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Abstract
Obesity is an increasingly frequent condition associated with increased adipose, systemic and pulmonary 

inflammation. There is an emerging and unexpected finding that obese individuals may not be at a greater risk for 
ARDS and, indeed, may even be partially protected against ARDS. This finding is known as the Obesity-ARDS 
Paradox. In this review we discuss the observations regarding this intriguing phenomenon and begin to elaborate 
on the theoretical rationale that obesity-triggered low-grade inflammatory processes may constitute pre-conditioning 
insults or trigger anti-inflammatory adaptive mechanisms that confer protection against ARDS.
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The Obesity-ARDS Paradox
Obesity is an increasing global epidemic that increases 

cardiovascular abnormalities, diabetes, sleep apnea and mortality [1-
3]. The Acute Respiratory Distress Syndrome (ARDS) is a highly fatal 
respiratory failure disorder [4,5]. Because both obesity and ARDS 
are characterized by increased inflammation and oxidative stress [6-
12], obesity might reasonably be considered a risk factor for ARDS. 
However, the opposite seems to be the case. Although obese patients 
manifest a greater incidence of certain pro-inflammatory respiratory 
diseases, such as sleep apnea and asthma [13,14], they actually have a 
lower than expected incidence and/or severity of ARDS in a number 
of studies (Table 1) [15-21]. This unexplained finding is termed the 
“Obesity-ARDS Paradox.” Some of these studies are retrospective in 
nature or do not allow the investigation of the concept that has been 
termed “Metabolically Healthy Obesity” (MHO) [22,23] terminology 
that refers to obese individuals with no associated metabolic 
comorbidities (insulin resistance, atherosclerosis, liver dysfunction). 
Interestingly, this MHO concept has been linked to lower adipose-
related inflammatory profiles and a lower mortality risk compared to 
individuals with metabolically unhealthy obesity [24]. How obesity 
may affect systemic and even pulmonary inflammatory responses 
is the key focus of this review. The differences in the metabolic and 
inflammatory backgrounds of patients in studies that do not fully 
support the Obesity ARDS Paradox phenomenon may explain their 
different conclusions. However, the finding of multiple studies showing 
a lower-than-expected mortality (including lower mortality [15,19,20] 
or similar mortality [17,18,21] than normal weight patients) in obese 
individuals after ARDS is provocative. Elucidating the causes of this 
observation should increase understanding of the causes of ARDS and, 
perhaps, lead to new and needed therapeutic approaches.

Pre-Conditioning as a Mechanism Contributing to the 
Obesity-ARDS Paradox

The underlying mechanism responsible for the Obesity-ARDS 
Paradox is unknown. Confronted with trying to elucidate a reason, we 
hypothesized earlier [25] that obesity-induces a low-grade inflammation 
that generates a process that subsequently protects the lung against 
later insults. We termed this protective response the “pre-conditioning 
cloud” because the mechanism responsible for protection is nebulous 
at this time and likely to be multi-factorial in nature. However, the 
possibility of a pre-conditioning protective response is not new. The 
pre-conditioning or “tolerance” concept has been appreciated for 
many years. In its simplest presentation, pre-conditioning implies that 
a minor “first hit”---a relatively small inflammatory and/or oxidative 
insult that does not generate overwhelming damage---somehow creates 
a beneficial reaction that reduces the detrimental inflammation and/or 
oxidative stress a more aggressive and damaging “second hit”. Double 

(or multiple) hits are common in clinical settings; for example, when a 
patient sustains trauma (“first hit”) and then becomes infected (“second 
hit”). This double hit injury in which an initial insult (for example sepsis 
or trauma) primes and worsens the injury caused by a second insult 
(pneumonia or sepsis), rather than a first hit reducing the damage 
caused by a second hit, has also been observed in animal models and 
often used to create a greater lung injury [26,27]. 

Notwithstanding the detrimental consequences of a double hit 
injury, many observations show that a prior insult, if occurring under 
the right conditions with the right timing, can provide protection 
against a second insult in animals [28-30] and humans [31,32]. Several 
observations in animals are relevant. With respect to lung injury, good 
examples exist in studies of the acute edematous lung injury (“ARDS”) 
that develops in rats exposed continuously to hyperoxia (100% oxygen). 
Pre-treating rats with endotoxin, TNFα and IL-1, or 85% oxygen 
increases the survival of rats in hyperoxia [28-30]. The underlying 
mechanism is not clear but a common feature of these initial insults 
is that they each produce an inflammatory and oxidative response of 
apparently manageable proportions. A second feature of this protective 
response appears to be that time is required between the first and 
second insult for optimal protection to be achieved. In addition, a 
“cross-tolerance” can occur whereby pre-treating with one insult (e.g. 
ozone) will diminish the injury seen by different insult (e.g. hyperoxia) 
[33]. The protective response is not simply related to increases in 
antioxidants, which do not increase following every insult. 

Theoretical Pre-Conditioning Mechanisms Contribut-
ing to the Obesity ARDS Paradox

Several mechanisms have been proposed as responsible for pre-
conditioning development, including an increase of TNFα and other 
cytokines [29,34,35], and of heme oxygenase-1 (HO-1) [36], among 
others [37-39] . Interestingly, obesity raises the adipose and plasma levels 
of TNFα and other cytokines [40] and of HO-1 [41,42]. For example, 
one could hypothesize that the adipose-triggered first hit inflammatory 
mediators (e.g. adipose-released TNFα or other cytokines) locally 
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the physiological negative control responses. The possibilities include 
inducing early p38-MAPK activation, degradating IκBα which leads 
to activation of NFκB, and inducing a late up-regulation of IBβ that 
prevents a prolonged TNFα synthesis [34]. The TNFα preconditioning 
reaches the systemic circulation in ischemia-reperfusion models [34] 
and therefore could contribute to anti-inflammatory protection against 
second hits not only locally but also at a distance (as seen in the remote 
ischemic preconditioning) [37].

One alternate explanation that may be possible but is not as 
well supported at this time, for example, is that the initial obesity-
induced insult (first hit) could then directly reduce the power of the 
second inflammation and/or oxidative stress insult: The distinction 
being that the inflammatory and/or oxidative stress response 

is intrinsically decreased rather than impacted by competing 
protective responses. 

Obesity Related Processes that Might Trigger the Pre-
Conditioning Mechanisms

The unexpected finding that obesity creates an intrinsic resistance 
to ARDS is particularly intriguing because obesity actually worsens 
the outcome of other inflammatory related abnormalities such as 
hypertension, diabetes and sleep apnea [43-46]. One aspect that 
might underlie this difference is that ARDS is an acute disorder 
while hypertension, diabetes and sleep apnea are chronic conditions. 
However, the intensity and nature of the pre-conditioning insult, more 
than the timing, are likely critical in determining any increases in 

Reference Study Description Findings/Comments
Obesity is associated with decreased incidence and/or severity of ARDS

O’Brien, 2006 [20]

Retrospective multi-center study comparing BMI with in-
hospital mortality in mechanically ventilated adult patients 
with ALI/ARDS (n=1,488 patients between 1995 and 
2001).

-	 BMI was independently associated with in-hospital mortality. Survivors had greater 
average BMI and a higher proportion of the obese (BMI>30) patients were survivors

-	 The risk of in-hospital mortality was significantly reduced in obese patients with BMI 
ranging from 30-39.9 compared to patients with normal or underweight BMIs, after 
adjusting for age, gender, race, SAPS II probability of survival, diagnosis or ICU-acquisition 
of renal or genitourinary diseases.

Morris, 2007 [19]
Prospective multi-center observational study analyzing the 
relationship between BMI at hospital admission and clinical 
outcomes in ALI patients (n=825 patients, 1999-2000).

-	 Observed mortality was highest in underweight patients. Mortality decreased as BMI 
increased.

-	 After adjusting for age, acute and chronic illness scores using the APACHE-III score and 
ALI etiology (sepsis, trauma or other), no statistically significant difference was found in 
mortality between obese and normal-weight patients.

-	 ALI Patients with BMI>40 had longer adjusted hospital LOS, and ALI survivors had more 
prolonged adjusted ICU LOS and duration of mechanical ventilation than normal-weight 
patients.

Memtsoudis, 2012 [15]

Database study using the Nationwide Inpatient Sample 
(NIS) developed by the Agency for Healthcare Research 
and Quality (AHRQ) which compared the mortality in 
obese vs. non-obese patients with diagnoses of RI/ARDS 
after surgery (n=9,149,030 surgical admissions between 
1998 and 2007). 

-	 Obese patients after surgery had a decreased incidence of RI/ARDS, need for mechanical 
ventilation when diagnosed with RI/ARDS, in-hospital overall mortality and mortality 
when intubated for RI/ARDS compared to non-obese patients after surgery.

-	 Obesity was identified as an independent protective factor against in-hospital mortality 
after postoperative RI/ARDS (OR=0.31; CI=0.28-0.36) using multivariate regression 
analysis adjusted for age, gender, race, admission status, hospital characteristics, type of 
surgery, and comorbidity burden.

Prevalence of obesity diagnosis in the study population was 5.48%---a significantly lower 
percentage than the CDC national obesity estimate for adults, estimated to be 30%102. 
Possible explanations are surgical pre-selection bias and the use of billing-
derived diagnosis codes, based on ICD-9-CM as used in Clinical Classification 
Software (CCS).

Obesity does not increase ARDS severity

O’Brien, 2004 [21]
Retrospective multi-center study comparing BMI with in-
hospital mortality in mechanically ventilated adult patients 
with ALI/ARDS (n=807).

-	 Ventilator-free days and mortality were similar to those in normal-weight patients.
-	 Underweight (BMI<18.5) and extremely obese patients (weight(kg)-to-height(cm)≥1.0) 

were excluded from the analysis.

Gong, 2010 [17]
Prospective multi-center study analyzing BMI as risk factor 
for ARDS development and severity in patients at risk for 
ARDS at ICU admission (n=1,795, 1999-2007).

-	 30% of at-risk patients developed ARDS.
-	 Patients who developed ARDS had greater average BMI, and BMI was positively 

correlated with ARDS development. ARDS development in obese patients occurred later 
in the ICU stay than in normal-weight patients. Authors suggested that the observed 
ventilatory settings might have played a role in the delayed ARDS development in obese 
patients.

-	 Obesity was not associated with an increased ICU-mortality or with an increased 60-day 
mortality. Survivors had greater average BMI than non-survivors.

Anzueto, 2011 [18] Secondary analysis of prospective observational multi-
center study cohort of mechanically ventilated ICU patients 
designed to analyze the effect of BMI on outcomes of 
mechanical ventilation, including ARDS development 
(n=4,698, April 2004).

-	 Obese and severely obese patients (BMI>30) had an increased incidence of ARDS 
development, higher tidal volumes per predicted body weight and higher PEEP levels.

-	 Outcomes (duration of mechanical ventilation, weaning duration, ICU and hospital LOS 
and mortality) were not significantly different in obese compared to other BMI ranges. 
The authors observed a non-significant trend to lower mortality rates in patients with a 
BMI>30 compared to normal-weight patients.

Obesity is associated with lower inflammatory biomarkers during ARDS

Stapleton, 2010 [16]

Retrospective analysis of the effect of BMI on plasma 
biomarkers and outcomes in ARDS patients evaluated in 
previous NHLBI ARDSNet trials
(n=1,409).

-	 BMI was not associated with increased mortality.
-	 After adjusting for gender, APACHE III score, coexisting diabetes, and ALI risk factors, 

obese patients (BMI>30) had lower plasma IL-6, IL-8, and SP-D levels and higher plasma 
protein C and vWF levels, compared to normal-weight patients.

(ALI=Acute Lung Injury; ARDS=Acute Respiratory Distress Syndrome; ARDSNet= Acute Respiratory Distress Syndrome Network; BMI=Body Mass Index; ICU=Intensive 
Care Unit; LOS=Length of Stay; NHLBI=National Heart Lung and Blood Institute; RI=Respiratory Insufficiency; SAPS II=Simplified Acute Physiology Score II; SP-
D=Surfactant Protein D; vWF=von Willebrand Factor) 

Table 1: Studies related to the Obesity-ARDS Paradox concept.
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protection against injury achieved through this mechanism. Obviously, 
no matter what level of protection might be generated by the increased 
inflammation, oxidative stress and/or other processes occurring in 
obesity, the presence of too many and/or potent simultaneous pro-
inflammatory/oxidative stress “hits” might overwhelm any protective 
adaptation conferred by obesity. 

Until recently, adipose tissue-triggered inflammation was not 
considered to be especially influential systemically. However, it is 
increasingly clear that subtle changes in adipose tissue during obesity 
development constitute mechanisms that may have far reaching effects 
contributing to abnormalities in systemic and pulmonary circulations. 
For example, recent findings suggest that obesity suppresses adipose 
genes encoding proteins involved in transcription regulation, cell 
adhesion, and immune regulation. These genetic changes occur not 
only in adipocytes but also in macrophages [47]. Interestingly, this 
pattern of gene repression resembles the same responses that occur 
during endotoxemia in healthy humans, suggesting a pattern for an 
endogenous reactive protection reaction. In addition, there is a growing 
awareness of the responsiveness of the adipose tissue to ongoing systemic 
insults. During critical illness and, again for unknown reasons, adipose 
tissue macrophages shift from pro-inflammatory M1 to alternative or 
anti-inflammatory M2 phenotypes [48]. These examples suggest that 
a relatively fluid bidirectional cell-to-cell crosstalk exists between the 
adipose tissue and the systemic circulation. This interaction might be 
especially meaningful with respect to the circulation and function of 
the lung. The following proposed mechanisms have not been proven 
in the adipose-lung crosstalk. However, different findings suggest their 
potential role in either producing a direct immune-modulating effect 
in the lung and/or initiating an indirect response by triggering adaptive 
responses (as in the pre-conditioning models). Further research is 
needed to better understand the adipose-lung cell crosstalk pathways. 
This information may provide insight into the potential mechanisms 
contributing to the obesity generated pre-conditioning responses that 
may account for the Obesity-ARDS Paradox. 

Pre-Conditioning Humoral Adipose-Lung Crosstalk 
Candidate Molecules 
Adipocytokines

Hypertrophied adipocytes that characterize obesity secrete increased 
amounts of pro-inflammatory cytokines and chemokines, including 
leptin, TNFα, IL-6, Monocyte Chemoattractant Protein-1 (MCP-1) 
and osteopontin compared to adipocytes from non-obese subjects 
[49-51]. While TNFα, IL-6 and MCP-1 are ubiquitously produced, 
leptin is primarily secreted by white adipose tissue and leptin plasma 
levels are proportional to adiposity [52]. Interestingly, several findings 
suggest a role of leptin on lung inflammation. Leptin is increased in the 
plasma and bronchoalveolar lavage fluid of obese patients compared 
to healthy controls [52,53], but also in the BAL of non-obese ARDS 
patients compared to ventilated non-ARDS controls [54]. Several leptin 
receptor isoforms exist in different pulmonary cell types, including 
bronchial, alveolar epithelial and alveolar macrophages [55]. It is well 
known that leptin promotes the release of Th1-related cytokines [55], 
but recent findings suggest that leptin is also an immunomodulator 
in the lung with a role in efficient defense against infection [56,57] 
and exposure to smoke [58] in mice. Treating murine alveolar or 
peritoneal macrophages with leptin in vitro increases phospholipase 
A2 activity that in turn increases synthesis of leukotriene B4 (LTB4) 
and cysteinyl leukotrienes (LTC4, LTD4, LTE4, LTF4) [59]. Therefore, 
the adipose-originated leptin appears to have the capacity to convert 
distant alveolar macrophages towards pro-inflammatory phenotypes 

and is a direct adipose-lung crosstalk mediator. This obesity-triggered 
leptin-mediated inflammation modulates the pulmonary inflammatory 
background and may contribute to more efficient responses against 
further insults (being infection, smoke or others) as suggested earlier 
by other pre-conditioning methods. Leptin-related adaptations might 
stimulate protective responses that attempt diminishing inflammation 
and/or oxidative stress against further insults in the lung. These possible 
connections make leptin a reasonable candidate for involvement in the 
Obesity-ARDS Paradox, although the specific mechanisms remain to 
be elaborated. 

Adiponectin, an anti-inflammatory adipocytokine, decreases 
during obesity development [60]. Adiponectin receptors also exist in the 
lung and their function is best linked to protection against allergenic-
related inflammatory responses [55,61]. Adiponectin-deficient mice 
show emphysematous-looking lungs and alveolar macrophages that 
produce increased TNFα and matrix metalloproteinase-12 (MMP-
2) [62]. Interestingly serum, more than pulmonary, adiponectin 
levels may modulate Lipopolysaccharide (LPS)-induced ARDS [63]. 
In a study by Konter et al. [63], adding adiponectin to pulmonary 
endothelial cells in vitro inhibited their LPS-induced IL-6 production, 
and ARDS was increased in adiponectin-deficient mice. The authors 
suggest that the obesity-associated serum adiponectin deficiency may 
explain the increased pulmonary vascular inflammatory responses 
and an increased risk to ARDS. However, the Obesity-ARDS Paradox 
is a clinical observation [15-21], and one could also hypothesize that 
the greater pulmonary vascular inflammation related to the decreased 
adiponectin during obesity leads to earlier or more efficient defensive 
responses against a later insult. Furthermore, recent findings are 
highlighting the differences in genetic inflammatory behavior between 
mice and humans [64] counsel caution interpreting any animal-based 
studies reflecting inflammation until confirmed in humans.

Heme oxygenase-1

Heme-oxygenase-1 (HO-1) is a heme-catalyzing enzyme that is 
elevated in the lungs of ARDS patients [65]. HO-1 induction has anti-
inflammatory and antioxidant properties in a variety of inflammatory 
diseases including ARDS [66-68] but also obesity [69,70]. Increased 
monocyte/macrophage HO-1 is also associated with increased 
anti-inflammatory or M2 activation phenotypes (through arginase 
activity), greater phagocytic capacity, accelerated IL-10 production, 
and decreased macrophage inhibitory factor (MIF), TLR4, and iNOS 
activity via p38 MAPK [66,71-73]. For unknown reasons, HO-1 is 
increased in the adipose macrophages of obese humans compared to 
lean subjects [41]. Thus, obesity-initiated macrophage HO-1 increases 
could possibly represent a natural defensive attempt for controlling 
ongoing inflammation produced as a consequence of obesity. It 
is unclear if the obesity-induced increase in macrophage HO-1 
expression concomitantly occurs in the alveolar macrophages, but 
this adaptation could constitute the vehicle for producing a protective 
pre-conditioning in the lung by attenuating inflammatory responses 
after later insults. The theoretical obesity-triggered HO-1 increase in 
the lung could contribute to the Obesity-ARDS Paradox by down-
regulating neutrophil migration [74] and/or by down-regulating 
Iκ-B and IFN-β [75,76]. The pro-inflammatory TNF-α, one of first 
cytokines in the NF-κB cascade, is associated with alveolar neutrophil 
recruitment, increased insulin resistance, type 2 diabetes and obesity 
[77,78]. Therefore, increases in HO-1 may be an endogenous negative 
feedback process that can modulate the obesity-induced NF-κB cascade 
and perhaps lead to attenuation of neutrophil recruitment, and ARDS 
development, following later insults. 
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Peroxisome-Proliferator (PPAR-γ) 

The peroxisomal proliferator-activated receptor-γ (PPAR-γ) is a 
nuclear ligand-activated transcription factor of the nuclear receptor 
superfamily. PPAR-γ is endogenously activated by several unsaturated 
fatty acids [79], and is most prevalent in intestine and adipose tissue 
but also found in vascular endothelium and macrophages [80]. PPAR-γ 
has appreciable metabolic and pulmonary effects. PPAR-γ activation 
attenuates adipose inflammation and insulin resistance [81,82]. PPAR-γ 
stabilizes HO-1 mRNA [76], decreases IFN-β expression [76], and 
promotes M2 phenotype polarization in monocytes and macrophages 
[81]. In the lung, PPAR-γ activation decreases TNF-α, reduces oxidative 
stress and protects alveolar type II epithelial cells from LPS-induced 
apoptosis in vitro [83,84]. 	

PPAR-γ is down-regulated by the obesity-mediated increases 
in leptin [85] a finding that may be responsible for the increased 
pro-inflammatory and fibroproliferative changes in lungs of leptin-
resistant mice and human fibroblasts54. This phenomenon known as 
“leptin resistance” is a desensitization to circulating leptin that also 
occurs in obese patients [86,87]. Although the mechanism is unclear, 
both the leptin-resistant PPAR-γ increase, and the leptin-induced 
pro-inflammatory “first hit”, could theoretically participate in lung 
preconditioning and the Obesity-ARDS Paradox. The relationship of 
PPAR- to this phenomenon warrants further investigation.

Cellular adipose-lung crosstalk 

Because of their capacity to quickly respond to broad stimuli, cells 
of the immune system travel through the circulation and communicate 
among themselves and other cell types. Consequently, inflammatory 
cells related to obesity are likely participants in any mechanism(s) 
involved in the Obesity ARDS Paradox. Nonetheless, despite our focus 
on inflammatory cells, other intermediary cells, such endothelial or 
epithelial cells, may likely contribute to the preconditioning process, 

Neutrophils: Several findings suggest that obesity affects neutrophil 
count and function. First, neutrophil counts are increased in the blood 
of obese humans [88,89]; neutrophil counts also correlate with body 
mass index and waist circumference in obese female adolescents [88]. 
Despite their increased number, little is known about the functional 
activities of the neutrophils of obese patients. However, neutrophil 
recruitment is decreased in obese compared to lean mice in a murine 
LPS-induced ARDS model, In addition, neutrophils from uninjured 
leptin-resistance and diet-induced obese mice show a decreased 
chemoattractant migration to chemokine KC, and a decrease in 
neutrophil CXCR2 expression was suggested as an involved mechanism 
[90]. In this study by Kordonowy et al. [90], the neutrophil surface 
expression of chemokine receptor CXCR2 (also known as IL-8 receptor 
β) was significantly reduced in obese compared to lean mice. Therefore, 
although not confirmed in humans, it is possible that an obesity-related 
neutrophil impairment contributes to the unexpected lower incidence 
of ARDS development in obese humans. 

Monocytes/macrophages: During the development of obesity, 
there is an increase in migration and infiltration activities of blood 
circulating monocytes, which are attracted by adipose tissue products: 
MCP-1, CXCL14, osteopontin, Angptl2, etc [91]. Macrophage 
infiltration in adipose tissue occurs before the development of insulin 
resistance in animal models [82,92]. Monocytes/macrophages are 
very heterogeneous in their activation profiles and function, primarily 
reflecting their local metabolic and immune microenvironment 
[8,93,94]. Macrophage activation phenotypes can modulate the 
inflammatory cascade by releasing different substances with a 

more pro-inflammatory profile (i.e. TNFα, IL-1β, IL-6) in M1 
phenotypes, vs. a M2 profile (i.e. IL-4, IL-10) with anti-inflammatory, 
immunomodulatory or pro-healing properties. Obesity induces a 
switch in adipose tissue macrophages from M2 to M1 phenotypes [8]. 
Whether from adipocytes or adipose macrophages, TNFα and other 
pro-inflammatory mediators (as discussed earlier) keep re-emerging 
as possible mediators of an obesity-related pre-conditioning response. 
Nevertheless, it is not known if or how macrophage changes in the 
adipose tissue affect the remote lung, but macrophage-derived TNFα 
locally induces lipolysis in adipocytes via their TNFα receptor, releasing 
saturated fatty acids that in turn further enhance inflammatory changes 
via the TLR4 receptor [95]. Because new macrophage phenotypes are 
still being described [94], their functions and secreting profiles could 
also have roles in the process underlying the Obesity-ARDS Paradox.

Lymphocytes: Lymphocyte subpopulations have recently attracted 
attention for their potential role in obesity. Lymphocytes could possibly 
be involved in the crosstalk between the adipose tissue and the lung 
during obesity development. Blood T lymphocytes increase with obesity 
[88,96], although the mechanisms responsible for these increases are 
not well understood. In adipose tissue, CD8+ effector T lymphocytes 
play a critical role in initiating and maintaining adipose-related 
inflammation. Nishimura et al. [97] recently showed that CD8+ T cells 
increase in the adipose tissue in diet-induced murine obesity and in 
human obesity. In this key study Nishimura et al. [97] also showed that 
CD8+ T cell infiltration precedes macrophage infiltration and enhances 
M1 macrophage phenotypes and adipose inflammation. Macrophage 
chemoattractant protein (MCP)-1 is a key messenger in this CD8+ 
T-mediated macrophage recruitment [97]. Paradoxically, a recent flow 
cytometry study reported normal levels of CD8+ T lymphocytes in 
the peripheral blood, but increased CD4+ T cells, in morbidly obese 
patients compared to lean patients [98]. The increased CD4+ cells had 
a more Treg- and Th2-phenotype, which suggests a shift towards more 
anti-inflammatory profiles [98]. Whether this anti-inflammatory shift 
exists in all degrees of obesity needs to be confirmed, but it strongly 
suggests a complex still under-explored crosstalk of different T cell 
subpopulations infiltrating the adipose tissue at different time points 
during obesity. The long-distant effect of lymphocyte subpopulations 
in the systemic circulation and the lung is still unknown and there is 
insufficient evidence regarding the involvement of T-lymphocytes in 
ARDS.

Conclusions
The surprising observation and well-named Obesity-ARDS 

Paradox potentially offers important insights into the causes, treatment 
and prevention of ARDS. This provocative observation is further 
underscored by another unanticipated observation showing that patients 
with diabetes also have a decreased incidence of ARDS [99,100]. Both 
of these clinical findings were likely unexpected at the time, although it 
had been shown previously that higher glucose can impair neutrophil 
bactericidal function and this may have impaired their ability to cause 
lung damage as well [101]. Whether the mechanism(s) are triggered 
by adiposity itself or adipose-related hyperglycemia, the reality is 
that the human body appears to have the capacity to develop its own 
endogenous ways of protecting itself against a highly lethal insult like 
ARDS. These protective responses are impressive as well as under-
explored, and likely hold meaningful clues for providing an effective 
treatment or prevention strategy for ARDS.
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