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Abstract
Multi-sensor-Multi target tracking is an emerging technology which is an essential building block of 4-D trajectory 

based operation in next-generation air transport system. This study proposes an adaptive algorithm for filtering and 
fusion of multiple heterogeneous sensors, which includes secondary surveillance radars at different geographical 
location and ADS-B, whose measurements and sensor characteristics are different from one another. Decentralized 
fusion architecture based on 4D-dimensional (3-D plus time) Earth-Centered Earth-Fixed (ECEF) common coordinate 
system is adapted to process the data received asynchronously from multiple heterogeneous sensors. The proposed 
algorithm, removes sensor bias, by proper sensor registration process using LMS (Least Mean Square) algorithm 
and thereby increasing the quality of the track. A decentralized Adaptive filter with Decentralized Kalman Filter Fusion 
(ADKFF) method based on Mahalanobis distance is proposed to carry out the fusion task. This study also makes 
use of the Down-linked Aircraft Parameters (DAP) which can be obtained from mode-S radar and ADS-B for the 
computation-ally efficient fusion process. The simulation results indicate that the proposed adaptive filtering algorithm 
with decentralized Kalman filtering can remove sensor registration error, better tracking performance, eliminating 
ghost and more accurate position information using different types of surveillance sensors.

Keywords: Multi-radar-ADS-B fusion; Multiple heterogeneous 
sensors; Earth-centred earth-fixed

Introduction
With the advancement of civil aviation to cop up with increase in 

air traffic, accurate determination aircraft position and for providing 
safe separation, demand for reliable and precise air traffic control 
surveillance system increased. Multi-radar-ADS-B fusion processing 
offers an advance on target tracking by fusing the detections of multiple 
radars and ADS-B in areas of overlapping coverage, improving the 
probability of detection and the tracking of maneuvering aircraft. 
Multi-target multi-sensor target tracking is a form of estimation fusion, 
in its core processing feature of the Surveillance Data Processing System 
(SDPS) for Air Traffic Control (ATC) [1]. SDPS estimates the state of 
targets using the measurements or estimates that are obtained from 
multiple surveillance sensors. With the advancement of secondary 
radar technology and ADS-B more reliable information from aircraft 
are received on ground station, which includes Download Aircraft 
Parameters (DAP) like speed, heading altitude etc. ADS-B [2,3] is a 
dependent sensor, which uses satellite-based or inertial systems of 
aircraft to determine the position and other additional information. 
Contrary to typical independent sensors, such as radar, ADSB 
measurements are all dependent upon and calculated by the aircraft 
systems. ADS-B is known to have the following advantages: a high 
refresh rate (at least 1 Hz), small latency, high positioning accuracy, 
and availability of onboard surveillance as well as ATC [1]. On the 
other hand, the drawbacks include the following: dependency on the 
equipage of the aircraft and the Global Navigation Satellite System 
(GNSS), reliance on the data correction sent by the aircraft, time 
stamping error, and additional issues [4]. One of the most important 
characteristics of ADS-B, regarding target tracking and fusion, is that 
its measurements and corrections of these terms solely depend on each 
aircraft based on ADS-B transceiver used on it. This shows that the 
tracker may not be able to handle the ADS-B measurements properly 
if a particular aircraft processes data incorrectly and sends the wrong 
information to the tracker without any form of notification. Fusing the 

data from multiple sensors such as radar and ADS-B which have the 
most challenging ones heterogeneous characteristics.

A tracking function for air traffic control based on radar and ADS-B 
messages was proposed by Beseda et al. [5]. The use of both sensors can 
lead to a significant improvement both in track accuracy and overall 
system integrity. Baud et al. [2,4], described the experimental data 
fusion architecture, processes, and steps required for the air traffic 
control applications that were based on radar plots and ADS-B reports 
to enhance track accuracy and sensor coverage. ICAO (International 
Civil Aviation Organization) has published [3] Minimum Operational 
Performance Standards for ADS-B integration. A simple ADS-B data 
fusion method to incorporate ADS-B data into traffic control centers 
already operative was proposed by De Vela et al. presented. But the 
fusion was with the minimal intervention on the tracking filter already 
tuned and tested [6,7]. Da Silva et al., proposed both centralized and 
distributed fusion architectures with an assumption of synchronous 
radars and ADS-B sensors. Practically all the sensor synchronization is 
not possible because all are working on different geographical location 
with different delays. In the last three decades, both synchronous and 
asynchronous sensor registration problems have been studied [8-11]. 
Sensor registration entails two major objectives. The first objective is 
to align the different sensor platforms by removing the bias of each 
cooperating unit for the purpose of track association. The second is 
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to estimate target positions with respect to geodetic coordinates. The 
common radar registration errors contained in radar measurements 
are range, azimuth, and altitude and time biases. The range bias is a 
constant deviation in range measurement while the azimuth bias is a 
misalignment of the radar north mark with respect to the true north 
mark or lateral position offset. Both biases are varied with distance from 
the radar site over the coverage area of each sensor. It is assumed to be 
almost nil for ADSB measurement. Clock offset could cause the radar 
and ADSB time bias, and/or processing, storage, and transmission 
delays.

A detailed study on the requirement of ADS-B integration to the 
existing surveillance system and future requirement next-generation 
air transport system was conducted by Strohmeier M et al., [12]. Later 
Jeon D et al. [1] proposed a system for the estimation fusion of multiple 
heterogeneous sensors, which includes radar and ADS-B, whose 
measurements and sensor characteristics are different from one another. 
Their proposal was a centralized fusion architecture based on three-
dimensional Earth Centred Earth-Fixed (ECEF) common coordinate 
system is adapted to process the data received asynchronously from 
multiple heterogeneous sensors. Their study also proposes variable-
sized measurement vectors and matrices for the tracking filter in order 
to dynamically reflect the availability of the additional measurements 
from the Downlinked Aircraft Parameters (DAP) which can be 
obtained from mode-S radar and ADS-B. But the system lack in the 
processing of ADSB data completely and correlating same with radar 
data. It also lacks effective bias estimation (pre-filtering) data from 
multiple sources. Bias estimation or sensor registration is an essential 
step in ensuring the accuracy of global tracks in multi sensor-multi 
target tracking. An algorithm capable of accurately estimating the biases 
even in the absence of filter gain information from local platforms was 
proposed by E. Taghavi [13] for distributed-tracking systems with 
intermittent track transmission. But the proposed algorithm does not 
take care fusion process to make use of all available information and its 
merit. Major drawbacks of the previous study [1] are that their main 
purpose is to improve tracking performance with the usage of ADS-B 
data without considering the target location with respect to the radar 
location. Thus didn’t consider the major issue of the track is jumping in 
the same coverage area which affects standard separation between two 
aircraft. It also didn’t take care of the radar bias error and correcting the 
same, which will result discarding radar data which having a constant 
bias. This study utilizes making use of both radar and ADS-B data and 
giving proper weight to data received from each sensor thereby smooth 
transition of track in the boundary of the cell grid. It also calibrates the 
radar sensor data with the data from ADS-B and vice-versa using LMS 
feedback algorithm in the preprocessing stage. A decentralized fusion 
architecture is designed to overcome the above-said drawbacks [1,13] 
which make efficient use of both radar and ADS-B data for accurate 
track prediction system.

In this paper, we propose an algorithm based adaptive filtering/
gating process to remove bias error and thereby an accurate registration 
process achieved. The algorithm calculates these biases using quality 
ADS-B positions and velocities as approximate true quantities. The 
LMS adaptive filtering along with decentralized Kalman filtering make 
an optimal ADS-B radar data fusion. The paper is organized as follows. 
Section 2 defines system dynamics and formulates bias error correction 
or registration using LMS algorithm. In section 3 an algorithm for 
multi radar-ads b data fusion based decentralized Kalman filter. A set 
of simulations presented in Section 4, and the conclusions provided in 
Section 5.

Problem Definition and System Dynamics
Problem definition

Today, air traffic controllers in India utilize multiple radars to 
provide separation for en route surveillance. Terminal controllers in 
India are required to use a single radar to provide 5 NM (Nautical 
Mile) separation up to 60 nm range (terminal radar is a mono-pulse 
secondary surveillance radar/+ primary) from radar head. Likewise, 
en route controllers in India use a single radar (uses the single sensor 
from multiple inputs) for separation with 10 NM separation beyond 
60 NM from radar head. This method, called mosaicking, displays the 
radar returns from preferred en route radar for a particular geographic 
area. If a radar return from the preferred radar is not available, then 
the radar report from the alternate radar is utilized, although this 
often causes track jumps. This will cause serious impact on separation 
which will increase or decrease abruptly which also contribute error in 
conflict prediction.

One reason for using single radar reports even when reports from 
multiple radars are available is to avoid errors introduced by biases 
uncorrelated between different radars. Each radar has several types of 
bias: location bias, azimuth bias, and range bias. Location bias results 
from uncertainty about where the radar is located and typically amounts 
to 200 ft in any direction independent of range. Azimuth bias results 
from incorrect alignment of the 000-degree mark (True North for en 
route radars and Magnetic North for terminal radars), and mechanical 
misalignments between the antenna and the hardware that interfaces 
the position encoder to the rotating antenna. This error has been found 
to be +=0:3 degree for some en route and terminal radars. Moreover, 
this bias is azimuth dependent and varies with time. Azimuth bias 
causes position error that increases with increasing range. Range bias 
(typically on the order of 300 ft) is introduced by the normal design 
limits imposed by the range sampling clock and the allowable turn 
around processing time of transponders.

Some of the existing fusion issue while using multi-sensor is 
shown in Figure 1. Two radar located at different geographical 
locations indicated as Radar 1 and Radar 2. The measurements on 
radar surveillance plot are shown on right side. The red and green 
marks are measurement received from two radar around 100 nm apart. 
Target detection and by two radar has shown as blue and red ’X’ and 
’.’ mark shows its position as ADSB position. A real-time radar data 
plot from Indra automation system is shown in Figure 2. The x is the 
corresponding previous measurement and square block with data 
block shows the identity of the aircraft, speed, and its altitude. It can 
be seen that the measurement error from radar 2 (red) is more and 
having constant bias error as the target the moves away from radar the 
measurement error varies. This is the radar plot of an aircraft on real-
time flying at FL360 (36000 ft). It is observed that this error from 0.2 
NM to 1 NM and cannot be easily identifiable when to put 260 NM 
resolution, which normally used in Area control surveillance.

Here we propose an Adaptive filtering algorithm for registration 
of multi-sensor data which will minimize the different bias error and 
optimize the fusion result. All bias correction computations take place 
in stereo plane coordinates so the reverse transformation of ADS-B 
data to radar coordinates is not required. A stereo plane is an imaginary 
plane where each Cartesian coordinate on the plane represents a point 
on the Earth’s surface. Radar target reports are converted from polar 
coordinates to the stereo plane while ADSB target reports position 
and velocity in geodetic coordinates are also converted to the stereo 
plane. Each radar report is linked with an appropriate ADS-B report. 
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This linked pair represents one target and, together with its velocity, 
provides the raw data for the registration calculations.

System dynamics

Sensor data received from the radar and ADS-B are all converted 
into ECEF X, Y, Z coordinates. This allows tracking in the same 
coordinate system. In the case of radar, the slant range (Rm) from the 
radar site to the target, azimuth (m), and altitude (hm) are typically 
obtained. When we consider the surveillance display the target are 
plotted in XY plane (2-D) with altitude and Identification information 
in data Block and position will be updated based on the time in a 2-D 
plane. If the radar has mode-S functions and the target reports include 
the Downlinked Aircraft Parameters (DAP), such as ground speed 
(V Gm), heading (m), and altitude rate (h), the measurements can 
be extended to carry the velocity terms. Thus, the ECEF-based radar 
measurement vector is defined as a 2D plane when Mode A/C radar 
data (1) or (2) based on the availability of DAP in the measurements 
when mode S information used.

Let’s assume an aircraft that moves only on a plane (air traffic 
surveillance display), then its motion is entirely defined by 3 variables: 
translation on the x-axis, translation on the y-axis, and a rotation by 
an angle θ around the z-axis. If we want to track the movement of this 
object in a specified time interval T in the plane, we must know its 
pose (x,y,θ) at every moment of time within the time interval T. In this 
paper we consider the movement in (x,y) to study linear system and 
assume We can measure the position of this object at every instant of 
time. However; sensor’s readings are usually noisy, and they cannot give 
us an accurate value of the object’s position. One of the solutions for 

the above issue is to use a Kalman filter to estimate the position of the 
object at every time step in the time interval T. To use Kalman filtering 
to track an object in a plane, we first need to model the movement of 
this object. We cannot model the object’s movement accurately, but we 
can have an acceptable approximation model of the object movement. 
Assuming that the motion on the x-axis is uncorrelated to the motion 
on the y-axis by ignoring the jerk and all the higher derivatives of the 
pose, we can write the following discrete equations that describe the 
object’s movements in 2D constant velocity model as shown below:

1 =k+ k kx x Tx+                   (1)

1 =k+ k ky y Tx+                   (2)

1 =k+ k kx x Tax+                   (3)

1 =k+ k ky y Tay+                   (4)
where xk and yk are the position and kx  and ky  are the velocity. We can 
rewrite them as a state space model as following:
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It can be rewritten as a state model

Xk + 1 = AXk + Wk                  (6)

On the above, we assume that random accelerations can 
happen between sensor samples, and define the dynamic noises 
as assuming is a Gaussian distribution noise with a mean zero 
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We assume that we can sense the x and y positions (when DAP not 
available), denoting sensor measurements as observation equations.

1 =  + k k kx x n                    (8)

2k k ky  = y  + n                    (9)

we assume that both sensor readings are corrupted by noise 
n1k and n2k are Gaussian distribution noise with a mean zero 

2 2
1 1 2k 2~ (0, ) and ~ (0, )k n nn nσ σℵ ℵ  that can be modeled as 
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The above equations can be written in matrix form as 
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Here we assume that the data received from a sensor having bias 
error which is static for a particular sensor and dynamic processing 
error in the measurement equation will modified the following section. 
Then Vk will be some of Bias and dynamic error. We assume that bias 
error will be constant for sensor and dynamic measurement error will 
vary. The covariance of the dynamic noises can be written as:

Figure 1: Multi radar target detection in common coverage area.

Figure 2: Radar plot from Indra Automation system.
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Multi-Sensor Fusion Process
An adaptive filter with Kalman filter structure that is provided 

for the multiple sensor fusion is proposed in Figure 3. Here for the 
redundancy and minimizing biasing errors, we have a parallel process 
each sensor data, and master filter will combine this data. The primary 
sensor which used for reference measurement is selected from the 
available sensors and for a particular grid; it is selected dynamically 
according to the target location with respect to sensor and sensor 
accuracy and availability. A separate algorithm developed. Here we 
consider the decentralized fusion center where the processed data from 
different sensors combined. The data received from the various sensors 
include ADS-B Messages, Modes-S information, and secondary data 
since we consider terminal area navigation these are the primary source 
of the sensor. The data received from the multi-sensor can be correlated 
easily by the information from Down Aircraft Parameters (DAP) or 
Mode-A/S identity as we are considering only the cooperative target in 
civil aviation. Here we are assuming that no same target can be sensed 
by a single sensor or multiple sensors at different locations (outside 
course gate region) at the same time. The presence of the same target at 
a different position is due to sensor fusion error, identity error or ghost 
track due to the error in the radar processing unit. In this study, the 
reliability of each sensor used in the multiple sensor fusion is evaluated 
and weighted value is granted to select the main sensor after removing 
bias error, and the method that the error-weighted average with each 
sensor is compensated for finding the fusion sensor result value is 
presented. In this paper, we consider a single target which is identified 
by both radars and ADS-B correctly and correlated. The algorithm can 
be extended to multiple targets under similar conditions. The Radar 
characteristics of SSR and ADS-B considered here for modeling the 

system. Here we consider the corresponding sensor and target process 
the data received from the Radar and ADS-B are detected by the 
sensor in decentralized fusion. The data collected from the sensors are 
coordinate converted to make it in a common coordinate system so 
that coordinate conversion error can be minimized. Here we consider 
the scenario where heterogeneous (radar/ADS-B) sensor fusion. On 
that, practically two scenarios come when we receive the same target 
data from a single sensor and second, both receivers receive data on a 
particular grid cell. In the first case, the data will process directly and 
the second case, from the received data we can calculate the location 
of the target on a particular grid. For this, we calculate the Euclidean 
distance from the target and the received sensor (radar). Here we 
considered the Secondary surveillance radar and one ADS-B message. 
The distance between the target and radar calculated as followed. The 
first step of the algorithm is to find the closest radar which can be used 
as the primary source for the particular cell. The location of Radars is 
known. Let Rx1, Ry1 be the geographical location of Radar 1 and Rx2, 
Ry2 be the Radar 2 geographical location. Let D1 be the distance of the 
target from Radar 1 which can be found out by

2 2
rdar1 1 1 11 ( ( 1) ) ( ( 1) )x rdar yD X t R Y t R= − + −                  (14)

( )22
2 2 2 22 ( 1) ) ( ( 1)rdar x rdar yD X t R Y t R= − + −                  (15)

Similarly, D2 can be found out by in a particular cell if D1 ≤ D2 then 
for the location prediction and updating the primary sensor data from 
will be data from R1 and maximum weight will be given from error 
calculated from the Radar R1 in Kalman filtering process updating. 
If D1>D2 then for the location prediction and update the primary 
sensor data will be data from Radar R2. If the distances are comparable 
the both having given equal weight for updating. If the ADS-B data 
available initially it will be used as the main sensor for calibrating 
other sensors adaptive filtering technique, which was explained in the 
following section. Here we consider one more situation as per different 
studies normally within 60 nm range the radar data is more accurate 
and reliable. The ADS-B data quality will vary according to ADS-B Tx/
Rx equipment used in each aircraft. We can use Radar data as main 
sensor data according to error receiving from the main filter we will 
compare the radar data value and logically select the main source. In 

Figure 3: Adaptive filter with Kalman filter block diagram.
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this study, the method is proposed on having the Surveillance radar as 
the primary sensor since it derives the target range and velocity derived 
from the radar beam. ADS-B as the main sensor for calibrating the 
radar data especially outside the particular range (60 nm) away from 
the sensor head. If the proper time synchronization is done both SSR 
and ADS-B has to give the same location for a single target at a time.

Pre-processing (Registration process)

Here we propose an LMS based adaptive filtering algorithm to 
minimize bias error of each sensor on the next update for the particular 
cell for which bias was minimized. The above is a recursive process 
and bias will vary according to cell and primary sensor used. The bias 
will be zero minimum when the primary sensor and sensor under 
consideration are same. Consider the position of data received from 
each sensor, Let For two-dimensional radar reports, the adaptive 
filter takes the format of a 2-D Finite Impulse Response (FIR) filter, hj 
(m1,m2). Here we consider primary source data location for the current 
time t=0 is P1t0 (m1,m2). We consider that the data received from 
primary is reference data either will be ADS-B or will be a radar data 
from radar which is close to the target as per grid cell location.

1 2 t 0 1 2 1 1 1 21 ( , ) ( , ) ( , )to PP m m T m m B m mδ= + +             (16)

Where Tt0 (n1,n2) be the target original position at time t0 and B1 is 
the bias error for the second sensor1 and δP1 is the measurement error 
due to other factors. For the reference sensor, we initially assume that 
error approximately zero or negligible i.e 1 1 1 2~ 0 (m , m ) ~ 0PB
is the data received from the second sensor. We assume that the data 
received from the second sensor having bias error which is static for 
the sensor and dynamic processing error in the measurement. Begin

1 2 t 0 1 2 1 1 1 21 ( , ) ( , ) ( , )to PP m m T m m B m mδ= + +             (17)

Where B2 is the bias error for the second sensor and δP2 (m1,m2) 
is the measurement error due to other factors. For finding the filter 
coefficient which will minimize error here we use a least-Mean-Square 
(LMS) adaptation algorithm, the adaptive filtering process is given as 
follows the 2-D. 

LMS adaptation algorithm can be written as:

Filter output (Prediction phase): 

0 1 2 1 2 2 1 2
ˆ2 (m ,m ) (m ,m ) 0(m ,m )t jP h P t= ∗               (18)

Estimation error: 

e(m1, m2) = P1t0(m1, m2) P2t0(m11, m22)               (19)

Filter adaptation (Update phase): 

1 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) 2 ( , )j j toh m m h m m e m m P m mβ
∧ ∧

+ = +             (20)

Initializing the filter for the next data at time t1:

1 1 2jt h 1(m ,m )
∧

+

Where (m1,m2) denotes x and y position of target and β is the 
adaptation step-size. 1 2

ˆ ( , )jh m m denotes filter coefficient at jth iteration. 
Under the appropriate conditions, (i.e, the right step-size and the right 
filter size) 1 2

ˆ ( , )jh m m converges to the system model and bias error will 
be eliminated. Kalman filter will take the measurement error care on the 
next stage. Here for finding suitable filter coefficient, LMS algorithm is 
used. For that, we have to minimize the mean square error. For making 
computation efficient and parallel, we process x and y coordinates 
independently using the same. Here we use steepest descent algorithm 
due to low computational complexity, simple to implement and to allow 

real-time operations. It also doesn’t require statistics of the data like 
correlation and covariance.

Decentralized adaptive kalaman filtering

At the start of the process, the Kalman filter must be given a correct 
initial state and an initial covariance matrix. In this work, an adaptive 
filter with decentralized Kalman filter fusion (ADKFF) method based 
on Mahalanobis distance is proposed to carry out the fusion task. This 
approach can adaptively adjust the measurement noise covariance 
matrix of the local Distributed Kalman Filters (DKFs) and thereby, 
determine the weight of each sensor more accurately in the fusion 
procedure. Then, the fused result will benefit from the source sensors 
with higher confidence. When performing this fusion method, the 
predicted states | 1ˆmk kx  are first obtained from the estimated state 

1| 1ˆmk kx −  at time k1, where m=1,2,...M denotes the number of source 
sensor. Then, with the observations m

kz  and sensor confidence based 
on m

kMD , these predicted states are corrected and the corrected 

estimate |ˆm
k kx  at time k is obtained. The correct estimate fed back to the 

prediction step for the next iteration. Finally, a fused state ˆkx  at time 
k is generated with the local estimates. We assume that the local DKF 
process has |ˆm

k kx  a state vector nx ∈ℜ  and the process is governed by

xk + 1 = Ak - 1xk + wk-1               (21)

With a measurement rz ∈ℜ  that is defined by

zk = Hkxk + vk                (22)

In the above equations, the random variables wk and ʋk represent 
the process and measurement noise with the covariance Qk and Rk, 
respectively; they are zero mean. Gaussian white noise having zero 
cross-correlation with each other. The state transition matrix Ak1 relates 
the state at the previous time step k1 to the state at the current time step 
k with process noise wk. Hk represents the observation transition matrix 
and relates the state xk to the measurement zk. In a practical object, 
tracking 1| 1

m
k kx − − denotes the state of sensor m (m=1,2,..., M) at time k-1. 

Then the prediction | 1
m
k kx −  is generated by (24) and the corresponding 

prior estimate error covariance | 1
m

k kP −  is given by (25):

| 1 1 1| 1
m m
k k k k kx A x− − − −=                (23)

| 1 1 1| 1
m m
k k k k kx A x− − − −=                   (24)

| 1 1 1| 1 1 1
m m T

k k k k k k kP A P A Q− − − − − −= +                  (25)

With these predictions, the estimate of the next time |
m
k kx  is 

obtained as follows:

| | 1 | 1( )m m m m m m
k k k k k k k k kx x K z H x− −= +               (26)

T T 1
| 1 k | 1 k(H ) (H )m m m m

k k k k k k kK P H P R −
− − = +                  (27)

| 1 k | 1K Hm k m
k k m k kP I P− − = −                     (28)

Where Kk
m denotes the local DKF gain matrix for sensor m at time 

k and 
|
m

k kP  represents the corresponding posteriori estimate error 
covariance.

Adjustment of measurement error covariance matrix using MD: 
In the procedure described above, the measurement error covariance 
matrix R models the uncertain and inaccurate information of the filter. 
It reflects the precision of the source sensors and plays an important 
role in the state estimate. In the traditional method, this matrix is 
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usually set a fixed value, which implies that the corresponding sensor 
is also set a fixed confidence. This will significantly affect the fusion 
result. For solving this problem, in this study, the sensor confidence is 
applied to adaptively adjust the measurement error covariance matrix. 
It is defined by

,

,

0
0

xx
m km

k yy
m k

R
R

R
 

=  
 

               (29)

It is assumed that the measurement error is not cross-correlated. 
Thus, we set Rxy and Ryx to 0. The function for the cxx and cyy is defined 
as follows:

, , [c ]xx xx xx
m k i jR c w=                (30)

, , [c ]yy yy yy
m k i jR c w=                 (31)

For calculating weight, we use Mahalanobis distance are calculated. 
The Mahalanobis Distance (MD) [14,15] is one of the fundamental 
and widely used techniques as a distance measure for classification. 
Therefore, the Mahalanobis distance should be used as a basis of our 
new weighted distance metric. The features which are distorted by noise 
have, on average, a higher influence on the distance measure than the 
less distorted features as they are further away from the feature mean 
of the class. Therefore, we aim to lower the influence of these features 
by reducing their weight. To find the features which have the strongest 
influence on the distance we solve the Mahalanobis distance equation 
for every single feature c overall input samples i and classes j and store 
the value in M: ∀(c,i,j): 

1
, [ ] ( [ ] [ ]) [ , ] ( [ ] [ ])i j i j i j

j
M c x c c c c x c cµ µ= ∑             (32)

The goal now is to give less weight to the features with high distance 
and vice versa to avoid the masking of the features with small distances 
∀(c,i,j):

, , i, j
(c 1)

[c] M [c]
N

weighted
i j i jD w

=

= ∗∑                (33)

Under the two constraints: ∀c: w[c] ≥ 0, ∑(c = 1)N wi,j[c] = N another 
approach could give more weight to features which are similar to other 
features than to features which are very different. The idea here is that 
noisy features should be significantly different from noise-free features, 
as long as only a small number of features are distorted by noise. We can 
calculate the difference d[c] for the features as ∀(c,i,j):

, , ,
( 1)

[ ] [ ]
N

weighted
i j i j i j

c
D w c M c

=

= ∗∑               (34)

Normalize and invert to calculate the individual weights ∀(c,i,j):

, , ,[ ] ( 1) [ [ ]]) / ( [ ]N
i j i j i jw c a d a Nd c= =∑               (35)

These weights could be directly used in equation 29. The matrix 
m
kR  will finally affect the fused estimate by influencing the corrected 

estimate |ˆm
k kx , the local Kalman filter gain matrix m

kK , and their 
corresponding estimate error covariance matrix 

|
m

k kP , as shown in 
equation 25 and 27.

Fusion centre

When the local prediction | 1
m
k kx − , corrected estimate |

m
k kx , the 

corresponding error covariance 
| 1
m

k kP  and 
|
m

k kP  is ready, a fused 
estimate ˆkx  can be generated from the fusion centre. The fusion centre 
also has two steps, namely the prediction step, and a correction step. 
The prediction step is performed on the basis of the previous corrected 

estimate as follows:

1 1ˆ ˆk kkx A x− −=                 (36)

k 1 1 1 1P T
k k k kA P A Q− − − −= +                (37)

The final fusion result ˆkx  is obtained from the correction step, 
which is calculated on the basis of the local estimates as in (38) and 
(39). It will be fed back to the next prediction step [8].

1
k k k k | | ( | 1) [ | 1]

(m=1) (m=1)

ˆ ˆ = [( ) 1 + ( ) 1 ( )
M M

m m m m
k k k k k k k kx P P x P x P x−

− −− −∑ ∑       (38)

1 1 1 1
| | 1

1 1
( ) (P ) ( ) ( )

M M
m m

k k k k k k
m m

P P P− − − − −
−

= =

= + +∑ ∑              (39)

In the fusion procedure described above, the posteriori estimate 
error covariance 

|
m

k kP  is affected by sensor confidence and thus, 
adaptively adjusts the weight of each source sensor. Finally, the fusion 
result will contain more information from the sensors with greater 
confidence.

Data fusion architecture

The data received the multi-radar tracking function will processed 
and converted UTC time-stamped plots (e.g. EUROCONTROL 
ASTERIX standard Category 001 message [16,17]. Measurements 
from different radars are then allocated so as to update radar tracks 
(e.g. EUROCONTROL ASTERIX standard Category 030 message). The 
ADS branch takes ADS-B reports (e.g. EUROCONTROL ASTERIX 
standard Category 021 [17] as inputs. If the DAP (mode information 
like aircraft identity, squeak etc) available with radar and ADS-B data 
the correlation between Radar and ADS-B data can be done using 
Aircraft identity to form a Multi-Sensor Target track (the track which 
has filtered at least one ADS-B reports and/or one radar plot). This 
step is based on kinematics window and aircraft address matching (in 
a predominant way). The association process provides the best pairs 
report-track to the track management process. In ADS-B reports, 
contains aircraft position in the geodesic frame. All processing is done 
in System Cartesian frame in which WGS84 position is converted to 
ECCF [15]. The fusion architecture is shown in Figure 4.

The data received from each radar station will be processed separately 
in decentralized fusion. This data will first be passed to coordinate 
transformation covariance module. The sensor measurements from 
the radar and ADS-B transformed into a common coordinate, and 
measurement covariance is updated accordingly. This study adopts 
the Earth-Centred Earth-Fixed (ECEF) three-dimensional Cartesian 
coordinates instead of the local coordinates based on a stereographic 
projection [15,17]. The mosaic display used for Air traffic surveillance 
purpose and those target movements projected in the 2D plane with 
Altitude, identification and other DAP information as a DATA block. 
Here the data received after coordinate conversion and covariance 
matric formation selected based on the sector will be processed. In the 
mosaic display, the plot is divided into segments. Upon reception of the 
plot sector N, the following actions performed. Handling of sector N 
confirmed tracks using sectors N and N-1 plots by activating following 
functions: correlation and, the association of each track in the different 
sensor using track identity (aircraft identity or squak which is available 
in SSR and ADS-B data).

This association will reduce computation and remove processing 
of same aircraft data at different locations and be displaying it (ghost). 
If the aircraft identity not available the association function is based 
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on a Global Nearest Neighbor (GNN) approach: it solves correlation 
conflicts and searches among correlated measurements for the one, 
which corresponds best to the aircraft detection.

After the precorrelation and association, each sensor data processed 
separately. Here we propose an LMS adaptive filter for preprocessing of 
data from each sensor to remove bias error in each sector. Finite Impulse 
Response (FIR) Least Mean Square (LMS) adaptive filter has been very 
popular due to its simplicity and good convergence characteristics. The 
purpose of introducing adaptive filter is the remove the sensor error 
so that future predictions of Kalman filter will be more accurate due 
to the feedback mechanism involved. Here the filter coefficients are 
adaptively changed for each sensor so that data received from another 
sensor calibrated so that the minimum means square error produced. 
The sensor selection logic module will select the primary or reference 
sensor for the sector and mostly the ADS-B data will be chosen as a 
reference due to multiple numbers of position information available 
for a particular time interval. The data received from the ADS-B can 
be calibrated by SSR data when the target is close to the radar. The 
initialization function aims to generate new tracks when aircraft 
appears in the system domain of interest, and no previous tracks are 
available. The initialization can be secondary radar or from ADS-B data. 

The confirmation of tentative tracks is based on a Bayesian approach to 
avoid false track creation. Adaptive Distributed Kalman filter structure 
that is provided for the multiple sensor fusion. The master filter outputs 
the final sensor value minimized with the sensor effect occurred with 
fault based on the error estimate value on each sensor value inputted 
from each local Kalman filter. The local Kalman filter estimates the 
measurement value of each sensor and the error value with the main 
sensor, and the primary filter calibrates this to be used as the estimated 
value ˆkx  of each sensor. The reliability of the estimated value of each 
sensor is defined by the total deviation on the estimated value for each 
sensor used in the fusion as shown in equation 40. The local Kalman 
filter selects the sensor with maximum reliability as the primary sensor 
to be used as the standard signal, and the error on the standard signal 
of each sensor is estimated.

( 1)

ˆ ˆ
n

k k i
i

SD x x
=

= −∑               (40)

k = 1,2,....N where SDk is the reliability of sensor k, and xi shows 
the estimated value of sensor i. Thus the sensor adaptively changes the 
measurement estimates based on the output of the master filter. The 
master filter reflects the reliability SDk defined in Equation 40 in the 
estimated value of each sensor as the weighted value to acquire the 

Figure 4: Proposed fusion architecture.
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weighted Mahalanobis distance as shown in Equation 29, and then, 
determines the final estimate value Xk+1. The proposed multiple sensor 
fusion models express the reliability of each sensor measurement value 
as the relative deviation and select the sensor with high reliability as the 
sensor with low possibility of a fault with high measurement accuracy 
to have the adaptive Kalman filter structure of calibrating the error on 
each sensor.

Result and Discussion
In the simulation, we consider the measurements are from ADS-B, 

radar1, and radar-2. For generating the radar1 and radar 2 data we 
have added bias value and random noise to the ADS-B signal (shown 
as an actual signal). The adaptive filter will adjust the filter values. Here 

FIR filter used for the filtering the input signal. Figure 5 shows the 
test results in a graph, comparing the ADS-B data, radar data filtered 
directly and estimated through the fusion filter proposed in this paper. 
As shown in Figure 5, the ADS-B data in black boxes and measurement 
have errors irregular shown in red*. The filtered value separate radar 
after applying base and random noise denoted by blue and cyan crosses 
(Figure 6). The figure shows the filtered values are having some bias 
exist along with noise. When we use our algorithm, the filtered values 
are very close to the ADSB values. It can be seen from the graph the 
after applying bias to both radar values it is reflected in the filtered 
results. The practical situation is shown in Figure 1 similar to this. 
Proposed method used gives an excellent output for bias removal and 
measurement error. Figure 7 shows the various measurements input 

Figure 5: Comparison of results.

Figure 6: Results for input with track switching.
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Figure 7: Radar-ADS-B measurements.

Figure 8: Radar, ADS-B and fusion results.

and Figure 8 shows the corresponding results. From Figure 8 it clearly 
shows the proposed algorithm having a very good output compared 
with single sensor results.

Table 1 shows the comparison of Means Square Error (MSE) of 
different inputs. It can be seen from the results the Mean square error 
of the proposed method is lesser than the standard Kalman filtering. 
When the bias added to both radar separately, and the tracking did 
with separate radar, output the MSE value is higher side. In the case 
of the proposed method simulations has been conducted for the 
different random input (Figure 6) all the time proposed method 
showed significant improvement in the MSE and it improves the overall 
efficiency of fusion process using all the information. The bias was able 
to remove by the proposed method. As Figure 6 shows the proposed 

Input MSE
Only Random Noise to ADS-B 5.8552

Radar1 only (Bias+random noise) 8.4269
Radar2 only (Bias+random noise) 8.2285

Fused (Bias+random noise) 2.1347

Table 1: Comparison of MSE.

method smoothly handles track shifting, ie when the primary sensor 
switch over Radar1 to Radar 2 data there is a sudden shift of track from 
one to another this was one of the major issues with existing fusion 
method. MD based weight makes the transit smooth. The proposed 
method overcame the practical difficulties of previous methods and 
managed to obtain excellent results in various inputs, which improves 
conflict prediction in air traffic surveillance system.
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Conclusion
The proposed architecture gives very good results concerning MSE 

and tracks accuracy. This method is making use of the LMS feedback 
mechanism to remove bias error and thereby acting as calibration for 
the radar measurements. The decentralized adaptive Kalman filter uses 
information from different sensors and using Mahalanobis distance 
based weight assigned to Kalman filter gain which enables accurate track 
prediction and updates more accurately and removes sudden change of 
track when radar data changes. Future work includes the other DAP 
information like to heading and velocity from the ADS-B measurement 
to predict more accurate fusion results and radar caliberation.
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