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Abstract
Significant advances have been made to understand the association between ALK genetic aberrations and disease 

prognosis in neuroblastoma. ALK targeted therapies are evolving quickly and several randomized controlled trials of ALK 
inhibitors are underway or nearing completion in adult cancers. Ongoing research will bring new challenges and newer 
technologies to fully define the pathogenic and prognostic alterations, to stratify the risk of recurrence or progression, 
and to develop optimal monitoring and treatment strategies in this malignancy.
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Introduction
Neuroblastoma is the most common extracranial solid tumor 

originating from the sympathoadrenal lineage of the neural crest. It 
has extensive pathologic and molecular heterogeneity which decides 
the significant clinical diversity from spontaneous regression to highly-
aggressive and drug resistant metastatic disease. Although multimodal 
chemotherapy/radiotherapies/immunotherapy significantly improves 
patient survival during the last few decades, some patients will continue 
to relapse and die of this malignancy because of de novo or acquired 
drug resistance, especially for high-risk neuroblastoma patients [1,2].

Over the last decades, concerted efforts have been made to identify 
oncogenic alterations in subsets of neuroblastoma, such as molecular 
alterations of MYCN, anaplastic lymphoma kinase (ALK), paired-like 
homeobox 2B (PHOX2B), etc. [3-6]. Next-generation sequencing-based 
genomic profiling identified the most frequent alterations including 
MYCN (26.5%), ALK (17.8%), ATRX (6.5%), CDKN2A (4.8%) and 
RPTOR (4.8%) in 230 neuroblastoma patient samples [7]. Both ALK 
and MYCN genes are located in chromosome 2p, a chromosomal 
alteration identified as a statistically significant prognostic factor [8]. 
It has been shown that ALK and MYCN drive tumor malignancy 
cooperatively. Activation of ALK increases the expression of MYCN by 
enhancing the activity of the MYCN promoter and stabilizing MYCN 
protein likely via activation of AKT and ERK pathways [9-11]. In vivo, 
compared to ALKF1174L and MYCN alone, co expression of these two 
oncogenes leads to the development of neuroblastoma tumors with 
earlier onset, higher penetrance and enhanced lethality [10,12,13]. 
In our recent study, neuroblastoma cells harboring both ALKF1174L 
mutation and MYCN amplification showed less responsive to an ALK 
inhibitor, crizotinib, comparing to other variants [14]. Understanding 
those tumor-specific, oncogenic driver mutations would provide 
further insight into the biology of this disease and transformed our 
treatment strategy into the era of precision medicine.

ALK Variants in Neuroblastoma
Among all those identified oncogenic mutations, ALK is one of 

the well-studied druggable molecular targets. ALK was first discovered 
in 1994 as a fusion protein with nucleophosmin (NPM) in a subset of 
anaplastic large-cell lymphomas (ALCLs) as a result of t (2; 5) (p23; q35) 
chromosomal translocation [15]. In 2007, ALK gene rearrangements 
were reported in a subset of patients with non-small cell lung cancer 
(NSCLC) [16]. Since then, ALK mutations have been regarded 

as oncogenic mutations. More mutations of ALK gene have been 
reported in different cancer types, including NSCLC, inflammatory 
myofibroblastic tumors, colon cancer, renal cell carcinoma, breast 
carcinoma and esophageal cancer [17]. In 2008, several groups 
discovered ALK mutations, including germline missense mutations and 
somatically acquired mutations, in high-risk neuroblastoma patients 
[18-20]. They also found that mutated kinases were autophosphorylated 
and displayed increased kinase activity compared with the wild-type 
ALK.

So far, more than 35 ALK variants have been detected in 
neuroblastoma, predominantly point mutations [21], with fewer cases 
of truncated extracellular domain [22,23] and BEND5-ALK fusion 
protein [7]. ALK mutations are found in almost all cases of familial 
neuroblastoma (<2% of all neuroblastoma) [24]. There are three 
most common pathogenic variants ALKR1275Q, ALKG1128A and 
ALKF1174L identified in familial neuroblastoma patients, among 
which ALKR1275Q accounts for 45% of ALK germline mutation [4,18]. 
ALK mutations have also been reported in about 6-10% of sporadic 
neuroblastoma cases [25]. 12 different ALK active mutations have been 
reported in sporadic neuroblastoma, including two most common ALK 
variants, ALKF1174L and ALKR1275Q [26]. Most of these pathogenic 
variants are found within the tyrosine kinase domain of ALK and cause 
constitutive autophosphorylation and activation of the ALK protein 
and downstream cellular pathways, including the MAPK and RAS-
related protein 1 signal pathways [9,27]. The PI3K (phosphatidylinositol 
3-kinase)/Akt [10] and the JAK/STAT (Janus activated kinase/signal
transducer and activator of transcription) pathways [28].

ALK Targeted Agents in Neuroblastoma
In 2011, crizotinib (PF-02341066, Xalkori) became the first FDA-

approved ALK inhibitor for ALK-positive NSCLC based on strong 
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clinical response data [29]. It is an oral small-molecule tyrosine 
kinase inhibitor, originally developed as a c-MET inhibitor and later 
found an inhibitor for ALK phosphorylation [30,31]. In vitro studies 
demonstrated that crizotinib is potent in neuroblastoma cell lines 
with ALK amplification or the R1275Q mutation, one of the most 
common ALK variants in neuroblastoma [32]. Whereas cells bearing 
ALKF1174L mutation are relatively crizotinib-resistant [18,19,33,34]. 
In vivo, crizotinib treatment causes complete and sustained regression 
of xenografts with ALKR1275Q mutation, but it has limited effects on 
the growth of ALKF1174L-positive tumors [21]. Crizotinib has been 
tested in Phase I clinical trial for the treatment of pediatric solid tumors 
and it is currently being tested in a subset of neuroblastoma bearing 
ALK mutations and rearrangements [35].

Same as other tyrosine kinase inhibitors, crizotinib invariably loses 
its potency and drug resistance emerges after initial successful crizotinib 
treatment. Crizotinib resistance may develop in multiple tumor types 
as a consequence of secondary mutations in the ALK tyrosine kinase 
domain, the activation of other bypass pathways, or amplification of the 
ALK locus [36,37].

Epithelial-mesenchymal transition (EMT) also contributes to 
resistance to crizotinib in lung cancer cells [38], especially for second-
generation ALK inhibitors [39]. In neuroblastoma, ALKF1174L mutation 
serves as a common cause of resistance to crizotinib, due to the increased 
ATP-binding affinity of this mutant [40]. ALK F1174L mutation also 
causes resistance to other ALK inhibitors. Acquired resistance to TAE684 
and LDK378 was observed in ALKF1174 mutant human neuroblastoma 
cells, which is associated with AXL activation and induction of EMT 
[41]. Some other mechanisms could also regulate the sensitivity of 
ALK inhibitors in neuroblastoma. A recent study with genome-wide 
microRNA profiling identified that microRNAs, miR-424-5p and miR-
503-5p, were involved in regulating ALK expression, which may serve 
as potential therapeutic tools in ALK dependent neuroblastoma [42]. In 
some cases, crizotinib resistance may also arise from pre-existing minority 
cell populations with drug resistance due to intratumor heterogeneity 
in neuroblastoma tumors. Yan et al. [43] identified a subpopulation of 
neuroblastoma cells that are insensitive to the ALK kinase inhibitor. These 
cells have Schwann cell–like features, possess unique signaling profiles, 
but express the undetectable level of ALK. Treatment of SK-N-SH with an 
ALK kinase inhibitor TAE684 results in the outgrowth of the S-type cells. 
These TAE684-resistant S-type cells are also believed to protect N-type 
cells against the apoptotic effect of an ALK kinase inhibitor through 
upregulating prosurvival signaling [43].

In order to settle crizotinib resistance, several other ALK inhibitors, 
including ceritinib, brigatinib (AP26113), alectinib, lorlatinib (PF-
6463922), ensartinib (X-396), entrectinib (RXDX- 101), and belizatinib 
(TSR 011), have been developed in clinical use for adult patients [44,45].

Among those ALK inhibitors, only ceritinib and lorlatinib have 
been tested in clinical trials for pediatric patients. Ceritinib was 
approved by FDA in 2014 for the treatment of patients with ALK-
positive lung cancer who relapse after first-line therapy [46]. It 
overcomes some crizotinib- resistant mutations, but ALK tumors 
harboring the ALKF1174L mutation still exhibit resistance to ceritinib 
[47,48]. Lorlatinib, as a selective next-generation ROS1/ALK inhibitor, 
has high potency across ALK variants, ALKR1275Q, ALKF1174L and 
ALKF1245C mutations. It induces complete tumor regression in both 
crizotinib-resistant and crizotinib-sensitive neuroblastoma xenograft 
models, as well as in patient-derived xenografts [45]. A new ALK/
IGF1R inhibitor AZD3463 was designed by AstraZeneca to overcome 
the acquired resistance to crizotinib.

This new drug suppressed cell proliferation of neuroblastoma 
cell lines with wild type ALK as well as ALK activating mutations 
(ALKF1174L and ALKD1091N) by blocking the ALK-mediated 
PI3K/AKT/mTOR pathway. In addition, AZD3463 also exhibited 
significant therapeutic effects on the growth of the NB tumors bearing 
an ALKF1174L mutation in orthotopic xenograft mouse models 
[47]. Most recently, A novel ALK inhibitor alectinib (5-chloro-2,4-
diaminophenylpyrimidine) has been tested in neuroblastoma preclinical 
models and showed substantial inhibitory effects against tumors with 
ALK mutations, including ALKL1152R, ALKF1174L and ALKD1091N 
[49,50]. Although the new generation ALK inhibitors overcome 
crizotinib-resistant ALK mutations, patients almost invariably relapse. 
Genotype assessment of repeat biopsies from ALK-positive patients 
progressing on various ALK inhibitors revealed that only a minority 
of ALK-positive patients (∼20%) developed ALK resistance mutations 
on crizotinib, while ALK resistance mutations were present in over 
one-half of patients progressing on second-generation ALK inhibitors. 
Also, the spectrum of ALK mutations was different following second-
generation ALK inhibitors compared to crizotinib [39]. New and 
alternative approaches are required to tackling drug resistance against 
ALK inhibitors.

Combined Therapy with ALK Inhibitors
One of the mechanisms by which cancer cells evade kinase 

inhibitor-induced apoptosis is to switch to alternative signaling 
pathways. Combinatorial approaches to inhibit multiple kinases 
could be a therapeutic possibility to reverse drug resistance acquired 
from activation of bypass pathways. To overcome the drug resistance 
secondary to ALK inhibitors, Krytska et al. [51] combined crizotinib 
with the chemotherapeutic agents and showed increased cytotoxic 
effects comparing to crizotinib or chemotherapy alone in vitro. 
Combined therapy also restored sensitivity in preclinical models 
harboring ALK aberrations (both mutation and amplification). Hypoxia 
regulates tumor cell proliferation, migration and invasiveness through 
the expression of a group of transcription factors called hypoxia-
inducible factors (HIFs) [52,53]. It has been demonstrated that ALK 
specifically regulates HIF-1α expression under hypoxia conditions in 
both ALCL and NSCLC [54]. Topotecan, especially daily metronomic 
topotecan, induces oxidative stress and down-regulates HIF-1 alpha 
expression in cancer cells [55-57]. In our recent study, single-agent 
crizotinib showed limited anti-tumor activity in ALKF1174L-mutated 
neuroblastoma xenograft models, however when combined with 
topotecan, significantly delayed tumor development was achieved. 
This anti-tumor activity was achieved through targeting of this hypoxia 
related pathway. In addition, relapsed tumors remained responsive to 
combined therapy [14]. Synergistic antitumor activities have also been 
observed when combining ALK inhibitor ceritinib with a dual inhibitor 
of cyclin-dependent kinase CDK4 and CDK6 [58] or with an MDM2 
inhibitor NVP-CGM097 which targets p53 for proteasome-mediated 
degradation [59].

Future Directions – Precision Medicine in Neuroblas-
toma

Targeted agents for different ALK variants improved clinical 
outcomes over the last few years, with newer agents rapidly entering 
clinical practice. However, ALK genetic alterations are not routinely 
evaluated in neuroblastoma standard clinical practice. Newer 
technologies are being introduced to fully define the pathogenic and 
prognostic impact of ALK alterations in neuroblastoma, as well as 
the emerging importance for therapeutic purposes. Lodrini et al. [60] 
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established droplet digital PCR (ddPCR) protocols for MYCN and ALK 
copy number status in cell-free neuroblastoma-derived DNA isolated 
from plasma of neuroblastoma patients. They accurately discriminated 
between MYCN and ALK amplification, gain and normal diploid 
status in conditioned culture medium, mouse plasma from xenograft 
models, as well as NB patient plasma [60]. Tucker et al. [61] used ALK 
immunoassays to detect ALK and phosphorylated ALK and revealed 
a quantitative difference in on-target pharmacodynamic changes 
between a first- and second-generation ALK inhibitor, crizotinib and 
ceritinib, which will potentially become a valuable tool in preclinical 
and clinical evaluation in defining active doses and optimum treatment 
schedules [61].

Precision medicine has become a new model of health care aimed 
at tailoring therapies to an individual’s genetic profile. As technologies 
and therapies improve, retrospective and prospective studies of 
cohorts of neuroblastoma patients are being required to incorporate 
genetic analyses into clinical practice beyond diagnostic purposes. A 
retrospective study by Padovan-Merhar et al. [62] defined the frequency 
of genomic alterations by gene panel sequencing in neuroblastoma 
patients, both at diagnosis and after chemotherapy and showed a higher 
frequency of ALK mutations in relapsed disease than at diagnosis. 
Suspected driver ALK variants were present in 3/43 (7.0%) of samples 
at diagnosis, 7/41 (17%) post-treatment samples, and in 11/54 (20%) 
of samples at relapse. The same trend was observed in some other 
tumor-related genes, particularly for the alterations in the RAS/MAPK 
pathway, in relapsed high-risk neuroblastoma [62].

Conclusion
A better understanding of the switch to alternative signaling 

pathways will lead to strategies to bypass drug resistance. This proof 
of principle may also apply to other genetic alterations such as 
MYCN, NRAS, NTRK2/TrkB, etc. Given the growing number of 
genetic alterations detected, small sequencing panels that focus on 
a limited number of genes may not be sufficient, especially in highly 
heterogeneous neuroblastoma tumors. Further improvements in 
next-generation sequencing technologies are expected to allow the 
evaluation of genetic variants across the entire genome, which is also a 
more straightforward strategy for mapping mutations.

The molecular profile of each individual patient at different stages 
of treatment will inform physicians the detailed genetic condition 
and enable personalized targeted therapeutic interventions in specific 
subsets of neuroblastoma patients.
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