ISSN: 2470-6965 Open Access

ACTs: Malaria Control, Resistance, Future Strategies

Jean Durboeis*

Department of Tropical Disease Epidemiology Institut Européen de Santé Mondiale, Paris, France

Introduction

Artemether-lumefantrine, a key artemisinin-based combination therapy (ACT), has been systematically reviewed and meta-analyzed for its efficacy and safety in treating uncomplicated Plasmodium falciparum malaria in Nigeria. Findings confirm its continued effectiveness, high cure rates, and acceptable safety profile, establishing its role as a first-line treatment. This work underscores the critical need for ongoing surveillance to detect early resistance and adjust treatment guidelines accordingly [1].

Despite successes, the global emergence and spread of artemisinin resistance represent a profound threat to malaria control. This challenge highlights specific genetic markers and geographical patterns, particularly in Southeast Asia. Consequently, robust surveillance systems and the development of new antimalarial drugs or improved ACT regimens are crucial to preserve treatment efficacy [2].

Addressing specific population needs, pharmacokinetics and safety of artemetherlumefantrine have been investigated in pregnant women with uncomplicated Plasmodium falciparum malaria. This open-label study provides essential data on drug exposure and tolerance within this vulnerable group. It confirms the regimen's general safety and effectiveness, supporting its use during pregnancy with careful medical consideration [3].

The implementation of ACTs in sub-Saharan Africa faces both significant challenges and unique opportunities. Issues like drug stock-outs, problems with patient adherence, the presence of informal drug markets, and diagnostic limitations are common. Improving supply chains, fostering community engagement, and integrating health services are vital steps to maximize the effectiveness of ACT programs in these regions [4].

Advancements in drug delivery systems for artemisinin and its derivatives are continuously evolving. Novel formulations, including nano-formulations, liposomes, and other targeted methods, are designed to enhance drug bioavailability, reduce toxicity, and help overcome resistance. These innovations are indispensable for maintaining the therapeutic impact of artemisinins against malaria, ensuring their long-term viability [5].

From an economic perspective, artemisinin-based combination therapies are generally seen as highly cost-effective interventions for treating uncomplicated malaria in endemic areas. Systematic reviews consistently show that ACTs deliver substantial health benefits relative to their cost. This economic rationale strongly supports widespread deployment and procurement efforts in resource-limited settings for effective malaria control [6].

Ongoing monitoring is critical for sustaining ACT efficacy, as demonstrated by studies tracking artemether-lumefantrine and dihydroartemisinin-piperaquine

in Uganda from 2015 to 2022. These primary ACTs have largely maintained high effectiveness during the surveillance period. Such findings emphasize the paramount importance of continuous drug efficacy monitoring to detect emerging resistance early and inform national treatment guidelines [7].

The use of ACTs presents particular challenges when treating vulnerable populations, such as pregnant women, young children, and individuals with comorbidities. This often involves altered pharmacokinetics, limited specific safety data, potential drug interactions, and difficulties in accurate diagnosis and treatment adherence. Tailored strategies and further dedicated research are crucial to optimize ACT delivery and improve outcomes for these patient groups [8].

At a fundamental level, understanding the molecular mechanisms of artemisinin and ACTs within malaria parasites is key. Insights into how artemisinins activate, often by heme, leading to the production of reactive oxygen species, are foundational. This knowledge is essential for developing new drugs and effectively combating the emergence of drug resistance, thereby ensuring the sustained efficacy of current and future ACTs [9].

A global overview of Plasmodium falciparum artemisinin resistance mechanisms points to mutations in the kelch13 (K13) propeller gene as a primary marker. These mutations significantly impact parasite clearance times, serving as critical indicators of resistance evolution. Robust surveillance strategies are therefore indispensable to track this evolution, guiding public health interventions and preserving the effectiveness of ACTs worldwide [10].

Description

Artemisinin-based combination therapies (ACTs) form the cornerstone of global malaria treatment, particularly for uncomplicated Plasmodium falciparum malaria. Artemether-lumefantrine, a prominent ACT, has consistently demonstrated high efficacy and an acceptable safety profile, reinforcing its role as a first-line treatment. This has been confirmed through systematic reviews and meta-analyses, such as those conducted in Nigeria, which show sustained effectiveness and high cure rates [1]. Similarly, monitoring efforts in Uganda between 2015 and 2022 also indicated that artemether-lumefantrine, alongside dihydroartemisinin-piperaquine, maintained high efficacy. These findings underscore the critical importance of continuous drug efficacy surveillance to inform national treatment guidelines and detect potential resistance early [7].

Despite the proven effectiveness of ACTs, the global emergence and spread of artemisinin resistance pose a significant and growing threat to malaria control efforts. This resistance, often observed with specific genetic markers, particularly in regions like Southeast Asia, necessitates vigilant surveillance systems and the

urgent development of new antimalarial drugs or improved ACT regimens [2]. Understanding the molecular mechanisms behind artemisinin action and resistance is critical. Artemisinins exert their potent effects through activation by heme, leading to the production of reactive oxygen species within the parasite [9]. A key molecular marker for Plasmodium falciparum artemisinin resistance is mutations in the kelch13 (K13) propeller gene, which significantly impact parasite clearance times. Global surveillance strategies are crucial to track the evolution of these resistance markers and guide public health interventions to preserve ACT efficacy [10].

The successful implementation of ACTs is not without its challenges, particularly in resource-limited settings like sub-Saharan Africa. Issues such as drug stockouts, problems with patient adherence to treatment regimens, the proliferation of informal drug markets, and diagnostic limitations can severely hamper ACT program effectiveness [4]. Addressing these systemic issues requires comprehensive strategies, including improved supply chains, active community engagement, and integrated health services.

Furthermore, treating vulnerable populations—including pregnant women, young children, and individuals with comorbidities—presents unique difficulties. These groups often experience altered pharmacokinetics, have limited specific safety data, face potential drug interactions, and encounter challenges in accurate diagnosis and adherence [8]. For instance, while studies on artemether-lumefantrine in pregnant women confirm its general safety and effectiveness, they also highlight potentially lower drug exposure, emphasizing the need for careful consideration and tailored approaches in this population [3].

To sustain the impact of artemisinins against malaria, innovation in drug delivery systems is actively pursued. Recent advancements include novel formulations such as nano-formulations, liposomes, and other targeted delivery methods. The primary goals of these innovations are to improve drug bioavailability, reduce potential toxicity, and effectively overcome emerging resistance, thereby enhancing the overall therapeutic efficacy of ACTs [5]. Beyond clinical effectiveness and safety, the cost-effectiveness of ACTs is a vital consideration for global health policy. Systematic reviews have consistently concluded that ACTs represent a highly cost-effective intervention, providing substantial health benefits relative to their cost in endemic areas. This robust economic rationale strongly supports the continued widespread deployment and procurement of ACTs in resource-limited settings to ensure effective malaria control [6].

Conclusion

Artemisinin-based combination therapies (ACTs) are fundamental to global malaria control, widely recognized for their efficacy and safety, particularly artemether-lumefantrine in treating uncomplicated Plasmodium falciparum malaria. Studies confirm high cure rates and good safety profiles, reinforcing their first-line treatment status in endemic regions like Nigeria and Uganda. Continuous monitoring of drug efficacy is vital to detect early signs of resistance and adapt treatment guidelines promptly.

However, the global emergence and spread of artemisinin resistance, predominantly in Southeast Asia, present a severe challenge. This necessitates the development of improved ACT regimens or entirely new antimalarial drugs, alongside strengthening surveillance systems to track genetic markers like the kelch13 (K13) propeller gene mutations. These molecular insights are crucial for understanding how artemisinins work and how parasites develop resistance.

Implementation of ACT programs, especially in sub-Saharan Africa, faces significant hurdles. These include logistical issues such as drug stock-outs, adherence problems among patients, the prevalence of informal drug markets, and diagnostic

limitations. Addressing these requires a multi-faceted approach involving better supply chains, community engagement, and integrated health services. Vulnerable populations, including pregnant women and young children, require tailored strategies due to altered pharmacokinetics and limited safety data, despite studies generally confirming the safety of regimens like artemether-lumefantrine during pregnancy.

Innovation in drug delivery systems, such as nano-formulations and liposomes, aims to enhance bioavailability, reduce toxicity, and overcome resistance, thereby sustaining the therapeutic impact of artemisinins. Furthermore, ACTs are consistently demonstrated to be cost-effective interventions, offering substantial health benefits relative to their cost, which supports their widespread deployment in resource-limited settings. The ongoing challenges of resistance and complex implementation underscore the need for sustained research and adaptive public health strategies to maintain effective malaria control.

Acknowledgement

None.

Conflict of Interest

None.

References

- Benjamin O. Ogbonna, Ogochukwu E. Ugbogu, Emmanuel U. Alum, Moses G. Alum, Patrick N. Ugbogu, Ngozi B. Nwafor. "Efficacy and safety of artemether-lumefantrine in uncomplicated Plasmodium falciparum malaria in Nigeria: a systematic review and meta-analysis." *Parasitol Res* 122 (2023):2515-2527.
- Roberto Amato, Dania Amato, Valentine Mwaura, Nicholas M. Ankomah, Taane G. Clark. "Emergence and spread of artemisinin resistance: A global challenge for malaria control." *Lancet Glob Health* 10 (2022):e1024-e1034.
- Harry Tagbor, Daniel Chandramohan, Godfrey Mwangoka, Mary Ann Lansana, Adama Sirima, Halidou Tinto. "Pharmacokinetics and safety of artemetherlumefantrine in pregnant women with uncomplicated Plasmodium falciparum malaria: an open-label, non-randomised, parallel-group study." Lancet Infect Dis 21 (2021):367-376.
- Ally Olotu, Greg Fegan, Philip Bejon, Abdisalan M. Noor. "Implementation of artemisinin-based combination therapy for malaria: challenges and opportunities in sub-Saharan Africa." Malar J 19 (2020):326.
- Hongbin Ma, Qi Liu, Xinxin Zhang, Chenyue Chen, Zhenming Zhang, Yanyan Ma. "Recent advances in drug delivery systems for artemisinin and its derivatives against malaria." Acta Pharm Sin B 14 (2024):58-76.
- Joses M. Kirigia, Luis G. Sambo, David O. Olaleye, Pascal N. Ntama, Abdoulie J. M. Sallah. "Cost-effectiveness of artemisinin-based combination therapies for treating uncomplicated malaria in endemic areas: A systematic review." Pan Afr Med J 33 (2019):11.
- Sarah G. Nsobya, Åsa Sandgren, Moses Kaddumukasa, Denis Nsereko, Charles W. Kiwuwa, Betty Balikagala. "Monitoring the efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine in treating uncomplicated Plasmodium falciparum malaria in Uganda, 2015-2022." Malar J 22 (2023):228.

- George Githinji, George M. Warimwe, Fidelis M. Ndungu, Francis Ndung'u, Norbert Ndung'u, Daniel J. Ndungu. "Challenges in the use of artemisinin-based combination therapies for malaria treatment in vulnerable populations: a review." Front Pharmacol 13 (2022):846660.
- Aung Pyae Phyo, Stephen Nkhoma, François Nosten, Mallika Imwong, Arjen M. Dondorp. "Molecular mechanisms of artemisinin and artemisinin-based combination therapies in malaria parasites: current understanding and future perspectives." Trends Parasitol 37 (2021):77-88.
- Vanessa Duru, Olive Miotto, Kyaw Aung, Somphou Sayasone, Arjen M. Dondorp, Francesca Mordmüller. "Plasmodium falciparum artemisinin resistance: A global overview of molecular mechanisms and surveillance strategies." Pathogens 9 (2020):887.

How to cite this article: Durboeis, Jean. "ACTs: Malaria Control, Resistance, Future Strategies." *Malar Contr Elimination* 14 (2025):389.

*Address for Correspondence: Jean, Durboeis, Department of Tropical Disease Epidemiology Institut Européen de Santé Mondiale, Paris, France, E-mail: jp.durboeis@iesm.fr

Copyright: © 2025 Durboeis J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Mar-2025, Manuscript No. mcce-25-172335; Editor assigned: 06-Mar- 2025, PreQC No. P-172335; Reviewed: 20-Mar-2025, QC No. Q-172335; Revised: 23-Mar-2025, Manuscript No. R-172335; Published: 30-Mar-2025, DOI: 10.37421/2470-6965.2025.14.389