ISSN: 2472-1026 Open Access

Advanced Forensic Techniques: Solving Crimes, Aiding Justice

Ahmed A. Fahmy*

Department of Forensic and Legal Studies Alexandria University College of Medicine, Egypt

Introduction

Forensic science encompasses a diverse range of disciplines, each playing a vital role in criminal investigations and humanitarian efforts. The field continually evolves with advanced techniques that enhance accuracy, efficiency, and the scope of evidence analysis. For instance, forensic odontology is crucial for personal identification, especially in mass disasters or when traditional methods fall short. It uses dental records, bite marks, and oral pathologies as unique identifiers, making forensic dentists indispensable in investigations and humanitarian work [1].

Forensic entomology provides critical timelines in death investigations, focusing on insect evidence and studying arthropod succession and development on decomposing remains to estimate the postmortem interval (PMI). Applying this science within legal frameworks strengthens its contribution to criminal justice [2].

Technological advancements have also transformed on-scene evidence analysis. Portable Raman spectroscopy, a non-destructive, rapid, and sensitive method, allows for direct analysis of evidence at a crime scene. Its versatility helps identify illicit drugs, explosives, gunshot residues, and questioned documents, speeding up preliminary investigations without compromising sample integrity [3].

Another significant area is forensic DNA phenotyping, which enables investigators to infer visible traits like ancestry, hair, eye, and skin color from crime scene DNA. This technique, through advancements in SNP panels and statistical models, offers investigative leads when conventional DNA identification is not feasible [4]. Similarly, analyzing textile fibers from crime scenes provides crucial trace evidence for linking individuals or locations. Advanced spectroscopic methods, such as Raman and FTIR spectroscopy, offer detailed chemical profiles for precise fiber comparison and identification, thereby enhancing investigations [5].

Forensic toxicology has seen remarkable progress with techniques like mass spectrometry, essential for identifying and quantifying illicit drugs with precision. Recent improvements in sensitivity, selectivity, and throughput are critical for detecting new psychoactive substances and complex drug mixtures, supporting accurate drug profiling and combating trafficking [6]. Alongside this, microextraction techniques are revolutionizing toxicology by enabling the analysis of trace analytes from complex biological matrices. These approaches improve sample preparation by reducing solvent use, lowering detection limits, and boosting method sensitivity for various drugs and toxins [7].

Forensic age estimation, particularly for living individuals lacking legal documents, increasingly relies on molecular methods. Novel epigenetic markers, like DNA

methylation, and telomere length analysis offer more accurate and objective age predictions compared to older morphological methods. This is incredibly important in asylum cases and criminal proceedings [8]. Fingerprints, a long-standing cornerstone of forensic identification, are also seeing significant technological enhancements. New methods for developing latent prints on challenging surfaces, coupled with integrated digital imaging and automated comparison systems, make fingerprint evidence more reliable and robust than ever [9].

Finally, forensic taphonomy is vital for understanding postmortem changes to human remains and their burial environments. The study of decomposition, environmental factors, and scavenger activity helps establish time since death, reconstruct perimortem events, and locate clandestine graves, offering crucial information for complex death investigations [10]. These advancements collectively underscore a period of dynamic growth in forensic science, pushing the boundaries of what is possible in solving crimes and identifying victims.

Description

Forensic science leverages a variety of specialized disciplines for accurate identification and investigation, particularly in challenging scenarios like mass disasters or complex criminal cases. Forensic odontology, for instance, is indispensable for personal identification, relying on dental records, bite marks, and oral pathologies to provide unique identifiers. Advancements in this field improve the accuracy and efficiency of dental age estimation and victim identification, making forensic dentists crucial in humanitarian efforts and legal proceedings [1]. Concurrently, forensic entomology offers vital timelines in death investigations. By meticulously studying insect evidence, including arthropod succession and developmental stages on decomposing remains, it helps estimate the postmortem interval (PMI). Its consistent application within legal frameworks strengthens its role in criminal justice, providing robust scientific evidence for case reconstruction [2].

Modern forensic analysis benefits significantly from advanced analytical techniques. Portable Raman spectroscopy offers a non-destructive, rapid, and sensitive method for direct evidence analysis at crime scenes. This versatile tool identifies illicit drugs, explosives, gunshot residues, and questioned documents, enhancing the speed and efficiency of preliminary investigations without compromising sample integrity [3]. In a similar vein, forensic DNA phenotyping is transforming investigations by allowing the inference of visible traits such as ancestry, hair, eye, and skin color from crime scene DNA. This technique, utilizing advanced SNP panels and statistical models, generates crucial investigative leads when traditional DNA identification is not possible [4]. Furthermore, the examination of

Fahmy A. Ahmed J Forensic Med, Volume 10:5, 2025

textile fibers found at crime scenes provides valuable trace evidence. Advanced spectroscopic methods like Raman and FTIR spectroscopy deliver detailed chemical profiles, enabling precise fiber comparison and identification to link suspects, victims, or locations, thereby bolstering investigations [5].

Forensic toxicology has made substantial progress, particularly with mass spectrometry for the precise identification and quantification of illicit drugs. Recent advancements have significantly improved sensitivity, selectivity, and throughput, which are essential for detecting new psychoactive substances and complex drug mixtures. This supports accurate drug profiling and is fundamental in combating drug trafficking [6]. Additionally, microextraction techniques are revolutionizing toxicological analysis by facilitating the examination of trace amounts of analytes from complex biological matrices. These approaches enhance sample preparation through reduced solvent consumption, lower detection limits, and improved method sensitivity for various drugs and toxins, making previously undetectable evidence now accessible [7].

For living individuals without legal documents, forensic age estimation increasingly depends on molecular methods. This involves the exploration of novel epigenetic markers, such as DNA methylation, and telomere length analysis. These modern techniques offer more accurate and objective age predictions compared to older morphological methods, which is critical in sensitive contexts like asylum cases and criminal proceedings where precise age determination is paramount [8]. Beyond biological and chemical analyses, fingerprints remain a cornerstone of forensic identification. Recent technological advancements continue to push the boundaries of detection and analysis, with novel methods for developing latent prints on challenging surfaces and integrated digital imaging and automated comparison systems. These innovations collectively make fingerprint evidence more robust and reliable than ever [9].

Lastly, forensic taphonomy is crucial for understanding postmortem changes to human remains and their burial environments. This field investigates decomposition processes, environmental factors, and scavenger activity to establish the time since death, reconstruct perimortem events, and locate clandestine graves. The information derived from taphonomic analysis provides critical insights for complex death investigations, often filling gaps where other forms of evidence are scarce [10]. These diverse and evolving scientific approaches collectively underpin the crucial role of forensic science in supporting legal and humanitarian endeavors.

Conclusion

Forensic science employs a wide array of advanced techniques to aid criminal investigations and humanitarian efforts. Fields such as forensic odontology are vital for personal identification, using dental records and oral pathologies, with recent advancements improving age estimation and victim identification [1]. Forensic entomology provides critical timelines by analyzing insect evidence on remains to estimate the postmortem interval [2]. On-scene analysis is enhanced by portable Raman spectroscopy, offering rapid, non-destructive identification of drugs, explosives, and other evidence [3]. DNA phenotyping has become crucial for inferring visible traits from crime scene DNA, providing investigative leads when direct identification is difficult [4]. Similarly, spectroscopic techniques like Raman and FTIR are essential for analyzing textile fibers, linking individuals or locations to crimes [5]. In toxicology, mass spectrometry provides precise identification and quantification of illicit drugs, with ongoing advancements in sensitivity and throughput for detecting new psychoactive substances [6]. Microextraction techniques further support this by enabling trace analyte analysis from complex biological samples, enhancing detection limits and method sensitivity [7]. Molecular methods, including epigenetic markers and telomere length analysis, are increasingly used for

more accurate forensic age estimation, especially for individuals without legal documents [8]. Fingerprint analysis remains fundamental, with technological advancements making detection and comparison more robust across challenging surfaces [9]. Finally, forensic taphonomy is key to understanding postmortem changes, environmental factors, and scavenger activity to establish time since death and locate clandestine graves [10]. These diverse scientific disciplines continuously evolve, providing increasingly sophisticated tools for solving crimes and assisting justice.

Acknowledgement

None.

Conflict of Interest

None.

References

- Ramakrishna S Bhat, Srinidhi Shetty, Sachin C Patil. "Forensic odontology: A comprehensive review of recent advances and applications." J Forensic Sci 66 (2021):2004-2016.
- Bruno S Rangel, Ricardo T de Almeida, Vanessa S de Almeida, Paulo M P Peixoto, Jeferson S de Lima. "The forensic entomology in current legislation and criminal justice: a review." Leg Med 51 (2021):101886.
- Diana A Barata, Ana C A Queirós, C M M Santos, António A C C Pais. "A review of forensic applications of portable Raman spectroscopy." Forensic Chem 18 (2020):100238.
- Hao Wang, Zhong Wang, Yan Wei, Yang Shi, Haijie Hu, Rong Li. "Advances in forensic DNA phenotyping: A review." J Forensic Sci 67 (2022):196-208.
- Abhishek Kumar Katta, Shashank Shekhar Jha, Avneesh Narayan Singh, Nishant N Pandey, Rakesh K Singh. "Recent advances in forensic analysis of textile fibers using advanced spectroscopic techniques." Forensic Chem 27 (2022):100392.
- Peng Li, Yan Chen, Jian Chen, Xiaohuan Lin, Yifan Huang. "Recent Advances in Forensic Analysis of Illicit Drugs by Mass Spectrometry." Molecules 28 (2023):1718.
- Ana C A Queirós, Sofia C G Ferreira, Diana A Barata, António A C C Pais, Elisabete M L Maia. "Advances in forensic toxicology using microextraction techniques." TrAC Trends Anal Chem 143 (2021):116393.
- Maciej K Kujawa, Anna L Niewczas, Bartłomiej Jaszczuk, Agnieszka Maciejewska, Barbara K Karska, Wojciech C Przystupski. "Recent advances in forensic age estimation using molecular methods." Forensic Sci Int Genet 60 (2022):102741.
- Ashish Kumar Kushwaha, Ankur Kumar, Satyendra Kumar Singh, Mukesh Kumar Kushwaha, Rakesh Kumar Singh. "Recent advancements in forensic investigation of fingerprints: A comprehensive review." Forensic Sci Int 339 (2022):111394.
- Shimaa M Assaf, Nor Azlina Bte S Hashim, Intan Yusrina S A A Karim, Izani S Ahmad, Mohd T Mohamed. "The Role of Forensic Taphonomy in Investigating Human Remains: A Review." J Forensic Sci 68 (2023):2011-2022.

How to cite this article: Fahmy, Ahmed A.. "Advanced Forensic Techniques: Solving Crimes, Aiding Justice." *J Forensic Med* 10 (2025):432.

Fahmy A. Ahmed	J Forensic Med, Volume 10:5, 2025
*Address for Correspondence: Ahmed, A. Fahmy, Department of Forensic and Legal Studies Alexandria University College of Me	edicine, Egypt, E-mail: ahmed.fahmy@ass.eg
Copyright: © 2025 Fahmy A. Ahmed This is an open-access article distributed under the terms of the Creative Commons Attribution and reproduction in any medium, provided the original author and source are credited.	bution License, which permits unrestricted use,
Received: 02-Sep-2025, Manuscript No. jfm-25-173751; Editor assigned: 04-Sep-2025, PreQC No. P-173751; Reviewed 23-Sep-2025, Manuscript No. R-173751; Published: 30-Sep-2025, DOI: 10.37421/2472-1026.2025.10.432	: 18-Sep-2025, QC No. Q-173751; Revised: