

# Advancements in Lung Cancer Precision Therapies

Hannah McGregor\*

Department of Pulmonary Medicine, Edinburgh Clinical Research Hospital, Edinburgh, UK

## Introduction

Recent advances highlight the growing role of immune checkpoint inhibitors (ICIs) in early-stage non-small cell lung cancer (NSCLC). These therapies, including nivolumab and pembrolizumab, are showing promise in adjuvant and neoadjuvant settings, improving disease-free survival and pathological complete response rates. Understanding patient selection, optimal sequencing, and managing potential toxicities remains crucial for integrating ICIs effectively into treatment paradigms[1].

Targeted therapies have revolutionized the treatment of advanced non-small cell lung cancer, particularly for patients with actionable mutations like EGFR, ALK, ROS1, and BRAF. This review emphasizes the evolving landscape, with new generations of TKIs demonstrating superior efficacy and improved central nervous system penetration. It also explores emerging targets and resistance mechanisms, guiding personalized treatment strategies[2].

Small cell lung cancer (SCLC) remains a challenging disease with limited treatment options, but recent years have seen modest advancements. The integration of immune checkpoint inhibitors, particularly in combination with chemotherapy, has shown survival benefits for a subset of patients. This comprehensive review summarizes the current therapeutic landscape, including new insights into maintenance therapies and strategies for relapsed disease[3].

Liquid biopsies are transforming lung cancer management by offering non-invasive methods for diagnosis, monitoring, and resistance detection. This review highlights the utility of circulating tumor DNA (ctDNA) for identifying actionable mutations, assessing treatment response, and detecting minimal residual disease earlier than conventional imaging. Its clinical integration promises more agile and personalized patient care[4].

Radiotherapy, particularly stereotactic body radiation therapy (SBRT), is crucial in lung cancer, from curative intent in early-stage disease to palliation in advanced settings. This article discusses advancements in precision radiation techniques that minimize toxicity while maximizing tumor control. It also explores combinations with systemic therapies, aiming to enhance treatment efficacy and overcome resistance[5].

The field of precision medicine in lung cancer is expanding rapidly, moving beyond common mutations to include rarer genomic alterations. This review explores the clinical impact of identifying and targeting mutations in genes like MET, HER2, KRAS G12C, and RET rearrangements, which traditionally lacked specific treatments. The focus is on drug development and the importance of comprehensive genomic profiling[6].

Early detection and screening for lung cancer, particularly with low-dose computed

tomography (LDCT), remain critical for improving survival rates. This article evaluates the current guidelines and effectiveness of LDCT screening programs, addressing issues like patient eligibility, false positives, and the need for organized implementation strategies. It also touches on ongoing research to refine screening protocols[7].

The tumor microenvironment (TME) plays a significant role in lung cancer progression and response to therapy. This review delves into the complex interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix. Understanding the TME offers new avenues for therapeutic intervention, particularly for developing combination strategies that target both cancer cells and their supporting environment[8].

Over the past five years, the management of stage III non-small cell lung cancer (NSCLC) has evolved significantly, particularly with the integration of immunotherapy post-chemoradiation. This article reviews the shift from traditional concurrent chemoradiotherapy to a more multimodal approach, emphasizing the role of durvalumab and other novel agents in improving progression-free and overall survival for locally advanced disease[9].

Genomic profiling is now indispensable for guiding treatment decisions in NSCLC, extending beyond initial diagnosis to monitor response and detect resistance. This review underscores the importance of comprehensive testing methods, including next-generation sequencing, for identifying a broad spectrum of actionable mutations and fusion genes. It highlights how personalized medicine, driven by detailed genomic insights, optimizes patient outcomes[10].

## Description

Lung cancer treatment has seen remarkable transformations, particularly in Non-Small Cell Lung Cancer (NSCLC). For early-stage disease, the advent of Immune Checkpoint Inhibitors (ICIs) such as nivolumab and pembrolizumab represents a significant leap forward. These therapies are actively being integrated into adjuvant and neoadjuvant strategies, demonstrating notable improvements in disease-free survival and pathological complete response rates. The success of ICIs, however, hinges on careful patient selection and expert management of potential toxicities to ensure their effective application within current treatment models [1]. Meanwhile, in the realm of advanced NSCLC, targeted therapies have truly revolutionized patient care. These treatments are specifically designed for patients whose tumors harbor actionable mutations, including well-known drivers like EGFR, ALK, ROS1, and BRAF. The landscape is continuously evolving, with newer generations of Tyrosine Kinase Inhibitors (TKIs) offering superior efficacy and enhanced ability to penetrate the central nervous system, leading to more precise and personalized treatment strategies [2]. Even for Small Cell Lung Cancer (SCLC), a particularly

aggressive form of the disease, there have been modest yet crucial advancements. The strategic incorporation of ICIs alongside traditional chemotherapy has yielded survival benefits for a subset of patients. This includes valuable insights into optimal maintenance therapies and more effective approaches for managing relapsed disease, highlighting a broadening therapeutic horizon for SCLC patients [3].

Beyond systemic therapies, diagnostic and monitoring capabilities are also rapidly advancing. Liquid biopsies, which involve analyzing circulating tumor DNA (ctDNA), are emerging as a non-invasive cornerstone in lung cancer management. This technology proves invaluable for identifying actionable mutations, dynamically assessing treatment response, and detecting minimal residual disease much earlier than conventional imaging techniques. This integration of liquid biopsies promises a more agile and highly personalized approach to patient care [4]. Precision medicine in lung cancer is expanding its focus beyond common genetic alterations to encompass a wider array of rarer genomic changes. The clinical impact of identifying and targeting mutations in genes like MET, HER2, KRAS G12C, and RET rearrangements is now being realized, addressing historical treatment gaps. This area emphasizes relentless drug development efforts and the critical role of comprehensive genomic profiling in tailoring highly effective treatments [6]. In fact, comprehensive genomic profiling, utilizing methods such as next-generation sequencing, has become indispensable. It guides treatment decisions not only at initial diagnosis but also for continuous monitoring of response and the timely detection of resistance. Such detailed genomic insights are paramount in driving personalized medicine, ultimately optimizing patient outcomes [10].

Radiotherapy remains a fundamental modality in lung cancer treatment, with Stereotactic Body Radiation Therapy (SBRT) representing a high-precision approach. SBRT is employed with curative intent for early-stage disease and provides effective palliation in advanced stages. Contemporary advancements in radiation techniques are geared towards minimizing toxicity while maximizing local tumor control. The exploration of combining SBRT with systemic therapies is an exciting frontier, aiming to significantly enhance treatment efficacy and overcome mechanisms of resistance [5]. Moreover, a deeper understanding of the tumor microenvironment (TME) is proving essential. The TME, a complex ecosystem of cancer cells, immune cells, stromal cells, and extracellular matrix, significantly influences cancer progression and how tumors respond to therapy. Deciphering these intricate interactions is paving the way for novel therapeutic interventions, particularly through developing sophisticated combination strategies that simultaneously target the cancer cells and their supportive milieu [8].

Crucially, early detection and screening programs continue to be vital for improving lung cancer survival rates. Low-Dose Computed Tomography (LDCT) screening, specifically, is under continuous evaluation to refine its guidelines and maximize its effectiveness. Key considerations include patient eligibility criteria, managing the implications of false positives, and the pressing need for organized implementation strategies. Ongoing research endeavors are dedicated to further refining these screening protocols to ensure broad and impactful reach [7]. Furthermore, the management of stage III NSCLC has undergone a profound evolution over the past half-decade. The shift is evident from traditional concurrent chemoradiotherapy to a more integrated, multimodal approach. A cornerstone of this evolution is the integration of immunotherapy, particularly agents like durvalumab, following chemoradiation. These novel strategies have demonstrably improved both progression-free and overall survival for patients battling locally advanced disease, marking a significant advancement in their care [9].

## Conclusion

Recent advancements in lung cancer treatment highlight significant progress across various disease stages and types. Immune Checkpoint Inhibitors (ICIs)

like nivolumab and pembrolizumab are increasingly vital in early-stage Non-Small Cell Lung Cancer (NSCLC), demonstrating improved disease-free survival in adjuvant and neoadjuvant settings. For advanced NSCLC, targeted therapies have transformed outcomes, particularly for patients with actionable mutations such as EGFR, ALK, ROS1, and BRAF. New generations of Tyrosine Kinase Inhibitors (TKIs) show enhanced efficacy and better central nervous system penetration, guiding personalized treatment strategies. Even for challenging Small Cell Lung Cancer (SCLC), recent years have seen modest gains, with ICIs combined with chemotherapy offering survival benefits. Precision medicine in lung cancer now extends to rarer genomic alterations, focusing on drug development for mutations in genes like MET, HER2, KRAS G12C, and RET rearrangements, underscoring the importance of comprehensive genomic profiling for optimized patient care. Genomic profiling, including next-generation sequencing, is indispensable for initial diagnosis, monitoring response, and detecting resistance in NSCLC. Beyond systemic therapies, liquid biopsies, specifically circulating tumor DNA (ctDNA), provide non-invasive methods for diagnosis, monitoring, and early resistance detection. Radiotherapy, particularly Stereotactic Body Radiation Therapy (SBRT), plays a crucial role from curative intent to palliation, with precision techniques minimizing toxicity and maximizing tumor control. The management of stage III NSCLC has also evolved, integrating immunotherapy post-chemoradiation to improve progression-free and overall survival. Additionally, understanding the tumor microenvironment (TME) offers new avenues for combination therapies, while low-dose computed tomography (LDCT) screening remains critical for early detection and improving survival rates.

## Acknowledgement

None.

## Conflict of Interest

None.

## References

1. Remi S, Rabe C, D'Souza R. "Immune Checkpoint Inhibitors for Early-Stage Non-Small Cell Lung Cancer: A Narrative Review." *Cancers* 15 (2023):3672.
2. Planchard D, Popat S, Kerr K. "Targeted therapy in advanced non-small-cell lung cancer." *Ann Oncol* 33 (2022):248-259.
3. Owonikoko TK, Gadgeel SM, Waqar SN. "Advances in the treatment of small cell lung cancer: a comprehensive review of recent developments." *Expert Rev Respir Med* 17 (2023):669-682.
4. Abbosh C, Birkbak NJ, Swanton C. "Circulating tumor DNA in lung cancer: a liquid biopsy for diagnosis, monitoring, and treatment selection." *Nat Rev Clin Oncol* 19 (2022):270-282.
5. Palma DA, Senan S, Tsujino K. "Stereotactic ablative radiotherapy for lung cancer." *Lancet Oncol* 20 (2019):e363-e373.
6. Riely GJ, Govindan R, Kris MG. "Curing Lung Cancer: The Pivotal Role of Molecular Biomarkers and Targeted Therapies." *Clin Cancer Res* 27 (2021):4436-4447.
7. Field JK, Oudkerk M, Pedersen JH. "Lung cancer screening: Clinical and policy considerations." *Eur Respir J* 54 (2019):1900114.
8. Dufait I, Van Dam P, Peeters M. "The lung tumor microenvironment as a therapeutic target." *J Exp Clin Cancer Res* 41 (2022):244.

9. Antoniou A, Charalambous H, Constantinou C. "Newer aspects in the management of locally advanced non-small cell lung cancer." *Curr Opin Oncol* 33 (2021):101-108.
10. Mok TS, Wu YL, Felip E. "Clinical implications of genomic profiling in advanced non-small cell lung cancer." *Lancet Respir Med* 7 (2019):6-8.

**How to cite this article:** McGregor, Hannah. "Advancements in Lung Cancer Precision Therapies." *J Pulm Respir Med* 15 (2025):742.

---

**\*Address for Correspondence:** Hannah, McGregor, Department of Pulmonary Medicine, Edinburgh Clinical Research Hospital, Edinburgh, UK, E-mail: h.mcgregor@ecrh.uk

**Copyright:** © 2025 McGregor H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

**Received:** 02-Jun-2025, Manuscript No. jprm-25-174449; **Editor assigned:** 04-Jun-2025, PreQC No. P-174449; **Reviewed:** 18-Jun-2025, QC No. Q-174449; **Revised:** 23-Jun-2025, Manuscript No. R-174449; **Published:** 30-Jun-2025, DOI: 10.37421/2161-105X.2025.15.742

---