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Introduction
In many clinical trials a single endpoint is used to answer the 

primary question and forms the basis for monitoring the experimental 
drug. Many clinical trials are lengthy in duration and there is widespread 
interest among clinical investigators and pharmaceutical firms in 
employing surrogate or intermediate endpoints to assist in making 
decisions about the efficacy of certain drugs. Thus, more than one 
primary endpoint may be employed in the design and in the monitoring 
in the clinical trial. For a drug or a device to be considered efficacious, 
it must demonstrate tangible clinical benefit, generally defined as an 
improvement in survival or improvement in symptoms [1]. The Food 
and Drug Adminstration (FDA) established accelerated approval 
for oncology products by the Oncology Drug Approval Committee 
(ODAC) if the product is "reasonably likely to predict clinical benefit 
or an evidence of an effect on a clinical benefit other than survival'' [2]. 
As a result, many investigators and pharmaceutical firms are interested 
in using an intermediate endpoint for an accelerated approval, but will 
rely on the primary endpoint for the full approval of the drug by the 
FDA.

Most of the authors of the literature cited above apply sequential 
monitoring designs for one endpoint. Jennison and Turnbull described 
a method for monitoring two endpoints, namely efficacy and safety 
endpoints [10]. On the other hand, Cook and Farewell proposed an 

asymmetric procedure to control for the type I error rate for one efficacy 
and one toxicity response outcome [11]. Todd proposed an adaptive 
method for monitoring bivariate endpoint that can be extended to the 
multivariate case [12].

We sought to design the SPARC trial, a phase III trial in men 
with castrate resistant prostate cancer (CRPC) who failed first line 
chemotherapy where both intermediate (progression-free survival, 
PFS) and primary (overall survival, OS) are used for monitoring the 
trial. The sponsor believes that there is an unmet need and would like to 
use the PFS endpoint for accelerated approval, but OS, which requires 
more follow-up, will be used for full approval of the drug by the FDA. 
In this study, PFS is defined as time from randomization to time of 
disease progression (either bone, tumor, clinical or pain) or death. OS 
is defined as interval between time of randomization to time of death 
from any cause. Both of these endpoints are time-to-event and there is 
some degree of dependence between them.

The main questions that we are interested in answering are: 
1) how to allocate the type I error rate between these time-to-event
endpoints when there is a dependence, 2)what is the impact of
univariate monitoring of each endpoint on the global type I error rate
and marginal type I error rates for each of the two endpoints, and the
proportion of not terminating the trial early and 3)what is the impact
of univariate monitoring of each endpoint on the global power and
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Abstract
In many clinical trials, a single endpoint is used to answer the primary question and forms the basis for monitoring 

the experimental therapy. Many trials are lengthy in duration and investigators are interested in using an intermediate 
endpoint for an accelerated approval, but will rely on the primary endpoint (such as, overall survival) for the full approval 
of the drug by the Food and Drug Adminstration. We have designed a clinical trial where both intermediate (progression-
free survival, (PFS)) and primary endpoints (overall survival, (OS)) are used for monitoring the trial so the overall type 
I error rate is preserved at the pre-specified alpha level of 0.05. A two-stage procedure is used. In the first stage, the 
Bonferroni correction was used where the global type I error rate was allocated to each of the endpoints. In the next 
stage, the O'Brien-Fleming approach was used to design the boundary for the interim and final analysis for each 
endpoint. Data were generated assuming several parametric copulas with exponential marginals. Different degrees 
of dependence, as measured by Kendall's τ , between OS and PFS were assumed: 0 (independence), 0.1, 0.3, 0.5 
and 0.7. The results of the simulations were robust regardless of the copula that were assumed. We controlled for the 
global type I error and marginal type I rates for both of the endpoints under the null hypothesis. In addition, the global 
power and individual power for each endpoint were attained at the desired level under the alternative hypotheses. This 
approach is applied to an example in a prostate cancer trial.

In most randomized clinical trials, interim monitoring of data is 
a common practice if not a requirement. Group sequential designs 
developed by Pocock [3] and O'Brien-Fleming [4] have been widely 
applied. In addition, the more flexible alpha spending approaches 
proposed by Lan and DeMets [5] have been widely implemented. Other 
designs developed by Pampallona and Tsiatis [6] and Lakatos [7], 
who implemented the group sequential design for survival endpoints, 
are employed. Whitehead [8] proposed a straight line approach for 
comparing survival curves, while Jennison and Turnbull [9] support 
the use of repeated confidence intervals for monitoring a trial.
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univariate power for each of the two endpoints, and the proportion of 
terminating the trial early.

In this article, we consider an approach that will allow statisticians 
to design a trial for monitoring two co-primary time-to-event endpoints 
when there is a dependence structure. We investigate the global and 
marginal type I error rates and the power empirically using extensive 
simulations. Furthermore, we study the operating characteristics under 
several dependence structures by using parametric copulas. Finally, we 
investigate the operating characteristics of the design using different 
allocation of the type I error rate.

Methods
A simulation framework that does not incorporate dependency 

between OS and PFS may be unrealistic. To address this issue, we will 
employ copulas to generate OS and PFS under various dependence 
structures. From a statistical perspective, a copula is a bivariate 
distribution function with uniform marginals. Suppose that ( , )U V  is 
a random pair with uniform marginals (i.e, [ ] =≤P U u u  for all  [0,1]∈u   
and [ ] =≤P V v v  for all [0,1]∈v ). Then the copula, say C, associated 
with  ( , )U V  is defined as 

[ , ] = [ , ],≤ ≤u v P U u V vC                  (1)

for all 
2( , ) [0,1]∈u v . Given a pair of continuous marginal distribution 

functions, say F1  and  F2, the function ( , )U V  is distributed according to    
C if and only if 1 1

1 2( , ) = ( [ ], [ ])− −X Y F U F V  is distributed according to H, 

1 2[ , ] = [ [ ], [ ]].u v F u F vH C                    (2)

Due to a result by Sklar [13], for any random pair ( , )X Y  with 
marginals F1 and F2, there exists a copula C. Furthermore, the 
representation is unique if the marginals are continuous. 

Suppose that ( , )U V  is a random pair with uniform marginals 
generated by copula C. Also, suppose that −f  and +f   are decreasing 
and increasing functions from [0,1] into [0,1]. Then U and V are 
independent if and only if [ , ] = [ , ] =u v u v uvC I , = [ ]−U f V  almost 
surely if and only if [ , ] = [ , ] = max[ 1,0]+ −u v u v u vC L   and = [ ]+U f V  
almost surely if and only if [ , ] = [ , ] = min[ , ]u v u v u vC U , for all 

2( , ) [0,1]∈u v . Furthermore, for any copula [ , ] [ , ] [ , ]≤ ≤L u v u v u vC U  
for all 2( , ) [0,1]∈u v . The copulas  L  and U  are called the lower and 
upper Frechet-Hoeffding bounds. 

There exists a rich family of copulas where the dependence 
structure is parameterized by a single parameter. We will consider 
three examples. The normal copula is defined as 

1 1
2 1 1[ , , ] = [ [ ], [ ], ],− −Φ Φ Φu v u vθ θC                   (3)

where [ 1,1]∈ −θ . Here 1
1
−Φ  denotes the quantile function for a 

univariate standard normal distribution and 2[ , , ]Φ ⋅ ⋅ ρ  denotes the 
distribution function for a standard bivariate normal distribution with 
correlation parameter [ 1,1]∈ −ρ . Frank's copula is given as 

1 (1 exp[ ])(1 exp[ ])[ , , ] = log[1 ],
1 exp[ ]

− − − −
− −

− −
u vu v θ θθ

θ θ
C                 (4)

where ( , ) {0}∈ −∞ ∞ −θ . Finally, Gumbel's copulas is given by 
1

[ , , ] = exp[ (( log[ ]) ( log[ ]) ) ],− − + −u v u vθ θ θθC                (5)

where [1, )∈ ∞θ . 

For the normal copula, ( )↑ ↓C I  as ( )0↑ ↓θ , ↓C L  as 1↓ −θ  and  
↑C U  as 1↑θ . We are using the up- and down-arrows to denote 

monotone increasing and decreasing convergence. For Frank's copula,  
( )↑ ↓C I  if ( )0↑ ↓θ , ↓C L  if ↓ −∞θ  and ↑C U  if ↑ ∞θ . For Gumbel's 

copula, ↓C I  if 1↓θ  and ↑C U  if ↑ ∞θ . Note that unlike the 
normal and Frank's copula, Gumbel's copula does not admit negative 
dependence structures. 

The dependence parameter in the above-mentioned family may 
not be easily interpretable. As such, it may be useful to use standard 
measures of dependence to quantify the degree of dependency. There is 
an intimate relationship between copulas and standard non-parametric 
measures such as Kendall's coefficient of concordance and Spearman's 
correlation coefficient. More specifically, if ( , )X Y  is distributed 
according to [ , ; ]u v θC , then Kendall's coefficient is expressible in terms 
of the generating copula as 

1 1

0 0
[ ] = 4 [ , ; ]d [ , ; ] 1−∫ ∫ u v u vτ θ θH C C

Note that for any copula, the parameter θ corresponding to 
a desired [ ]τ H  may be obtained by solving the above equation as a 
function of θ. 

For more details on copulas, see the monographs by Nelsen [14] 
and Joe [15] and for a review article with biostatistical applications see 
Owzar and Sen [16].

Notations and assumptions

The actual time-to-event variables are denoted by  (OS,PFS)  

respectively. Furthermore, the joint distribution of  (OS,PFS)  is 
generated by a known parametric copula [ , ; ]u v θC . The marginal 
distribution function of OS and PFS are assumed to be exponential 
with rates OSλ  and PFSλ  respectively. The administrative censoring 
distribution is uniform on the interval [FU,FU+AP], where AP 
denotes the accrual period and FU denotes the follow-up time. Draw 
Z from a uniform distribution on [FU,FU+AP]. What is observed is 

OS PFS(OS, ,PFS, )∆ ∆ , where observed time-to-event variable is then 
defined as 





OS OS
=

PFS PFS

 ∧ 
    ∧   

Z

Z ,

where ∧x y  denote the minimum of x and y, and the event indicators 
are defined as 





OS

PFS

[OS ]
=

[PFS ]

 ∆ ≤ 
    ∆ ≤   

Z

Z

I
I

Description of simulations

We conducted extensive simulations to evaluate the impact 
of alpha allocation on the overall type I error rate, marginal type I 
error rates for each endpoint and the proportion of time that we do 
not terminate the trial early using the SPARC trial as the motivating 
example. Because the majority of patients are expected to experience 
disease progression before dying, PFS in essence is the same as another 
time-to-event endpoint known as time to progression (TTP). Time to 
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progression is defined as the interval between time of randomization to 
time of disease progression.

The SPARC trial was a phase III trial where 912 men with 
CRPC were to be randomized with 2:1 allocation ratio to either an 
experimental arm or a placebo. The trial duration was 44 months, 
with 26-months and 18 months for the accrual and follow-up period, 
respectively. The median PFS and OS times in the placebo arm were 
assumed to be 3 months and 12-months, similar to the SPARC trial. The 
marginal distributions of OS and PFS were generated with exponential 
distributions with hazard rates of 0.231 and 0.058. The censoring times 
were drawn from a uniform distribution on [18, 18+26] as described 
in section 2.1. The failure times and censoring times were generated 
completely independently.

We considered different simulation conditions by varying the 
following: allocation of type I error rate (equal vs. unequal), number 
of interim analysis for the PFS and OS endpoints (one or two or three), 
degree of dependence, as measured by Kendall's τ, between the two 
endpoints (τ = 0, 0.10, 0.30, 0.50, 0.70) and family of copula (normal, 
Frank, Gumbel) using a two-stage procedure. In the first stage, the 
Bonferroni correction was used where the global type I error rate was 
allocated to each of the endpoints. Two scenarios were considered: the 
type I error rate was equally split between the two endpoints (i.e=0.025) 
or unequal type I error rate was assumed for the PFS and the OS 
endpoints: (0.03 for PFS and 0.02 for OS, 0.04 for the OS and 0.01 for 
the PFS). In the next stage, once the alpha level for each endpoint was 
decided, we used the O'Brien-Fleming approach to design the boundary 
for the interim and final analysis for each endpoint.

For each of the above scenarios, 10,000 simulated datasets were 
generated. We were interested in testing the null hypothesis for the 
PFS endpoint 

PFS,0 1 2: =a aH λ λ                       (6)

against the alternative hypothesis

PFS,1 1 2: ≠a aH λ λ                    (7)

where 1aλ and 2aλ  are the hazard rates of progression in groups 1 
and 2, respectively. In addition, we were interested in testing the null 
hypothesis for the OS endpoint:

OS,0 1 2: =b bH λ λ                       (8)

against the alternative hypothesis

OS,1 1 2: ≠b bH λ λ                     (9)

where 1bλ  and 2bλ  are the hazard rates of death in groups 1 and 2.

The empirical global type I error rate was estimated as the 
proportion of simulated datasets that would reject the null hypothesis 
of no difference in PFS or no difference in OS or both. The associated 
hypotheses are

0 OS,0 PFS,0 1 OS,1 PFS,1: :∩ ∪H H H versus H H H                (10)

Results
Table 1 presents the empirical global type I error rate, empirical 

type I error rates for each endpoint and the proportion of not exiting 
the trial early at each look, assuming an equal allocation of the type I 
error rate  = 0.025 for each endpoint. In addition, two analyses are 
assumed for the PFS and OS endpoints with O'Brien-Fleming type 
I error rate boundaries of 0.00146 and 0.02441. When τ = 0, the two 
endpoints are considered to be independent and the empirical type 
I error rate was 0.05. The empirical type I error rates for each of the 
endpoints were approximately 0.025. When normal copula and τ = 

Furthermore, the empirical type I error rate for the PFS endpoint 
was estimated as the proportion of simulated datasets that would reject 
the null hypothesis of no difference in PFS (equation 6). Similarly, the 
empirical type I error rate for the OS endpoint was estimated as the 
proportion of simulated datasets that would reject the null hypothesis 
of no difference in OS (equation 8). Under the alternative hypothesis, 
we were interested in evaluating the global power, marginal power for 
each endpoint and the proportion of exiting the trial early. In addition, 
the global power was estimated as the proportion of simulated datasets 
that would reject the null hypothesis of a difference in PFS (equation 7) 
or a difference in OS (equation 9) or both. The empirical power for the 
PFS endpoint (or the OS) was estimated as the proportion of simulated 
datasets that would reject the null hypothesis under the alternative 
hypothesis of a difference in the PFS or the OS or both. A copy of the 
code is provided online at this link: http://www.duke.edu/ shalabi/JBB/
simulate-code.R.

Type of Copula τ Empirical
 Global Type I Error Rate

PFS OS
1st Interim Final Analysis Type I Error 1st Interim Final Analysis Type I Error

Type-I error rate 0.05 0.00146 0.02441 0.025 0.00146 0.02441 0.025
Independence 0 0.051 0.0015 0.0244 0.0259 0.0015 0.0251 0.0257
Normal 0.10 0.050 0.0017 0.0226 0.0243 0.0023 0.0254 0.0265

0.30 0.047 0.0013 0.0219 0.0232 0.0022 0.0259 0.0267
0.50 0.047 0.0021 0.0251 0.0273 0.0017 0.0255 0.0264
0.70 0.039 0.0005 0.0224 0.0229 0.0019 0.0259 0.0265

Frank 0.10 0.051 0.0017 0.0254 0.0271 0.0012 0.0242 0.0247
0.30 0.044 0.0014 0.0228 0.0242 0.0012 0.0217 0.0221
0.50 0.046 0.0016 0.0244 0.0260 0.0014 0.0247 0.0253
0.70 0.040 0.0020 0.0234 0.0254 0.0017 0.0217 0.0226

Gumbel 0.10 0.046 0.0014 0.0210 0.0224 0.0012 0.0246 0.0248
0.30 0.051 0.0016 0.0230 0.0246 0.0017 0.0283 0.0286
0.50 0.041 0.0014 0.0220 0.0234 0.0016 0.0220 0.0227
0.70 0.042 0.0015 0.0257 0.0257 0.0018 0.0246 0.0253

Table 1: Empirical global type I error rates, empirical significance level for each endpoint and proportion of not terminating the trial early assuming equal allocation of type 
I error rate of 0.025 for each endpoint and using O'Brien-Fleming boundaries; results based on 10,000 simulations.
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0.10 was assumed, the global type I error rate was 0.05. The empirical 
type I error rates were 0.0243 for the PFS endpoint and 0.0265 for the 
OS endpoint. Similar patterns were observed when  τ = 0.30 and τ = 
0.50. The empirical global type I error rate, however, decreased when  τ 
= 0.70. The empirical global type I error rate is 0.039, with error rates of 
0.0229 and 0.0259, for the PFS and OS endpoints, respectively. Again, 
similar patterns were observed when Frank and Gumbel copulas 
were utilized. The stronger the dependence between the PFS and OS 
endpoints, the smaller were the empirical global type I error rates. On 
the other hand, the empirical type I error rates for the PFS and OS 
endpoints were very close to the nominal values of 0.025.

When τ = 0, the average proportion of not terminating the trial 
early at the first look was 0.0015 for both endpoints. The proportion 
of not terminating early at the final analysis were 0.0244 and 0.0251 
for the PFS and OS endpoints. Overall, these values were very close to 
the nominal values for the first interim and final analyses with a few 
exceptions. When τ = 0.70, the proportion of exiting the trial early were 
0.0005 and 0.0020 when normal and Frank copula's were assumed.

Table 2 lists the empirical global power, empirical power for each 
of two endpoints and the proportion of terminating the trial early 
based on 10,000 simulations. The overall power was above 0.95 and the 
empirical powers were 0.852 and 0.856 for the PFS and OS endpoints, 
respectively. Overall, the power was about 0.85 for each of the two 

endpoints, regardless of the degree of dependence (i.e. value of τ) and 
type of copula that were assumed.

In Table 3, we present the empirical global type I error rate, marginal 
type I error rates for each endpoint and the proportion of not exiting 
the trial early at each look assuming equal allocation of the type I error 
rate of 0.025 for each endpoint. We assumed two analyses for the PFS 
and OS endpoints each at 50% and 100% of the total information, but 
the Pampallona and Tsiatis type I error rate boundaries of 0.00067 and 
0.02479 were used. We observed similar trends as we did in Table 1.

Table 4 presents the empirical power for the global power, empirical 
power for each of two endpoints and the proportion of exiting the trial 
early assuming two analyses for the PFS and OS endpoints each at 50% 
and 100% of the total information with Pampallona and Tsiatis type I 
error rate boundaries of 0.00067 and 0.02479. Overall, the empirical 
powers for the PFS and OS endpoints were approximately 0.85 and the 
empirical global power was higher than 0.95 when τ was less than 0.7.

We also evaluated the empirical global type I error rate and type 
I error rates for each endpoint assuming unequal allocation of the 
error rate (Table 5). We allocated type I error rates of 0.03 and 0.02 
for the PFS and OS endpoints, respectively. Using the O'Brien-Fleming 
approach, the type I error rate boundaries were 0.00042 and 0.02990 
for the first and final analysis for PFS, whereas they were 0.0014 and 
0.01938 for the OS endpoint. The empirical global type I error rate 

Type of Copula τ Empirical Global Power PFS OS
1st Interim Final Analysis Power 1st Interim Final Analysis Power

Independence 0 0.979 0.206 0.647 0.853 0.221 0.855 0.856
Normal 0.10 0.969 0.205 0.645 0.851 0.211 0.849 0.849

0.30 0.955 0.202 0.646 0.848 0.217 0.852 0.853
0.50 0.934 0.209 0.639 0.849 0.216 0.860 0.860
0.70 0.912 0.203 0.644 0.847 0.209 0.855 0.856

Frank 0.10 0.974 0.203 0.646 0.850 0.206 0.856 0.857
0.30 0.957 0.207 0.645 0.852 0.215 0.856 0.857
0.50 0.938 0.203 0.647 0.850 0.218 0.852 0.853
0.70 0.912 0.204 0.640 0.844 0.215 0.854 0.855

Gumbel 0.10 0.969 0.209 0.638 0.846 0.221 0.853 0.854
0.30 0.947 0.208 0.638 0.846 0.217 0.854 0.854
0.50 0.929 0.208 0.639 0.847 0.210 0.857 0.857
0.70 0.909 0.212 0.638 0.850 0.216 0.854 0.855

Table 3: Empirical global type I error rates, empirical signficance level for each endpoint and proportion of not terminating the trial early assuming equal allocation of type I 
error rate of 0.025 for each endpoint and using Pampallona-Tsiatis boundaries; results based on 10,000 simulations.

Type of Copula τ Empirical Global Type-I PFS OS
Error Rate 1st Interim Final Analysis Type I Error 1st Interim Final Analysis Type I Error

Type-I error rate 0.05 0.00067 0.02479 0.025 0.00067 0.02479 0.025
Independence 0 0.054 0.0008 0.0280 0.0288 0.0008 0.0260 0.0260
Normal 0.10 0.050 0.0007 0.0249 0.0256 0.0010 0.0251 0.0255

0.30 0.046 0.0008 0.0224 0.0232 0.0006 0.0256 0.0256
0.50 0.048 0.0010 0.0260 0.0270 0.0009 0.0259 0.0270
0.70 0.043 0.0005 0.0265 0.0270 0.0006 0.0250 0.0253

Frank 0.10 0.049 0.0009 0.0224 0.0233 0.0006 0.0258 0.0262
0.30 0.049 0.0009 0.0242 0.0251 0.0007 0.0245 0.0253
0.50 0.046 0.0006 0.0265 0.0271 0.0009 0.0233 0.0234
0.70 0.044 0.0009 0.0250 0.0259 0.0005 0.0279 0.0279

Gumbel 0.10 0.051 0.0006 0.0262 0.0268 0.0002 0.0256 0.0257
0.30 0.049 0.0012 0.0250 0.0262 0.0008 0.0254 0.0255
0.50 0.042 0.0006 0.0234 0.0240 0.0005 0.0242 0.0243
0.70 0.041 0.0005 0.0254 0.0259 0.0004 0.0253 0.0254

Table 2: Empirical global power, power for each endpoint and proportion of terminating the trial early assuming equal allocation of type I error rate of 0.025 for each endpoint 
and using O'Brien-Fleming boundaries; results based on 10,000 simulations.
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was 0.05, although it decreased to below 0.05 when   was 0.5 or higher. 
The empirical marginal type I error rates for each endpoint were 
approximately 0.03 and 0.02.

In Table 5, we observed that the empirical global power was greater 
than 0.95 when τ was small to moderate (i.e. less than 0.7). The global 
power decreased to 0.91 when τ = 0.7. Overall, the empirical powers 
were approximately 0.86 and 0.84 for the PFS and the OS endpoints, 
respectively. In addition, we considered an unequal allocation of the 
type I error rate where a type I error rate of 0.01 was used for PFS and 
0.04 for the OS. We observed similar patterns with empirical global 
type I rates of 0.05 and type I error rates of 0.01 and 0.04 for the PFS and 
OS endpoints, respectively (Table not presented). We also considered 
three analyses for the PFS endpoint at 50%, 75% and 100% events and 
two analyses for the OS endpoint. The empirical type I error rates, 
marginal type I error rates, and powers were similar to we observed for 
the two analysis scenario.

Application

The SPARC trial was an international double-blinded phase III trial 
where 950 men with CRPC were randomized with 2:1 allocation ratio to 
satraplatin (experimental arm) or a placebo [17]. The trial was designed 
so that the PFS endpoint has a 85% power to detect a hazard ratio (HR) 
of 1.3. Under the alternative hypothesis of a difference in PFS, 700 PFS 

events were expected to occur at about 24 months. Similarly, under the 
alternative hypothesis of the OS endpoint, the study was designed with 
85% power to detect a HR=1.3. The 700 deaths were projected to occur 
at 44 months after trial activation.

The Bonferroni correction was used in which the type I error rate 
of 0.05 was equally split between the two endpoints. In addition, two 
analyses were to be performed on the PFS endpoint: at 50% PFS events 
and at 100% of the total events which were projected to occur at 15 
and 24 months after study activation. Similarly, for the OS endpoint, 
one interim analysis was to be performed at 50% and the final analysis 
when 700 deaths have been observed. A two-stage procedure was used 
to adjust for the type I error rate. First, the Bonferroni method was used 
to adjust for the type I error rate between the two endpoints. Once the 
type I error rate was allocated, we used the O'Brien-Fleming method 
to derive the z-score boundaries and the type I error rates for each of 
the interim and final analysis so the overall global type I error rate is 
preserved at the pre-specified type I level. The trial was monitored by 
the data monitoring committee for both the PFS and the OS endpoints.

Discussion
The present study empirically assessed the global type I error rate 

and the marginal type I error rates for two endpoints when the alpha 
level was allocated between two dependent time to-event endpoints. 

Type of Copula τ Empirical Global Power PFS OS
1st Interim Final Analysis Power 1st Interim Final Analysis Power

Independence 0 0.979 0.156 0.696 0.852 0.172 0.859 0.859
Normal 0.10 0.973 0.152 0.701 0.853 0.155 0.857 0.857

0.30 0.956 0.154 0.694 0.848 0.158 0.855 0.856
0.50 0.939 0.151 0.707 0.858 0.158 0.861 0.861
0.70 0.914 0.151 0.703 0.855 0.156 0.856 0.856

Frank 0.10 0.970 0.156 0.689 0.845 0.161 0.853 0.854
0.30 0.953 0.154 0.693 0.847 0.161 0.854 0.854
0.50 0.938 0.147 0.703 0.850 0.157 0.851 0.851
0.70 0.913 0.146 0.703 0.849 0.159 0.852 0.853

Gumbel 0.10 0.968 0.156 0.696 0.851 0.158 0.852 0.853
0.30 0.952 0.153 0.696 0.849 0.157 0.860 0.861
0.50 0.930 0.150 0.700 0.850 0.151 0.858 0.858
0.70 0.914 0.154 0.670 0.853 0.163 0.860 0.861

Table 5: Empirical global type I error rates, empirical significance level for each endpoint and proportion of not terminating the trial early using O'Brien-Fleming boundaries 
and assuming unequal allocation of the type I error rate of 0.03 for PFS and 0.02 for OS; results based on 10,000 simulations.

Type of Copula τ Empirical Global PFS OS
Type I Error Rate 1st Interim Final Analysis Type I Error 1st Interim Final Analysis Type I Error

Type-I error rate 0.05 0.00042 0.02990 0.03 0.0014 0.01938 0.020
Independence 0 0.048 0.0004 0.0305 0.0307 0.0009 0.0176 0.0178
Normal 0.10 0.051 0.0008 0.0310 0.0318 0.0011 0.0199 0.0202

0.30 0.049 0.0005 0.0294 0.0295 0.0016 0.0211 0.0220
0.50 0.046 0.0003 0.0312 0.0315 0.0006 0.0194 0.0195
0.70 0.039 0.0002 0.0302 0.0304 0.0001 0.0188 0.0192

Frank 0.10 0.045 0.0004 0.0254 0.0258 0.0013 0.0192 0.0196
0.30 0.049 0.0006 0.0300 0.0306 0.0015 0.0188 0.0194
0.50 0.045 0.0002 0.0302 0.0304 0.0016 0.0184 0.0191
0.70 0.041 0.0001 0.0301 0.0302 0.0013 0.0176 0.0183

Gumbel 0.10 0.050 0.0005 0.0296 0.0301 0.0016 0.0192 0.0200
0.30 0.047 0.0017 0.0317 0.0324 0.0013 0.0170 0.0173
0.50 0.043 0.0005 0.0299 0.0304 0.0009 0.0178 0.0181
0.70 0.042 0.0005 0.0316 0.0321 0.0011 0.0184 0.0190

Table 4: Empirical global power, power for each endpoint and proportion of terminating the trial early assuming equal allocation of type I error rate of 0.025 for each endpoint 
and using Pampallona-Tsiatis boundaries; results based on 10,000 simulations.
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The results of the simulations demonstrate that we control for the global 
type I error and type I rates for both of the endpoints under the null 
hypothesis. When τ, which is a measure of the dependence between the 
two endpoints, was close to zero, the type I error rates were very close 
to the Bonferroni corrected alpha level. Not surprisingly, the empirical 
global type I error rate and type I error rates for each endpoint were 
smaller than the nominal values as the value of τ increased.

In addition, the global power and individual power for each 
endpoint were attained at the desired level under the alternative 
hypotheses. As expected, the power was very close to the desired power 
when τ was equal to or close to zero. As the value of τ increased, the 
empirical power was approximately 0.90, but the powers for each 
endpoint were controlled at the desired levels of 0.85 (Table 6).

Our simulations assumed two interim analyses at 50% and 100% 
of the information for the PFS and the OS endpoints. In addition, we 
considered different combinations with three interim analyses at 50%, 
75% and 100% for PFS and two interim analyses for OS. These scenarios 
were chosen based on common practices in industry sponsored phase 
III trials in oncology. Nevertheless, depending on the specifics of a trial, 
this approach will allow for the inclusion of more interim looks. In 
addition, varying strategies may be used to best allocate the type I error 
rate. For instance, if a drug is promising, a statistician may allocate 
less of the type I error rate on the intermediate endpoint, but reserve 
a large proportion of type I error rate on the primary endpoint that 
will be used in the full approval of the drug by the relevant regulatory 
authorities.

Another consideration is how to estimate the dependence between 
the two endpoints. In our example, we expected the two endpoints of 
PFS and OS to be highly dependent. We estimated τ based on historical 
data that were collected as part of phase II and phase III trials in men 
with CRPC. The estimated τ ranged from 0.31-0.50 depending on the 
definition of the PFS endpoint [18].

Although we have used PFS as the intermediate endpoint, in our 
example PFS and TTP were similar endpoints as the majority of the 
patients (96%) were anticipated to experience progression before death 
[18]. In some cancers, however, patients may die before evidence of 
progression. And as such, more elaborate simulations to address this 
issue could be implemented.

The results of our simulations were robust regardless of the copula 
that we assumed. We are not able to recommend a choice of copula, 

but a graphical method discussed in Wang and Wells may help the 
reader in this respect [19]. One advantage of using parametric copula 
is that they are flexible tools and can describe the dependence between 
two endpoints by a single parameter. The bivariate normal model is 
a special case of our model, that is, a Gaussian copula with normal 
marginals. They are computationally easy to implement and another 
advantage is that most of the literature on sequential methods is based 
on normal distribution.

In summary, the univariate monitoring approach seems to work 
if the dependence between the two endpoints is not too large. This 
approach is intuitive and easy to implement. Most available software 
can compute the sequential boundaries. The main drawback of using 
the Bonferroni correction is that it may be conservative.
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