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Introduction

System identification is a foundational discipline concerned with building math-
ematical models of dynamic systems from observed data. The field consistently
pushes boundaries to address increasingly complex system behaviors, environ-
mental noise, and operational constraints. Recent advancements span a wide ar-
ray of techniques and applications, reflecting the diverse challenges encountered
in engineering and scientific domains.

One significant area of progress involves the refinement of methods for identifying
state-space models. Researchers are exploring Kalman Filter-based prediction
error techniques to achieve more precise model parameters [1].

What this really means is they're using a common estimation technique, the
Kalman filter, to refine predictions and improve the accuracy of linear system mod-
els derived from data. This approach is particularly adept at handling measurement
noise and unmeasured disturbances, which are ubiquitous in real-world applica-
tions, thereby leading to more reliable models.

Here’s the thing about nonlinear system identification: it's notoriously difficult.
However, significant strides are being made, particularly with NARMAX (Nonlinear
AutoRegressive Moving Average with eXogenous inputs) models [2].

This work provides a comprehensive overview of recent developments in struc-
ture detection, parameter estimation, and validation specifically tailored for these
complex models. Understanding systems that do not behave linearly is crucial for
many advanced control and prediction tasks.

For linear systems, subspace identification methods are quite powerful, but their
effectiveness can be hampered by correlated noise [3].

This article tackles exactly that, presenting new techniques for subspace identifica-
tion of stochastic linear systems even when the noise isn’t conveniently indepen-
dent. This is important because real-world systems often exhibit complex noise
characteristics that standard methods struggle to accurately model.

Moving beyond purely linear models, Linear Parameter-Varying (LPV) systems al-
low parameters to change with operating conditions, offering a more nuanced rep-
resentation of dynamic behavior. New data-driven identification methods are be-
ing introduced for these systems, especially in scenarios where the "scheduling
variables” that dictate parameter changes are not directly known [4].

Being able to learn these complex relationships directly from data opens up new
possibilities for modeling adaptive systems that operate across varying environ-
ments.

Identifying systems while they're operating under closed-loop control presents a

unique set of challenges because the input signals are no longer independent [5].

This article tackles the crucial problem of designing optimal input signals for
closed-loop identification that provide strong performance guarantees. What this
really means is ensuring that you get good model accuracy without destabilizing
the system or compromising its normal operation. This balance between identifi-
cation and control performance is vital in practical applications.

Frequency domain methods remain a classic approach for system identification,
offering profound insights into system dynamics. This work specifically looks at
identifying Wiener-Hammerstein systems, a particular type of nonlinear model, di-
rectly in the frequency domain [6].

They use generalized orthonormal basis functions, which help simplify complex
systems into manageable components, making the identification process more ef-
ficient and accurate. This technique offers an alternative lens for understanding
system behavior.

Bayesian methods offer a probabilistic perspective to system identification, inher-
ently allowing for the quantification of uncertainty [7].

This paper explores Bayesian nonparametric system identification, leveraging
Gaussian processes to model system behavior. This approach is powerful be-
cause it doesn’'t assume a fixed model structure upfront; instead, it lets the data
guide the complexity of the model, which is often a big advantage for highly com-
plex and poorly understood systems.

Grey-box models represent an intelligent compromise, combining physical insights
with data-driven elements. A method for grey-box system identification using
sparse regression is presented, which is particularly useful for creating reduced-
order models [8].

Let's break it down: sparse regression helps pick out only the most important model
terms, leading to simpler, yet accurate, models. This is excellent for complex pro-
cesses where full physical models are intractable but purely black-box models lack
interpretability.

The intersection of system identification and learning-based control is currently
booming [9].

This survey provides a comprehensive look at how data-driven identification meth-
ods are being used to build models specifically for control applications that rely on
machine learning. It highlights the challenges and opportunities in using real-world
data to create models that are not just accurate but also suitable for robust and
adaptive control strategies, bridging theory with practical implementation.

Finally, identifying systems in real-time, especially for demanding applications like
motor control, is incredibly challenging [10].
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This paper focuses on adaptive real-time system identification for permanent mag-
net synchronous motors driven by variable frequencies. The core challenge here
is dealing with rapidly changing dynamics, and the proposed adaptive method en-
sures the model stays accurate enough to maintain high-performance control de-
spite these variations. This work underscores the practical need for responsive
and adaptable identification techniques.

Description

System identification stands as a cornerstone in control engineering and related
disciplines, providing the necessary mathematical models to understand, predict,
and control dynamic processes. The pursuit of more accurate and robust models
continually drives research into new methodologies and applications. A founda-
tional aspect involves the identification of linear state-space models, where meth-
ods like the Kalman Filter-based prediction error technique are refined to enhance
accuracy [1]. This approach is particularly valuable for its ability to effectively man-
age measurement noise and unmeasured disturbances, ensuring that the derived
model parameters are as precise as possible for dynamic system analysis.

For systems that exhibit complex behaviors not captured by linear approximations,
nonlinear system identification is essential. Advancements in NARMAX (Nonlin-
ear AutoRegressive Moving Average with eXogenous inputs) models offer crucial
tools for this domain [2]. This includes significant progress in detecting the underly-
ing structure, estimating parameters, and validating these intricate models, which
are vital for truly understanding systems that operate outside linear assumptions.
Furthermore, while subspace identification methods are highly effective for linear
systems, they face hurdles when confronted with correlated noise. New techniques
are specifically developed to address this, enabling robust subspace identification
for stochastic linear systems even when noise dependencies are prominent [3].
Real-world environments frequently present such complex noise characteristics,
making these methods highly relevant.

Beyond purely linear or strictly nonlinear models, Linear Parameter-Varying (LPV)
systems offer a powerful intermediate framework, allowing system parameters to
evolve with operational changes. Recent efforts focus on data-driven identifica-
tion methods for LPV systems, particularly when the 'scheduling variables’ — the
conditions dictating parameter shifts — are not directly observable [4]. The ability
to infer these relationships from data alone marks a significant step forward for
modeling adaptive and condition-dependent systems. Simultaneously, identifying
systems under closed-loop control introduces unique complexities as input signals
lose their independence. Here, research emphasizes the design of optimal input
signals to achieve reliable closed-loop identification, aiming to guarantee model
accuracy without risking system instability or disrupting normal operation [5]. This
ensures practical applicability in active control environments.

Alternative and complementary perspectives also continue to evolve. Frequency
domain methods, long recognized for providing deep insights into system dy-
namics, are being adapted for more specialized nonlinear models. For instance,
specific techniques utilize generalized orthonormal basis functions for frequency-
domain identification of Wiener-Hammerstein systems [6]. This simplifies the
characterization of complex nonlinearities by breaking them down into manage-
able components. On a different front, Bayesian methods introduce a probabilistic
framework, offering not just parameter estimates but also a quantification of uncer-
tainty. Bayesian nonparametric system identification, using Gaussian processes,
is particularly powerful because it allows the model’s complexity to be determined
by the data itself, rather than imposing a fixed structure, which is a substantial
advantage for systems with unknown or highly variable dynamics [7].

Hybrid modeling approaches also offer significant benefits. Grey-box models com-
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bine the best of both worlds: incorporating physical insights where available and
filling in gaps with data-driven components. A notable development in this area
uses sparse regression for grey-box system identification, specifically targeting the
creation of reduced-order models [8]. Sparse regression helps in selecting only the
most salient model terms, resulting in models that are simpler, more interpretable,
yet still highly accurate. This is especially useful for complex industrial processes
where full physical models are often intractable. Moreover, the synergy between
system identification and learning-based control is flourishing. A comprehensive
survey highlights how data-driven identification methods are becoming instrumen-
tal in building models for control applications that leverage machine learning [9].
This area focuses on ensuring identified models are not only accurate but also
suitable for robust and adaptive control strategies in real-world scenarios.

Finally, the demand for real-time performance in system identification remains
high for critical applications. For example, adaptive real-time system identifi-
cation is being developed for variable-frequency-driven permanent magnet syn-
chronous motors [10]. The challenge here is to maintain model accuracy despite
rapidly changing dynamics, which is crucial for sustaining high-performance con-
trol. These adaptive methods ensure that the system model is continuously up-
dated and reliable, even in dynamic operating conditions, underscoring the prac-
tical utility and ongoing evolution of identification techniques across diverse engi-
neering domains.

Conclusion

The field of system identification is seeing continuous advancements, tackling var-
ious complexities in modeling dynamic systems. For instance, a Kalman Filter-
based prediction error method refines linear state-space models, specifically ad-
dressing challenges posed by measurement noise and unmeasured disturbances
to yield more precise parameters. This is a foundational task in dynamic system
identification. Moving to the challenging realm of nonlinear systems, advance-
ments in NARMAX models provide an extensive overview of structure detection,
parameter estimation, and validation. Identifying stochastic linear systems be-
comes more complex when correlated noise is present. New techniques in sub-
space identification are emerging to handle such scenarios, which are common in
real-world applications where noise characteristics are intricate. Another area of
focus involves Linear Parameter-Varying (LPV) systems, where parameters adapt
to operating conditions. Data-driven identification methods are being developed,
especially for cases where the scheduling variables that govern these parameter
changes are not directly known, enabling new possibilities for adaptive system
modeling. When systems operate under closed-loop control, identifying them be-
comes particularly tricky due to dependent input signals. Optimal input signal de-
sign is a crucial area of research, aiming to ensure high model accuracy without
compromising system stability. Frequency domain methods, a classic approach,
are also evolving, specifically for identifying nonlinear Wiener-Hammerstein sys-
tems using generalized orthonormal basis functions, which simplifies complex sys-
tem analysis. A probabilistic perspective comes from Bayesian nonparametric
system identification, employing Gaussian processes. This approach is power-
ful because it allows the data to determine the model's complexity rather than
assuming a fixed structure upfront. Grey-box models, which blend physical in-
sights with data, are being enhanced through sparse regression to create accurate,
reduced-order models. This helps bridge the gap between complex physical mod-
els and purely black-box data-driven ones. The integration of data-driven identifi-
cation with learning-based control is a booming area, highlighting how models built
from real-world data can support robust and adaptive control strategies. Finally,
adaptive real-time system identification is crucial for applications like variable-
frequency-driven permanent magnet synchronous motors, where rapidly changing
dynamics demand constantly updated and accurate models for high-performance
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control.
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