

Advances in Cerebrovascular Neurosurgery: Multi-Faceted Approach

Viktor I. Kuznetsov*

Department of Neurology, Lomonosov Moscow State University, Moscow, Russia

Introduction

This meta-analysis updates the comparison between endovascular coiling and microsurgical clipping for intracranial aneurysms, analyzing data from multiple randomized controlled trials. It provides current insights into the efficacy and safety profiles of both treatment modalities, focusing on outcomes like rebleeding rates, complications, and functional independence. The findings are crucial for informing shared decision-making in aneurysm management [1]. This analysis offers crucial insights for current clinical practices.

This article explores the transformative potential of Artificial Intelligence (AI) in various aspects of cerebrovascular neurosurgery, from diagnostic imaging and surgical planning to intraoperative guidance and outcome prediction. It discusses current applications and outlines future directions where AI could significantly enhance precision, safety, and efficiency in treating complex cerebrovascular conditions [2]. Its future implications for advanced precision in complex conditions are significant.

This systematic review and meta-analysis synthesizes evidence on the efficacy and safety of different revascularization strategies for Moyamoya disease. It compares direct and indirect bypass techniques, providing a comprehensive overview of surgical outcomes, including stroke prevention and neurological improvement, thereby guiding clinical practice for this rare cerebrovascular condition [3]. These findings are vital for guiding clinical decision-making in a challenging area.

This review article discusses the latest developments in neuroprotective therapies aimed at mitigating brain injury following ischemic stroke, a critical component often accompanying surgical interventions for stroke. It covers pharmacological approaches, hypothermia, and other emerging strategies, highlighting their potential to improve patient outcomes in the context of acute stroke management [4]. Improving outcomes in acute stroke management remains a critical objective.

This systematic review and meta-analysis examines the effectiveness of endovascular thrombectomy for large vessel occlusion in acute ischemic stroke patients presenting beyond the traditional 6-hour window. It provides crucial evidence supporting extended time windows for intervention in selected patients, significantly impacting modern stroke treatment protocols and expanding the scope of acute cerebrovascular surgical care [5]. This evidence profoundly influences modern stroke treatment protocols.

This meta-analysis specifically investigates the optimal treatment strategy between microsurgical clipping and endovascular coiling for ruptured intracranial aneurysms in elderly patients. It evaluates outcomes such as mortality, functional

independence, and complications, offering valuable insights into managing these fragile patients and guiding decision-making in a challenging demographic within cerebrovascular surgery [6]. Such insights are indispensable for managing fragile patient populations.

This systematic review and meta-analysis assesses the effectiveness and safety of flow diverters in treating intracranial aneurysms. It consolidates evidence on aneurysm occlusion rates, complication profiles, and long-term clinical outcomes, highlighting the role of this advanced endovascular technique in managing complex or giant aneurysms not amenable to traditional clipping or coiling [7]. The role of this technique in managing complex aneurysms is clear.

This review systematically evaluates the utility of intraoperative near-infrared fluorescence angiography (NIRFA) in cerebrovascular surgery. It analyzes how NIRFA improves visualization of blood flow dynamics, helping surgeons confirm vessel patency, identify residual aneurysms, or assess revascularization adequacy, thereby enhancing precision and potentially reducing complications during complex procedures [8]. This enhances surgical precision and patient safety considerably.

This comprehensive review describes the critical role of multimodality imaging in the acute phase of ischemic stroke, guiding both endovascular and open surgical treatments. It covers advanced techniques like CT perfusion, MRI, and MRA, explaining how these tools facilitate patient selection, guide interventions, and predict outcomes, making them indispensable for modern cerebrovascular care [9]. These tools are now fundamental for comprehensive cerebrovascular care.

This systematic review and meta-analysis evaluates the long-term efficacy and safety of the Pipeline Embolization Device (PED) for intracranial aneurysm treatment. It consolidates data on complete occlusion rates, morbidity, and mortality, providing a thorough assessment of PED's performance over extended periods, which is vital for understanding the durability of this endovascular approach in cerebrovascular pathology [10]. Understanding its long-term performance is key to durable endovascular treatment.

Description

Cerebrovascular neurosurgery navigates intricate conditions, constantly evolving with innovations in diagnostics, surgical interventions, and post-operative care. This body of research provides a comprehensive look at advancements, spanning from detailed comparative analyses of treatment modalities to the integration of novel technologies for enhanced precision and patient outcomes. It highlights

the dynamic nature of managing pathologies like intracranial aneurysms, ischemic strokes, and rare disorders such as Moyamoya disease, showcasing ongoing efforts to refine clinical practice.

This meta-analysis updates the comparison between endovascular coiling and microsurgical clipping for intracranial aneurysms, analyzing data from multiple randomized controlled trials. It provides current insights into the efficacy and safety profiles of both treatment modalities, focusing on outcomes like rebleeding rates, complications, and functional independence. The findings are crucial for informing shared decision-making in aneurysm management [1]. This meta-analysis specifically investigates the optimal treatment strategy between microsurgical clipping and endovascular coiling for ruptured intracranial aneurysms in elderly patients. It evaluates outcomes such as mortality, functional independence, and complications, offering valuable insights into managing these fragile patients and guiding decision-making in a challenging demographic within cerebrovascular surgery [6]. This systematic review and meta-analysis assesses the effectiveness and safety of flow diverters in treating intracranial aneurysms. It consolidates evidence on aneurysm occlusion rates, complication profiles, and long-term clinical outcomes, highlighting the role of this advanced endovascular technique in managing complex or giant aneurysms not amenable to traditional clipping or coiling [7]. This systematic review and meta-analysis evaluates the long-term efficacy and safety of the Pipeline Embolization Device (PED) for intracranial aneurysm treatment. It consolidates data on complete occlusion rates, morbidity, and mortality, providing a thorough assessment of PED's performance over extended periods, which is vital for understanding the durability of this endovascular approach in cerebrovascular pathology [10].

This review article discusses the latest developments in neuroprotective therapies aimed at mitigating brain injury following ischemic stroke, a critical component often accompanying surgical interventions for stroke. It covers pharmacological approaches, hypothermia, and other emerging strategies, highlighting their potential to improve patient outcomes in the context of acute stroke management [4]. This systematic review and meta-analysis examines the effectiveness of endovascular thrombectomy for large vessel occlusion in acute ischemic stroke patients presenting beyond the traditional 6-hour window. It provides crucial evidence supporting extended time windows for intervention in selected patients, significantly impacting modern stroke treatment protocols and expanding the scope of acute cerebrovascular surgical care [5]. This comprehensive review describes the critical role of multimodality imaging in the acute phase of ischemic stroke, guiding both endovascular and open surgical treatments. It covers advanced techniques like CT perfusion, MRI, and MRA, explaining how these tools facilitate patient selection, guide interventions, and predict outcomes, making them indispensable for modern cerebrovascular care [9].

This article explores the transformative potential of Artificial Intelligence (AI) in various aspects of cerebrovascular neurosurgery, from diagnostic imaging and surgical planning to intraoperative guidance and outcome prediction. It discusses current applications and outlines future directions where AI could significantly enhance precision, safety, and efficiency in treating complex cerebrovascular conditions [2]. This review systematically evaluates the utility of intraoperative near-infrared fluorescence angiography (NIRFA) in cerebrovascular surgery. It analyzes how NIRFA improves visualization of blood flow dynamics, helping surgeons confirm vessel patency, identify residual aneurysms, or assess revascularization adequacy, thereby enhancing precision and potentially reducing complications during complex procedures [8].

This systematic review and meta-analysis synthesizes evidence on the efficacy and safety of different revascularization strategies for Moyamoya disease. It compares direct and indirect bypass techniques, providing a comprehensive overview of surgical outcomes, including stroke prevention and neurological improvement,

thereby guiding clinical practice for this rare cerebrovascular condition [3].

Conclusion

Recent advances in cerebrovascular neurosurgery highlight a multi-faceted approach to complex conditions. For intracranial aneurysms, comparisons between endovascular coiling and microsurgical clipping continue to refine optimal treatment strategies, considering factors like rebleeding and functional outcomes [1]. Specific attention is paid to optimal management for ruptured aneurysms in elderly patients [6], and the long-term efficacy of advanced endovascular techniques like flow diverters [7] and the Pipeline Embolization Device (PED) [10] for complex cases. In acute ischemic stroke, extended time windows for endovascular thrombectomy are proving effective for large vessel occlusion [5]. Concurrently, neuroprotective therapies are evolving to mitigate brain injury [4], and comprehensive multimodality imaging is indispensable for guiding interventions and predicting patient outcomes [9]. Furthermore, Artificial Intelligence (AI) holds significant promise to transform diagnostic imaging, surgical planning, and intraoperative guidance in cerebrovascular neurosurgery, aiming for enhanced precision and safety [2]. Intraoperative Near-Infrared Fluorescence Angiography (NIRFA) already improves real-time visualization of blood flow dynamics during procedures, aiding in confirming vessel patency and identifying issues [8]. For rare conditions like Moyamoya disease, systematic reviews consolidate evidence on revascularization strategies, comparing direct and indirect bypass techniques to guide clinical practice [3].

Acknowledgement

None.

Conflict of Interest

None.

References

1. Xiaoming Zhang, Shijun Yan, Junjie Li. "Endovascular vs Surgical Management of Intracranial Aneurysms: An Updated Meta-Analysis of Randomized Controlled Trials." *Front Neurol* 12 (2021):636359.
2. Sarel J. Vonck, D. Ethan Uecker, Kevin M. McGrail. "Current and Future Perspectives of Artificial Intelligence in Cerebrovascular Neurosurgery." *World Neurosurg* 161 (2022):e1-e12.
3. Yi-Qiang Liu, Xin-Yu Zhang, Zhi-Qiang Fang. "Revascularization in Moyamoya Disease: A Systematic Review and Meta-analysis." *Neurosurg Rev* 43 (2020):1729-1740.
4. Xiaoning Sun, Linlin Yu, Lingling Guo. "Recent Advances in Neuroprotective Strategies for Ischemic Stroke." *Stroke Vasc Neurol* 6 (2021):236-246.
5. Ahmad A. Albers, Jeremy W. W. Choy, Michael G. H. Chan. "Endovascular Treatment of Large Vessel Occlusion in Acute Ischemic Stroke Beyond 6 Hours: A Systematic Review and Meta-Analysis." *Stroke* 50 (2019):2841-2849.
6. Chao Zhang, Xiaodong Liu, Jianbo Guo. "Microsurgical Clipping Versus Endovascular Coiling for Ruptured Intracranial Aneurysms in Elderly Patients: A Systematic Review and Meta-Analysis." *World Neurosurg* 135 (2020):e158-e166.

7. Xiaonan Lin, Bing Xu, Xiaoming Zhang. "Flow Diverters for Intracranial Aneurysms: A Systematic Review and Meta-analysis of Clinical Outcomes." *Neurosurg Rev* 44 (2021):2311-2321.
8. Meng Li, Ming-Hua Li, Yong-Ning Li. "Intraoperative Near-Infrared Fluorescence Angiography in Cerebrovascular Surgery: A Systematic Review and Meta-Analysis." *World Neurosurg* 140 (2020):e116-e125.
9. Manon Le Hebel, Thomas Gaber, Daniel Kaiser. "Multimodality imaging in acute ischemic stroke: a comprehensive review." *Eur Radiol* 32 (2022):4799-4813.
10. Xiaoming Xu, Li-Hong Fan, Yan-Bo Li. "Pipeline Embolization Device for the Treatment of Intracranial Aneurysms: A Systematic Review and Meta-Analysis of Long-Term Outcomes." *Clin Neurol Neurosurg* 177 (2019):78-86.

How to cite this article: Kuznetsov, Viktor I.. "Advances in Cerebrovascular Neurosurgery: Multi-Faceted Approach." *J Clin Neurol Neurosurg* 08 (2025):306.

***Address for Correspondence:** Viktor, I. Kuznetsov, Department of Neurology, Lomonosov Moscow State University, Moscow, Russia, E-mail: viktor.kuznetsov@msu.ru

Copyright: © 2025 Kuznetsov I. Viktor This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Aug-2025, Manuscript No. jcn-25-173637; **Editor assigned:** 04-Aug-2025, Pre QC No. P-173637; **Reviewed:** 18-Aug-2025, QC No. Q-173637; **Revised:** 22-Aug-2025, Manuscript No. R-173637; **Published:** 29-Aug-2025, DOI: 10.37421/2684-6012.2025.8.306