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Abstract
Estimating the All-Terminal Network Reliability (ATNR) by using Artificial Neural Networks (ANNs) has emerged as a promissory alternative to classical exact NP-
hard algorithms. Approaches based on traditional ANNs have usually considered the network reliability upper bound as part of the inputs, which implies additional 
time-consuming calculations during both training and testing phases. This paper briefly reviews and compares the results of our recent work on advanced neural 
networks for ATNR, which dispense with upper bound input need and offer improved performance. The results are compared with traditional ANNs in terms of 
features such as the error (RMSE), execution time, or the ability to relax the perfects nodes assumption, among others. A quick discussion highlights the fact that 
modern neural networks outperform traditional ANN; however, there are trade-offs in the performance of advanced neural networks. Such trade-offs provide an 
opportunity for future research efforts as, suggested in this paper as well.
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Introduction

Usually, networks represent critical infrastructure systems such 
as communication networks, piping systems or power supply systems. 
Therefore, reliability assessment of these critical networks is imperative. A 
network can be defined as a set of items (nodes or vertices) connected by 
edges or links. Graphical models allow to visualize the interdependencies of 
the components in a system. Nodes characterize components and junctions 
of the system, and edges represent the connections. For example, busbars 
in power systems or switches in telecommunication systems are modelled 
by nodes, whereas edges characterize power lines in power systems and 
optical fibers in telecommunication systems. Such graphical models are 
commonly based on Graph Theory (GT), where a graph G (N, L) denotes 
the graph G composed by the set N of nodes and the set L of links or edges. 

Regardless the number of nodes, links, or their interconnection, the 
network reliability has several definitions; most of them are associated 
with connectivity [1]. Three popular measures are all-terminal, two-terminal 
and k-terminal [2]. All-terminal reliability is the probability that every node 
can communicate with every other node in the network. The two-terminal 
reliability problem requires that a pair of specified nodes, e.g. source (s) and 
terminal (t), be able to communicate with one another. K-terminal reliability 
requires that a specified set of k target nodes be able to communicate with 
one another. Because the two-terminal reliability problem is simpler than the 
all-terminal reliability one and the k-terminal reliability is indeed a subset of 

all-terminal reliability with a space set restricted to k nodes only, advanced 
network reliability techniques are focused on the all-terminal reliability [3, 4].

All-terminal exact reliability is however, an NP-hard problem which has 
led to the search of approximated but more efficient methods [3, 5]. As a 
part of the Machine Learning (ML) techniques, Artificial Neural Networks 
(ANNs) have emerged as a promissory tool to estimate network reliability. 
ANNs have been usually trained with the network topology and link reliability 
as inputs and with the target network reliability as desired output [3, 4]. For 
example, they utilized an ANN to predict the All-Terminal Network Reliability 
(ATNR) with the network architecture, the link reliability, and the reliability 
upper bound as inputs, and the exact network reliability as the target [3]. 
More recently, they proposed an ANN model to predict the ATNR [4]. Such 
models take the upper bound network reliability among other inputs to 
predict the network reliability. 

Traditional ANNs have evolved into Deep Learning (DL) approaches 
such as Deep Neural Networks (DNNs), Convolutional Neural Networks 
(CNNs) and Recurrent Neural Network (RNNs). Although DL has been 
applied for reliability estimation, little evidence is available of its use for 
network reliability estimation. 

The aim of this mini-review is to compare the performance of our recently 
proposed methods based on advanced neural networks techniques such 
as CNNs and DNNs for the ATNR estimation problem. CNNs have been 
successful in image classification [6-8]. Therefore, appropriate formatting 
is needed to convert the networks features such as adjacency matrix and 
topological attributes to an image-like matrix. Also, a regression layer with 
sigmoid activation function has proven to be effective for CNN regression 
of ATNR [6]. Similarly, DNNs with Graph Embedding Methods (GEM) for 
pre-processing have shown effectiveness in ATNR estimation [7]. More 
recently, an integration of DNN and Monte Carlo (MC) allowed accurate 
ATNR of large networks [8]. In this paper, we briefly summarize the use of 
advanced neural networks such as CNNs and DNNs for network reliability 
estimation and compare their performance with the results achieved by 
previous approaches based on traditional ANNs. 

In the rest of the article, to avoid confusion, the CNN(s) and DNN(s) 
acronyms will be used to refer to artificial convolutional or deep neural 
network(s), respectively, whereas the term network(s) will be employed for 
the network(s) whose reliability estimation is estimated. The remainder of 
this article is organized as follows: in the section 2, the CNN and DNN 
methods are summarized. In section 3, we present a comparison of the 
results achieved by traditional ANN, CNN and DNN methods. Conclusions 
and future research directions are exposed in the section 4.
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Advanced Neural Networks for All-Termi-
nal Network Reliability Prediction

A network is modelled by a probabilistic graph G= (N, L, p), where N is 
the set of nodes, L is the set of links, and p is the links reliability. 

At any time, only some links of G might be operational. A state of G is 
a sub-graph (N, L'), where L' is the set of operational links, L' ⊆ L. The all-
terminal network reliability of state L' ⊆ L is [9]:

Where, Ω is the set of all operational state

CNNs for ATNR estimation
Convolutional Neural Networks (CNNs) are a specialized kind of artificial 

neural networks suitable for processing data with a grid-like topology, such 
as image data. This type of networks applies the mathematical operation 
convolution in place of general matrix multiplication in at least one of their 
layers [10]. They proposed a CNN approach to estimate the all-terminal 
reliability of networks with a given number of nodes and a given set of 
possible links reliability values [6]. The network information is stacked 
in a multidimensional matrix to meet the “image” format that a CNN can 
process. A successful input format consists of layers of two-dimensional 
matrices concatenated along the third dimension [6]. In the first layer, 
there is the adjacency matrix. Furthermore, the diagonal of zeros of the 
adjacency matrix is replaced by the node degree. The second layer is a 
diagonal matrix with the clustering coefficient. The third layer is a diagonal 
matrix with the links reliability. The resultant input format for each network 
is therefore a n × n × 3 matrix, i.e., a three-dimensional matrix. It shows the 
proposed CNN scheme (Figure 1).

Several combinations of architectures and hyper parameters were 
tested in a dataset. The performance was measured in terms of the Root 

Mean Square Error (RMSE) considering cross-validation. The best CNN 
achieved a RMSE of 0.05079, which outperformed the general ANN 
proposed by them, who reported an RMSE of 0.06260 [3]. The better 
performance might be attributed in part to the multiple hidden layers of the 
CNN instead of only one hidden layer in the standard ANN architecture 
[3, 4]. In addition, features such as momentum training, dropout and 
regularization are believed to enable higher predictive accuracy compared 
to typical ANNs [11, 12]. The improvement in accuracy was attained without 
the need of providing the upper bound reliability as an input to the CNN.

DNNs for ATNR estimation
Motivated by the good results of CNNs and with the aim to overcome 

the limitation of fixed size networks (required in the CNN approach), other 
advanced DL approaches such as DNNs were explored [7, 8]. For instance, 
instead of an image-like format, DNNs require vector inputs. Therefore, to 
translate the network information, GEM was investigated, and the RMSE 
was 0.01069 [7]. Illustrates the DNN approach (Figure 2). Recently, an 
integration of DNN and Monte Carlo (MC) was proposed that relax the 
common assumption of perfect nodes [8]. Moreover, this approach allows 
estimating the reliability of large networks. However, it requires training 
for a specific network for further prediction of ATNR, given new values of 
links and nodes reliability. The RMSE in the worst case was 0.02213 for a 
network with 158 nodes and 189 links.

Discussion

In this section, we briefly compare the performance of traditional ANNs, 
CNNs, and DNNs in terms of RMSE, execution time, capability of ATNR 
prediction for networks with varying sizes, need of upper bound input, and 
assumption of perfect nodes. Comparison is summarized in Table 1. In 
general, modern approaches such as CNNs and DNNs outperform ANNs 
in accuracy (RMSE). However, among advanced neural networks there 
are trade-offs. For instance, DNN is more accurate and flexible (allowing 
varying sizes) than CNN but slower as well. Similarly, DNN-MC approach is 
the fastest, allows relaxing perfect nodes assumption and is applicable for 
large networks, but it needs specific training for each network.

Figure 1. CNNs for ATNR estimation.

Figure 2. DNNs for ATNR estimation.

Table 1. Comparison of ANN, CNN, DNN, and DNN-MC for ATNR estimation.

Approach RMSE Execution time Varying sizes? Upper bound required? Perfect nodes 
assumption?

ANN. Ratana, Chat 
Srivaree, et al. [3]

0.0626 Not available No Yes Yes

CNN. Frias, Alex Davila, 
et al. [6]

0.05079 1.18 ms/network No No Yes

DNN. Frias, Alex Davila, 
et al. [7]

0.01069 3 ms/network Yes No Yes

DNN-MC. Frias, Alex 
Davila, et al. [8]

0.02213 46 ns/network No No No

Abbreviations. ANN: Artificial Neural Network, CNN: Convolutional Neural Networks, DNN: Deep Neural Networks, DNN-MC: Deep Neural Networks- Monte Carlo
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Conclusion and Future Research

This study has compared traditional ANN with modern CNN and DNN 
approaches to estimate the ATNR. In general, CNN and DNN outperform 
ANN. Nevertheless, the selection of an appropriate method for a particular 
application will depend on the preferred features, e.g., execution time, 
varying sizes prediction, perfect nodes assumption, etc. There are still 
opportunities for improvement, e.g., accuracy and execution time. Refining 
pre-processing and input methods to consider imperfect nodes could be 
useful to enhance current CNN or DNN approaches. In addition, novel 
techniques such as Graph Neural Networks (GNN) will be explored in 
search of such improvements.
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