

Advanced Adaptive Robotic Grippers for Versatile Manipulation

Helena Gavrilova*

Department of Industrial Robotics, Volga Tech University, Kazan, Russia

Introduction

This paper introduces a soft robotic gripper combining granular jamming and tendon-driven actuation to achieve adaptive and strong grasping. The design allows for stiffness control by modulating air pressure within granular layers and precise finger movement through tendon mechanisms. This approach enables the gripper to handle a wide range of object shapes and sizes with improved stability and force transmission, marking a significant step in versatile robotic manipulation for unstructured environments[1].

The research presents a new underactuated robotic gripper designed for improved dexterity and compliant grasping with fewer actuators. It integrates a specific linkage mechanism that allows the fingers to adaptively conform to various object geometries, thereby simplifying control while enhancing the gripper's ability to manipulate fragile or irregularly shaped items. The study highlights both the mechanical design and a control strategy that maximizes grasping efficiency and stability[2].

This article details an adaptive soft gripper that incorporates a variable stiffness mechanism, enabling it to transition between compliant grasping for fragile objects and rigid support for heavy or complex items. The gripper achieves robustness by adjusting its stiffness in real-time based on environmental interaction, which greatly expands its utility in tasks requiring both gentle touch and firm hold, such as in logistics or assembly[3].

The study presents bio-inspired soft robotic grippers that leverage variable stiffness principles, drawing inspiration from natural organisms' adaptability. These grippers can adjust their rigidity dynamically, allowing them to gently conform to object surfaces for secure initial contact and then stiffen for stable manipulation, making them suitable for handling a diverse array of objects, from delicate to rigid, in various industrial and service applications[4].

This article focuses on integrating advanced force and tactile sensing capabilities directly into compliant robotic grippers. By embedding soft sensors into the gripper fingers, the system can accurately perceive contact forces and object textures during grasping. This enhanced sensory feedback is crucial for improving grasp stability, preventing object damage, and enabling more sophisticated manipulation tasks in unstructured or unknown environments, pushing the boundaries of human-robot interaction and automation[5].

This paper introduces a modular and reconfigurable robotic gripper designed to adapt to a broad spectrum of grasping scenarios. The gripper's modularity allows for easy customization of finger configurations and end-effector types, making it highly versatile for handling objects of various shapes, sizes, and weights with-

out needing to redesign the entire gripper. This adaptability significantly reduces operational downtime and increases efficiency in flexible manufacturing and logistics[6].

The research details an advanced parallel gripper that integrates sophisticated sensing and actuation capabilities to achieve precise object manipulation. Unlike traditional parallel grippers, this design incorporates embedded force and position sensors, allowing for real-time feedback and closed-loop control of gripping forces. This integration enables the gripper to handle delicate objects with controlled force and execute complex tasks requiring high precision, improving reliability in automation[7].

This paper describes the development of a soft vacuum gripper featuring an optimized array of suction cups, specifically designed to handle objects with irregular and curved surfaces effectively. By employing soft materials and a reconfigurable suction cup arrangement, the gripper maximizes contact area and adhesion on non-standard geometries. This innovation addresses significant challenges in picking and placing tasks for items traditionally difficult for conventional grippers, enhancing automation in logistics and manufacturing[8].

This research introduces a novel multi-fingered robotic hand equipped with advanced adaptive grasping capabilities, specifically tailored for manipulating complex and diverse objects. The design allows individual fingers to conform independently to object contours and textures, facilitating stable and secure grasps even for items with challenging geometries or unknown properties. This enhances the robot's ability to perform delicate assembly and handling tasks across various industries[9].

This paper focuses on modular and reconfigurable soft robotic grippers that offer both adaptability and robustness in grasping. The soft, compliant nature of the gripper allows it to passively adapt to object shapes, while its modular design means it can be quickly reconfigured for different tasks or object types. This combination provides a versatile solution for handling a wide range of objects, from delicate to heavy, with improved safety and efficiency in various industrial and service applications[10].

Description

The landscape of robotic grasping is seeing significant advancements through innovative gripper designs emphasizing both adaptability and compliance. A key development includes soft robotic grippers integrating granular jamming alongside tendon-driven actuation, which allows for sophisticated stiffness control and pre-

cise finger movements. This enables these grippers to effectively handle a wide array of object shapes and sizes, improving grasp stability and force transmission in unstructured environments [1]. Furthermore, adaptive soft grippers incorporate variable stiffness mechanisms, providing the ability to seamlessly transition between a gentle, compliant grasp for fragile items and a rigid, firm hold for heavier or complex objects. This adaptability greatly expands their practical utility in diverse applications such as logistics and assembly, requiring both gentle touch and firm support [3]. Drawing inspiration from nature, bio-inspired soft robotic grippers leverage similar variable stiffness principles, dynamically adjusting their rigidity. This allows them to initially conform softly to object surfaces for secure contact, and then to stiffen for stable and robust manipulation, making them exceptionally well-suited for handling items from delicate components to rigid industrial parts [4].

Enhancing dexterity and operational efficiency remains a central focus in modern gripper development. A novel class of underactuated robotic grippers features ingeniously designed linkage mechanisms. These empower gripper fingers to adaptively conform to an extensive variety of object geometries, which not only simplifies control but also profoundly enhances the gripper's ability to manipulate fragile or irregularly shaped items with greater precision. The design principle here emphasizes maximizing grasping efficiency and overall stability [2]. Complementing these innovations, modular and reconfigurable robotic grippers are gaining considerable traction due to their inherent versatility. Their design allows for straightforward and rapid customization of finger configurations and end-effector types, enabling quick adaptation to a broad spectrum of grasping scenarios without complete redesign. This adaptability dramatically reduces operational downtime and boosts efficiency in dynamic manufacturing and logistics environments [6]. This modularity extends effectively to other soft robotic grippers, offering both adaptability through compliance and robustness through reconfigurable architecture. Their soft materials enable passive adaptation to object shapes, while modular construction permits swift reconfiguration for different tasks, presenting a versatile solution for safely handling a vast range of objects [10]. Moreover, the development of sophisticated multi-fingered robotic hands progresses rapidly, featuring advanced adaptive grasping capabilities specifically tailored for manipulating highly complex and diverse objects. Individual fingers can conform independently and intuitively to object contours and textures, facilitating exceptionally stable and secure grasps, even for challenging geometries, thereby enhancing performance in delicate assembly and intricate handling tasks [9].

The integration of advanced sensory feedback is proving to be a cornerstone for achieving more sophisticated and reliable manipulation. Compliant robotic grippers are now directly integrating cutting-edge force and tactile sensing capabilities into their compliant fingers. By embedding soft sensors strategically, these systems can accurately perceive not only contact forces but also subtle object textures during grasping. This enhanced sensory feedback is absolutely crucial for improving grasp stability, preventing potential object damage, and enabling far more sophisticated manipulation tasks, particularly in unstructured or previously unknown environments. This advancement actively pushes the boundaries of human-robot interaction and fully autonomous automation [5]. In a parallel development, advanced parallel grippers are being engineered with deeply integrated force and position sensors. These sensors provide indispensable real-time feedback, enabling closed-loop control of gripping forces with unparalleled precision. This sophisticated integration allows these grippers to handle incredibly delicate objects with finely controlled force and to execute complex, high-precision tasks. The resulting improvement in reliability marks a substantial step forward for automation in critical applications [7].

Beyond general-purpose grippers, specialized designs are emerging to address unique and often challenging object handling requirements. A prime example is the innovative soft vacuum gripper, which distinguishes itself by featuring an optimized array of suction cups. This design is specifically engineered to effectively

handle objects possessing irregular and curved surfaces, traditionally problematic for conventional grippers. By cleverly employing soft materials and facilitating a reconfigurable arrangement of its suction cups, this gripper maximizes the contact area and adhesion on non-standard geometries. This innovation directly tackles significant challenges in picking and placing tasks for items previously considered difficult, thereby substantially enhancing automation capabilities in demanding logistics and advanced manufacturing environments [8].

Conclusion

Recent advancements in robotic grippers focus on enhancing versatility and adaptability for diverse manipulation tasks. Research highlights the integration of granular jamming and tendon-driven actuation for adaptive and strong grasping, allowing stiffness control and precise finger movement to handle varied object shapes and sizes with improved stability. Significant effort is also directed towards underactuated designs, which simplify control while ensuring compliant grasping for fragile or irregularly shaped items through specialized linkage mechanisms. Furthermore, adaptive soft grippers with variable stiffness mechanisms are being developed to transition between gentle compliance for delicate objects and rigid support for heavier items, expanding utility in logistics and assembly. Bio-inspired approaches also contribute to this field, enabling grippers to dynamically adjust rigidity for secure contact and stable manipulation across a wide range of objects.

Another key area involves integrating advanced force and tactile sensing directly into compliant grippers. These embedded soft sensors provide accurate contact force and texture perception, which is vital for improving grasp stability, preventing object damage, and enabling sophisticated manipulation in unknown environments. Modular and reconfigurable designs are also gaining traction, allowing for easy customization of finger configurations and end-effector types to adapt to various grasping scenarios, thus reducing operational downtime and increasing efficiency. Parallel grippers are seeing upgrades with integrated force and position sensors for real-time feedback and precise manipulation of delicate objects. Soft vacuum grippers are evolving with optimized suction cup arrays to handle irregular and curved surfaces effectively, enhancing automation in challenging pick-and-place tasks. Lastly, multi-fingered robotic hands are being developed with advanced adaptive grasping capabilities, enabling individual fingers to conform to complex object contours for stable and secure grasps in delicate assembly and handling. These developments collectively push the boundaries of robotic manipulation in unstructured settings.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Yuqian Li, Tianxiao Yu, Chenxing Shen. "Soft robotic gripper based on granular jamming and tendon-driven mechanisms for versatile grasping." *Robot. Auton. Syst.* 167 (2023):104445.

2. Mengying Su, Qinglei Wu, Wenlong Wu. "Design and Control of a Novel Underactuated Robotic Gripper for Enhanced Dexterous Manipulation." *IEEE/ASME Trans. Mechatronics* 27 (2022):2277-2287.
3. Zhenchuan Ma, Chenglong Li, Longsheng Wang. "An Adaptive Soft Gripper with Variable Stiffness Mechanism for Robust Grasping." *Sensors (Basel)* 21 (2021):6214.
4. Jianan Li, Yuan Gao, Yifei Shen. "Bio-inspired soft robotic grippers with variable stiffness for versatile grasping." *Robot. Comput.-Integr. Manuf.* 65 (2020):101859.
5. Hanyu Song, Wenxue Li, Weiming Xia. "Integrated Force and Tactile Sensing for Compliant Robotic Grippers." *IEEE Robot. Autom. Lett.* 9 (2024):1478-1485.
6. Jiarui He, Weijie Ma, Yizhou Yang. "A Modular, Reconfigurable Robotic Gripper for Adaptive Grasping and Manipulation." *J. Mechanisms Robotics* 15 (2023):041004.
7. Bing Han, Guoliang Yan, Chaoqun Liu. "Advanced Parallel Gripper with Integrated Sensing and Actuation for Precise Object Manipulation." *J. Bionic Eng.* 19 (2022):2268-2282.
8. Kai Li, Lei Ren, Chunhong Cui. "Development of a Soft Vacuum Gripper with Optimized Suction Cup Array for Irregular Objects." *Soft Robot.* 8 (2021):712-724.
9. Changbo Zhao, Yanpeng Li, Xiaoyu Shi. "A Novel Multi-Fingered Robotic Hand with Adaptive Grasping Capabilities for Complex Objects." *Actuators* 12 (2023):186.
10. Shuo Li, Jian Li, Kai Li. "Modular and Reconfigurable Soft Robotic Grippers for Adaptive and Robust Grasping." *IEEE Trans. Robot.* 36 (2020):569-583.

How to cite this article: Gavrilova, Helena. "Advanced Adaptive Robotic Grippers for Versatile Manipulation." *Adv Robot Autom* 14 (2025):344.

***Address for Correspondence:** Helena, Gavrilova, Department of Industrial Robotics, Volga Tech University, Kazan, Russia, E-mail: hgavrilova@vtu.ru

Copyright: © 2025 Gavrilova H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Dec-2025, Manuscript No. ara-25-175624; **Editor assigned:** 03-Dec-2025, PreQC No. P-175624; **Reviewed:** 17-Dec-2025, QC No. Q-175624; **Revised:** 22-Dec-2025, Manuscript No. R-175624; **Published:** 29-Dec-2025, DOI: 10.37421/2168-9695.2025.14.34
