME 16:1 ω5 and roots FAME 16:1 ω5 were determined 
using the ester-linked fatty acid methyl ester (EL-FAME) method as 
described previously [26]. Briefly, soil (3 g) and root (30 mg) samples 
were treated by methanolic KOH and acetic acid, and then fatty 
acids were extracted by hexane, the suspensions were vortexed and 
centrifuged to separate the phases. The hexane layer was transferred 
to a clean tube, and the hexane was evaporated off, after which FAMEs 
were resuspended in 0.5 ml of hexane-methyl tert-butyl ether (1:1) and 
transferred to a Hewlett-Packard 5890 gas chromatograph equipped 
with a flame ionisation detector and a HP-5MS capillary column 
(95% dimethyl–5% diphenyl polysiloxane, length 30 × 0.25 mm). The 
temperature was programmed to increase from 170 to 270ºC at a rate 
of 5ºC per min. The temperature was increased to 270ºC for 2 min 
between samples in order to clean the column. Individual peaks were 
identified based on the relative retention time of known fatty acids in 
the standard mixture. 

The total amount of extractable FAME was used as indicators of 
total microbial biomass [27]. Soil FAME 16:1 ω5 was used to indicate 
AM fungal biomass [26-28]. Root FAME 16:1 ω5 analysis was used as 
index for the development of AM fungus colonisation in the olive tree 
roots [26-29].

Roots soluble carbohydrate determination

The soluble carbohydrates from composite root samples were 
extracted twice in 80% ethanol at 70ºC [26]. Extracts were dried and 
converted into trimethylsilyl ethers with a silylation mixture made up of 
pyridine, hexamethyldisilazane and trimethylchlorosilane. An aliquot 
of 1 μl of each silylated total extract of the root samples was analyzed 
using a Hewlett-Packard 5890 series II gas chromatograph equipped 
with a flame ionisation detection (FID) system and a HP-5MS capillary 
column (30 m x 0.25 mm). Injector and detector temperatures were 
280ºC and 300ºC, respectively. The following temperature program was 
set: 80ºC for 1 min, followed from 80 to 170ºC at 10ºC/min, from 170 to 
200ºC at 15ºC/min, from 200 to 315ºC at 25ºC/min and finally 315ºC 
for 8 minutes. Data were acquired and processed with the HP (Agilent) 
Chemstation software. Using this program, 23.6 min were required 
to elute the trimethylsilyl derivatives. All reference compounds were 
analyzed in the same way. Identification of individual carbohydrate was 
achieved by comparing their retention times with those of reference 
compounds. The concentration was expressed in µg of carbohydrate 
per mg of roots (µg mg-1). 

Determination of pigment content

A leaf sample (0.5 g) was mashed in a mortar and pestle with 80% 
acetone (v/v), the extract was filtered and centrifuged at 15000 g for 
5 min. The supernatant was collected and read at 663 and 647 nm 
for total chlorophyll, chlorophyll a and chlorophyll b [30]. Data were 
expressed as milligrams per gram fresh weight (FW).

Total polyphenol content

The total polyphenols were extracted according to the method 
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described by Kiritsakis et al. [31] and determined spectrophotometrically 
at 765 nm, using the Folin-Ciocalteu reagent. The concentration of 
total phenol compounds for each extract was calculated on the basis of 
a standard curve obtained using gallic acid as a standard. Results were 
expressed as µg of gallic acid per g of fresh weight (FW).

Statistical analysis

The data obtained were statistically analysed using the SPSS 
statistical software Version 10.0 (SPSS Inc., Chicago, IL, USA). The 
significance of differences between mean values was determined 
by one-way analysis of variance. Duncan’s multiple range test was 
used to compare the means. The significance probability levels of the 
results are given at the P<0.05 level. Sample variability is given as the 
standard error of the mean values. The number of replicates for each 
measurement is provided in the table descriptions and figure legends.

Results and Discussion
Olive mill wastewaters and rock phosphates characterization

OMW samples were acidic (pH 4.7) with a medium conductivity 
(8.3 ds m-1), relatively low amounts of N (0.7 g l-1), P (0.2 g l-1) and 
a moderate amount of K (4.3 g l-1). Analyses by HPLC showed a 
predominance of hydroxytyrosol (167.79 mg kg-1), phenyl acetic acid 
(111.17 mg kg-1), tyrosol (58.23 mg kg-1), m-Coumaric acid (49.75 mg 
kg-1), rosmarinic acid (28.07 mg kg-1), iso- vanillic acid (22.72 mg kg-1), 
3-Hydroxybenzoic acid (21.55 mg kg-1) and moderately quantities of 
catechol (15.52 mg kg-1), caffeic acid (15.37 mg kg-1), oleuropein (11.94 
mg kg-1), vanillic acid (10.49 mg kg-1), (Protocatechuic acid (10.48 mg 
kg-1), syringic acid (9.36 mg kg-1) and ferulic acid (8.33 mg kg-1).

The RP used in this experiment come from Gafsa and is composed 
by 22.19% P2O5, 48.73% CaO, 1.78% SiO2, 0.54% MgO, F 3.79%, 0.45% 
Al2O3, 0.21% Fe2O3, 1.25% Na2O, 0.08% K2O, 6.62% CO2, 1.33% H2O, 
1.41% S, 16 ppm MnO, 434 ppm Zn, 10 ppm Cu, 5 ppm Co [32].

Olive mill wastewaters and rock phosphates effects on soil 
microbial biomass and mineral elements profile 

Results presented in this study demonstrate that the mineral 
elements, especially Pavail and Kexch of soils amended with different 
concentrations of OMW and RP were modified significantly (Figure 1). 
Soil Kexch was higher in the treated soils in comparison with the control. 
These increases are directly caused by the high content of K in the OMW 
and are in agreement with what has been previously observed by several 
authors [33,34]. These K increases are beneficial for crop productivity 
and health according to the different plant requests and uptake efficiency 
and can have ecological and economical advantages avoiding or reducing 
the use of K fertilisers [35,36]. It is important to emphasize that adequate 
K fertilization allows better tolerance to drought, which is very frequent 
under our Mediterranean conditions [37].

Plant mineral nutrition depends mainly on the phosphorus content 
of soil, which can be assimilated only as soluble phosphate. However 
their solubilization rarely occurs in non acidic soils [17]. Several studies 
have shown that microorganisms can increase P availability through 
solubilisation of poorly available phosphates by lowering the pH or 
excreting organic acid anions [18,19-38]. In the present study, the 
smaller concentration of available P in the OMW and RP amended 
soil, compared to the control soil, suggests that amended soil contains 
less microbial biomass. However, the application of the OMW with PR 
to the soil was associated with an increase in the microbial biomass, as 
measured by total amount of extractable FAMEs (Figure 2). Increased 

microbial counts and biomass following OMW application were also 
observed in other studies [39,40]. Thus, the lower P observed in the soil 
amended with OMW and RP could be caused by the free carbonate 
contained in Gafsa RP. The results obtained by Kpomblekou-A and 
Tabatabai [41] confirm that the free carbonate present in RP depresses 
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Figure 1: Soil total nitrogen (A), available phosphorus (B) and exchangeable 
potassium (C) after five years of agronomic application of OMW with RP 
(average ± SE. n=3). Different letters indicate significantly different values at 
P ≤ 0.05 according to Duncan test.
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P solubility. Another explication for the decline in the extractable soil 
P observed in the OMW and RP amended soil can be related to the 
accessory minerals contained in Gafsa RP especially Ca, Mg, Al2O3 and 
Fe2O3, that can interfere with P release from OMW or soil organic-P, 
thereby reducing extractable soil P. According to Kpomblekou-A and 
Tabatabai [41] the presence of Ca and Mg ions (as impurities) in the RP 
must be responsible for the increase in pH of the equilibrium solution 
and must have contributed to the decrease in the P solubility. 

A third factor related to the decrease of soil P after agronomic 
application of OMW with RP could be related to the lower soil FAME 
16:1 ω5 and root FAME 16:1 ω5 (Figure 3). Soil FAME 16:1 ω5 was used 
to indicate AM fungal biomass [27-29] and Root FAME 16:1 ω5 analysis 
was used as index for the development of AM fungus colonisation in 
the olive tree roots [27-30]. Ipsilantis et al. [42] showed that extraradical 
hyphae of AM fungi can hydrolyse organic-P and actively produce 

phosphatase enzymes involved in P release from organic compounds 
in soils. Duponnois et al. [38] indicated that mycorrhizal fungi can 
solubilize RP through excretion of organic acids such as α-ketoglutaric 
acid. This organic compound could exert a selective influence on soil 
microbial communities though a multiplication of α-ketoglutarate 
catabolizing microorganisms. Ouahmane et al. [43] reported that 
substrate induced respiration (SIR) response with carboxylic acids was 
higher in the soil inoculated with AM fungi. In the process of phosphate 
solubilization, among the identified carboxylic acids, dicarboxylic 
(oxalic, tartaric, malic, fumaric, malonic acids) and tricarboxylic acids 
(citric acid) were effective in phosphorus mobilization [44]. AM fungi 
and their associated hyphosphere microflora excreted higher amounts 
of such organic acids [43]. 

Olive mill wastewaters and rock phosphates effects on AM 
fungal biomass and development of colonisation in the olive 
tree roots 

The negative impact of agronomic application of OMW with RP 
on the AM fungal biomass and the development of colonisation in the 
olive tree roots may be related to the higher amount of OMW phenolic 
compounds, which are well known antimicrobial and phytotoxic agents 
[45]. The major phenolic compounds identified in the OMW used in 
this study are hydroxytyrosol, chlorogenic, protocatechuic, tyrosol, 
hydroxyphenyl acetic, 4-Hydroxybenzoic, caffeic, syringic, catechol, 
vanillic, isovanillic, 3-Hydroxybenzoic, oleuropein, p-Coumaric, 
m-Coumaric, o-Coumaric, ferulic, rosmarinic, vanillin, phenyl acetic, 
apigenin and naphtoresorcinol. Martín et al. [46] indicated that the 
application of 2.5 g kg-1 of olive mill dry residue (15 mg kg-1 of phenolic 
content) was enough to decrease root colonisation and the percentage 
of root length colonized with indigenous AM fungi. Vassilev et al. [47] 
have reported that in the case of plants amended with untreated OMW, 
the highest concentration of polyphenols was the most reason for the 
lowest value of AM colonization. Fries et al. [48] indicated that soil 
application of phenolic acids (p-Coumaric acid, hydroxybenzoic acid 
and quercetin) which are considered as a source of OMW biotoxicity 
at high rates, might negatively affect AM colonization and growth of 
sorghum plants. 

Olive mill wastewaters and rock phosphates effects on olive 
tree performance

Agronomic application of OMW with RP decreased significantly 
the concentration of root carbohydrates in M1PN and M2PN 
treatments (Table 1). More specific, in olive trees treated with M2PN, 
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Figure 2: Response of total microbial biomass, as measured by total amount 
of extractable FAMEs, to the agronomic application of OMW with RP (average 
± SE. n=3). Different letters indicate significantly different values at P ≤ 0.05 
according to Duncan test.

a

a

c

b

b

c

0

1

2

3

4

5

6

soil Root

16
:1

ω
5 

(µ
g 

g
-1
 s

oi
l o

r m
g

-1
 ro

ot
) M0

M1PN
M2PN

 
Figure 3: Effect of agronomic application of OMW with RP on the biomass of 
arbuscular mycorrhizal (AM) fungi, as measured by soil fatty acid methyl ester 
(FAME) 16:1 ω5, and on the development of colonisation in the olive trees roots, 
as measured by roots FAME 16:1 ω5 (average ± SE. n=3). Different letters 
indicate significantly different values at P ≤ 0.05 according to Duncan test.

Treatments 

Sugars (µg mg-1) M0 M1PN M2PN

Fructose 2.01 ± 0.37a 1.03 ± 0.31b 0.78 ± 0.24b

Galactose 0.23 ± 0.03a 0.13 ± 0.04b 0.11 ± 0.02b

Glucose 5.57 ± 0.71a 1.94 ± 0.2b 2.11 ± 0.56b

Mannitol 3.39 ± 0.19a 2.46 ± 0.07b 2.42 ± 0.56b

Sorbitol 0.05 ± 0.01a 0.05 ± 0.01a 0.04 ± 0.01a

Sucrose 1.41 ± 0.12a 1.05 ± 0.03b 0.68 ± 0.22c

Total 12.67 ± 0.52a 6.66 ± 0.58b 6.15 ± 1.58b

The effect of OMW treatment was tested with one-way ANOVA (mean value ± 
SE, n=3), and mean values in individual lines followed by the same letter are not 
significantly different at P<0.05 (Duncan test)
Table 1: Effect of agronomic application of OMW with RP on olive tree root-
soluble carbohydrates (M0: 0 m3 ha-1 of OMW+0 kg ha-1 of RP, M1PN: 30 m3 ha-1 

of OMW+150 kg ha-1 of RP and M2PN: 60 m3 ha-1 of OMW+150 kg ha-1 of RP).
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sucrose and mannitol decreased by 52% and 29% respectively, which 
indicates that C allocation to the root system was affected following 
agronomic application of OMW with RP. The application of OMW 
with RP caused also a significant decrease in the glucose, fructose and 
galactose contents, whereas no significant differences were found in the 
amount of sorbitol (Table 1).

AM fungi colonization results in an enhanced “sink” demand 
for carbon in roots [49]. This sink effect could account for an extra 
drain 10-23% of carbon from the host by the AM fungus [50]. To our 
knowledge the decreased root colonisation observed after agronomic 
application of OMW with RP might have decreased the translocation 
of sucrose and mannitol to roots in OMW and RP amended olive trees, 
thus reducing the root carbohydrate level. It is known that sucrose 
and mannitol are the principal photosynthetic products and the major 
phloem-translocated carbohydrates in Olea europaea [51,52].

The decrease in the concentration of root glucose and fructose in 
M1PN and M2PN treatments may have been caused by the decline in 
root sucrose level due to the decreased root colonisation. Probably the 
decreased sucrose allocation to olive tree roots in M1PN and M2PN 
treatments was associated with a reduction of the activities of sucrose 
synthase and invertase, which in turn, could affect the amount of 
glucose and fructose in olive tree roots amended with OMW and RP. 
It is known that sucrose is cleaved by sucrose synthase and invertase of 
plant origin to glucose and fructose [53]. The sucrose-cleaving enzymes 
of plants are crucial for development, growth and carbon partitioning 
[53]. The effect of agronomic application of OMW and RP on sucrose 
synthase and invertase activities should be examined in further studies.

Agronomic application of OMW with RP has significantly affected 
the amount of total chlorophyll, chlorophylls a and b in the olive 
tree leaves (Figure 4). These data are consistent with those of Mekki 
et al. [54], who reported that OMW caused a significant reduction of 
chlorophylls a and b for tomato, chickpea, beans, wheat and barley. 
Ouzounidou et al. [55] reported that the significant loss of chlorophyll 
content in the OMW treated plants (Lycopersicon esculentum), may be 
attributed to the interference of the toxic substances present in OMW 
in the formation of chlorophyll. Recently, Asfi et al. [56] indicated 
that the decrease in chlorophyll content after OMW application could 
not be due to inhibition of plant growth, but to a combined effect of 
pigment degradation and biosynthesis impairment. 

Many environmental conditions that cause oxidative stress are 
associated with the induction of phenylpropanoid metabolism in 
plants [57]. This suggests that phenolics are involved in protection 
against oxidative stress under adverse environmental conditions. El 
Hadrami et al. [58] suggested that the phytotoxicity effect of OMW 
on fertirrigated crops results in an oxidative stress. In our study, a 
significant increase of total polyphenol was observed in M1PN and 
M2PN treatments (Figure 5). Changes in olive leaf total phenol content 
have been observed in various environmental stresses and it was 
claimed that phenolics acted as antioxidants [59-61].

Conclusions
In summary, the use of OMW in combination with RP, to mobilise 

P from RP to olive trees, are expected to have a major negative impact 
on the available soil P and the olive tree performance. This study 
indicates that agronomic application of OMW with RP may reduce 
the carbon pathway via mycorrhizal fungi, and that this may lead to 
the loss of carbon from ecosystems due to less formation of stable 
mycorrhizal carbon pools.
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