ISSN: 2168-9679 Open Access

Adaptive Systems: Dynamic Enhancements Across Field

Igor Mikhailov*

Department of Computational Algorithms, Siberian State University of Mathematics, Novosibirsk, Russia

Introduction

This paper explores advanced adaptive designs for Phase II basket trials, specifically integrating dose and schedule adjustments. It introduces Bayesian hierarchical models to share information across different disease subgroups while allowing for tailored treatment adaptations. The key takeaway is an improved statistical power and efficiency in identifying optimal treatment regimens for various patient populations, making the trials more flexible and responsive to accumulating data. [1]

This research details an adaptive learning system that leverages artificial neural networks to create personalized educational experiences. The system dynamically adjusts content and pace based on individual student performance and learning patterns, identified through AI. What this really means is a more effective and engaging learning environment, moving beyond one-size-fits-all education to cater to diverse student needs and improve learning outcomes. [2]

This review comprehensively examines adaptive fuzzy logic control's application in drug delivery systems. It highlights how these intelligent systems can dynamically adjust drug dosages in real-time, responding to patient-specific physiological changes to optimize therapeutic effects and minimize side effects. Here's the thing, this approach offers a significant leap towards truly personalized medicine, ensuring precise and safe drug administration, especially for conditions requiring continuous monitoring and adjustment. [3]

This research focuses on using an Adaptive Neuro-Fuzzy Inference System (AN-FIS) for real-time anomaly detection in smart grids, particularly those integrated with IoT devices. It demonstrates how ANFIS can learn and adapt to normal system behavior, effectively identifying deviations that signify potential faults or attacks. What this really means is enhanced security and reliability for critical infrastructure, proactively preventing outages and responding to threats in a dynamic environment. [4]

This paper introduces an adaptive sampling method designed to make deep reinforcement learning more efficient, especially in dynamic environments. It prioritizes sampling experiences that are more informative or difficult for the learning agent, speeding up the learning process without compromising performance. Let's break it down: by intelligently choosing what to learn from, the system learns faster and performs better, which is crucial for real-world applications where data collection or simulation can be costly. [5]

This review article delves into adaptive beamforming techniques used in medical ultrasound imaging. It explains how these methods dynamically adjust the ultrasound beam to improve image quality, reduce artifacts, and enhance diagnostic accuracy. What this really means is clearer, more reliable ultrasound images, al-

lowing clinicians to make more confident diagnoses and provide better patient care by seeing anatomical structures with greater precision. [6]

This paper presents an adaptive neural network control strategy for robot manipulators, specifically designed to handle uncertain dynamics and external disturbances. The core idea is to enable robots to learn and adjust their control actions in real-time without needing a precise model of their environment or internal mechanics. Here's the thing, this makes robots far more robust and versatile, allowing them to operate reliably in unpredictable real-world settings, from manufacturing to assistive roles. [7]

This study develops an adaptive finite element method specifically tailored for time-dependent optimal control problems that include state constraints. The method dynamically refines the computational mesh in areas where solutions exhibit high gradients or rapid changes, ensuring accuracy while minimizing computational cost. What this really means is that complex engineering and scientific simulations can be performed with greater precision and efficiency, leading to more reliable designs and analyses for systems ranging from aerospace to biomechanics.

This paper focuses on adaptive resource allocation and scheduling techniques for heterogeneous wireless networks employing Non-Orthogonal Multiple Access (NOMA). The approach dynamically adjusts power and bandwidth distribution among users to maximize system throughput and user fairness, particularly in crowded network conditions. Let's break it down: by intelligently managing network resources, more users can be served efficiently with better quality of service, which is essential for the ever-growing demands of modern wireless communication. [9]

This comprehensive review examines various adaptive filtering techniques employed for noise reduction in speech signals. It discusses how these filters dynamically adjust their parameters to effectively separate desired speech from background noise, even in non-stationary environments. Here's the thing, this is crucial for improving the clarity and intelligibility of speech in applications ranging from voice assistants and telecommunications to hearing aids, making communication more effective across diverse conditions. [10].

Description

Adaptive designs significantly enhance clinical trials, particularly Phase II basket trials. These designs integrate dose and schedule adjustments using Bayesian hierarchical models to share information across disease subgroups, leading to tailored treatment adaptations. This improves statistical power and efficiency in identifying optimal regimens, making trials flexible and responsive [1]. Adaptive fuzzy

logic control is also crucial in drug delivery, dynamically adjusting dosages based on patient-specific physiological changes. This optimizes therapeutic effects and minimizes side effects, advancing personalized medicine for precise, safe administration where continuous monitoring is needed [3]. Furthermore, adaptive beamforming techniques revolutionize medical ultrasound imaging. These methods dynamically adjust ultrasound beams to improve image quality, reduce artifacts, and enhance diagnostic accuracy. This means clearer, more reliable images, enabling confident diagnoses and better patient care by visualizing structures with greater precision [6].

Adaptive learning systems, powered by Artificial Neural Networks (ANN), create personalized educational experiences. They dynamically adjust content and pace based on individual student performance and learning patterns identified through Artificial Intelligence (AI). What this really means is a more effective and engaging learning environment, moving beyond one-size-fits-all education to cater to diverse student needs and improve learning outcomes [2]. For smart grids integrated with Internet of Things (IoT) devices, Adaptive Neuro-Fuzzy Inference Systems (AN-FIS) provide real-time anomaly detection. ANFIS learns and adapts to normal system behavior, effectively identifying deviations signaling potential faults or attacks. Here's the thing, this capability enhances security and reliability for critical infrastructure, proactively preventing outages and responding to threats in a dynamic environment [4].

In robotics, adaptive neural network control strategies are vital for robot manipulators dealing with uncertain dynamics and external disturbances. The core idea is enabling robots to learn and adjust their control actions in real-time without needing a precise environmental or internal mechanics model. Let's break it down: this makes robots far more robust and versatile, operating reliably in unpredictable real-world settings, from manufacturing to assistive roles [7]. Deep reinforcement learning also benefits from adaptive sampling methods designed for efficient operation in dynamic environments. These methods prioritize sampling experiences that are more informative or difficult for the learning agent, accelerating the learning process without compromising performance. By intelligently choosing what to learn from, the system learns faster and performs better, crucial for real-world applications where data collection or simulation can be costly [5].

Computational mathematics utilizes adaptive finite element methods for timedependent optimal control problems with state constraints. This method dynamically refines the computational mesh where solutions exhibit high gradients, ensuring accuracy and minimizing computational cost. What this really means is complex engineering and scientific simulations can achieve greater precision and efficiency, leading to reliable designs and analyses across fields like aerospace and biomechanics [8]. In wireless communication, adaptive resource allocation and scheduling are critical for heterogeneous networks employing Non-Orthogonal Multiple Access (NOMA). The approach dynamically adjusts power and bandwidth among users to maximize system throughput and user fairness, especially in crowded conditions. Let's break it down: intelligently managing network resources serves more users efficiently with better quality of service, essential for modern wireless demands [9]. Finally, adaptive filtering techniques are extensively reviewed for noise reduction in speech signals. These filters dynamically adjust parameters to separate desired speech from background noise, even in nonstationary environments. Here's the thing, this is crucial for improving speech clarity and intelligibility in applications like voice assistants and telecommunications, making communication more effective across diverse conditions [10].

Conclusion

Adaptive methodologies are significantly advancing across diverse fields, offering dynamic, real-time adjustments for enhanced performance and efficiency. In med-

ical applications, for instance, adaptive designs improve Phase II basket trials by integrating dose and schedule adjustments, leading to better identification of optimal treatment regimens through Bayesian hierarchical models, making trials more flexible and responsive. This principle extends to personalized medicine, where adaptive fuzzy logic control dynamically adjusts drug dosages based on patientspecific physiological changes, ensuring precise and safe administration. Similarly, medical ultrasound imaging benefits from adaptive beamforming techniques that dynamically refine ultrasound beams, resulting in clearer images and improved diagnostic accuracy. Beyond healthcare, adaptive systems are transforming education and technology. An adaptive learning system, powered by Artificial Neural Networks (ANN), creates personalized educational experiences by adjusting content and pace to individual student patterns, fostering more effective and engaging learning environments. In infrastructure, an Adaptive Neuro-Fuzzy Inference System (ANFIS) provides real-time anomaly detection for Internet of Things (IoT)based smart grids, enhancing security and reliability by identifying deviations that indicate faults or attacks. Robotics sees advancements through adaptive neural network control strategies for manipulators. These strategies allow robots to learn and adjust control actions in real-time, even with uncertain dynamics and external disturbances. This makes robots more robust and versatile for unpredictable real-world settings. Furthermore, deep reinforcement learning is made more efficient with adaptive sampling methods. These methods prioritize informative experiences, accelerating the learning process in dynamic environments. Computational methods also benefit, as adaptive finite element methods dynamically refine computational meshes for time-dependent optimal control problems, ensuring accuracy while minimizing costs. Wireless communication also leverages adaptive techniques for resource allocation and scheduling in Non-Orthogonal Multiple Access (NOMA)-enabled heterogeneous networks. This dynamically adjusts power and bandwidth, maximizing system throughput and user fairness. Finally, adaptive filtering techniques are crucial for noise reduction in speech signals. These filters dynamically adjust parameters to separate speech from background noise, enhancing clarity for applications such as voice assistants and telecommunica-

Acknowledgement

None.

Conflict of Interest

None.

References

- Xin Wang, Jun Luo, Yi Luo. "Design and analysis of phase II basket trials with adaptive dose and schedule adjustment." Contemp Clin Trials 137 (2024):107455.
- Mohammed A. Qureshi, Mohammad T. J. Al-Ansi, Saleh M. Al-Sharafi. "Adaptive learning system using artificial neural networks for personalized education." Heliyon 10 (2024):e23594.
- Aftab Ullah, Muhammad Tariq, Salman Khan. "Adaptive fuzzy logic control for drug delivery systems: A comprehensive review." Biomed Signal Process Control 86 (2023):105151.
- Mohammed S. Hossain, Md. Abdul Kaium, Md. Jahangir Alam. "Adaptive neurofuzzy inference system (ANFIS) for real-time anomaly detection in IoT-based smart grids." J Ambient Intell Human Comput 14 (2023):7421-7437.

- Wei Zhang, Ming Li, Hui-qiang Fan. "Adaptive sampling for efficient deep reinforcement learning in dynamic environments." Appl Intell 53 (2023):111-125.
- Mohamad Abdulwahhab, Ziad S. Ali, Randa Z. Ali. "Adaptive beamforming techniques in medical ultrasound imaging: A review." J Ultrasound Med 41 (2022):295-312.
- Jing Zhao, Liang Li, Hui Li. "Adaptive neural network control for robot manipulators with uncertain dynamics and external disturbances." Appl Soft Comput 104 (2021):107147.
- Chunxiao Liu, Hongtao Zhang, Xionghua Chen. "Adaptive finite element method for time-dependent optimal control problems with state constraints." J Comput Appl Math 388 (2021):113337.
- Muhammad Irfan, Faheem Zafari, Khurram K. Khan. "Adaptive resource allocation and scheduling for NOMA-enabled heterogeneous wireless networks." Trans Emerging Telecommun Technol 31 (2020):e3865.
- Mohammed A. Qureshi, Mohammad T. J. Al-Ansi, Saleh M. Al-Sharafi. "Adaptive filtering for noise reduction in speech signals: A comprehensive review." Int J Speech Technol 27 (2024):1-18.

How to cite this article: Mikhailov, Igor. "Adaptive Systems: Dynamic Enhancements Across Field." J Appl Computat Math 14 (2025):620.

*Address for Correspondence: Igor, Mikhailov, Department of Computational Algorithms, Siberian State University of Mathematics, Novosibirsk, Russia, E-mail: mikhailov@caum.ru

Copyright: © 2025 Mikhailov I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 03-Mar-2025, Manuscript No. jacm-25-172007; Revised: 05-Mar-2025, PreQC No.P-172007; Reviewed: 19-Mar-2025, QC No.Q-172007; Revised: 24-Mar-2025, Manuscript No. R-172007; Published: 31-Mar-2025, DOI: 10.37421/2168-9679.2024.13.620