Active Shooter Exercise Training for Nurses in Emergency Medicine

Paul P. Rega* and Brian N. Fink
Department of Public Health and Preventive Medicine, University of Toledo, USA

*Corresponding author: Paul P. Rega, Associate Professor of Public Health, University of Toledo, Department of Public Health and Preventive Medicine, USA, Tel: 4193834817; E-mail: Paul.Rega@utoledo.edu

Received date: Mar 23, 2016; Accepted date: Apr 28, 2016; Published date: May 5, 2016

Copyright: © 2016 Rega PP, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

The recent horrific events surrounding San Bernardino and Paris underscore the conceit that active shooter incidents must be included into the new reality of day-to-day existence in virtually every part of the world. In the United States, the incidence of active shooter events has more than doubled, comparing the period 2000-2006 with 2007-2013 [1-5]. The literature indicates that many countries share this concern [6-20]. With a recent report indicating global terror groups are planning more attacks upon the western industrialized countries, there should be no expectation that this increase in active shooter events is an aberration. Among the soft targets that remain a cause of concern for federal and state agencies is the healthcare system [21]. In fact, active shooter incidents have increased in hospitals from nine per year in 2000-2005 to 16.7 per year in 2006-2011 [1]. Granted, most of the incidents target specific individuals, but it does underscore the vulnerability of healthcare facilities, their staff and clients.

Due to certain mass shooting events in the United States, there has been a paradigm shift as to the way innocent civilians should respond to an active shooter. The current adage articulated by governmental organizations is, "Run, Hide, and Fight." However, within the healthcare system, this is rather simplistic and does not fully and completely acknowledge the roles and responsibilities of the healthcare professional, in particular, the nurse. The duty of the nurse to the patient and, by extension, the family of the patient, may run counter to the standard, well-accepted active shooter response guidelines as promulgated by federal and various law enforcement agencies. The survival instincts of the nurse to an active shooter announcement may run counter to what the nurse may desire to do in order to protect the patient. This inherent conflict between the nurse's survival instincts and one's duty to one's patient oftentimes is not fully explored in most of the training programs associated with an active shooter response.

The purpose of this paper is to facilitate an exploration of the issues associated between nurse and patient when both are confronted with an active shooter situation by providing a road map and a template to assist the facilitator with developing an active shooter tabletop exercise. Emphasis will be placed upon the Emergency Department and its nurses since that is the locus of great accessibility to the public and often the site of violence [9,13,16].

Methods

Players

- General patient care staff nurses
- Administrative nurses (Train-the-trainer program)
- Interdisciplinary staff and professionals
- In time, this will be the best approach

Preparation

- Multiple You-Tube videos that have been developed by diverse law enforcement agencies.
- Institution's disaster and active shooter policies and procedures

The set-up

- Active shooter notification
- The scenario begins with the announcement over the public address system assuming that is part of the hospital policy.
- It habituates the players' senses to the announcement
- It must be stressed that the cacophony of gunfire and screams may precede any official announcements.
- Geographical relationship between shooter and nurse

Notes: At the initial exercises, it would serve everyone well to keep a distance between shooter and player so as to give the player time to choose one of the three options (i.e., Run, Hide, Fight). As more exercises are played out and both facilitators and players become acclimated to the exercise, the geographical juxtaposition between player and shooter can become closer. For example, announcement of an active shooter on the second floor in relation to the Emergency Department's location on the first floor.

Nurse-player location

- There are two general areas where Emergency Department nurses may be located at the beginning of the exercise.
- Direct patient care areas: Patient rooms
- Indirect patient care areas: Nurses' station, break room, supply room, etc.
- The potential conflict between the nurse's sense of survival and the obligation to provide for the safety and well-being of the patient is no greater than when both patient (and family) and collocated with the nurse or nurse team.

Patient scenarios:

The scenarios are of varying severity and complexity since these may be confounders that will aid or hinder a nurse's innate sense of self-preservation as the situation clarifies. Below are a number of scenarios attempting to accomplish that objective:

Chief complaint: New onset headache
Patient: 45-year old male
P: 86; R: 16; B/P: 126/87; SaO2: 98%; GCS: 15
ED elapsed time: 45 minutes
Management: CT negative (per radiologist); LP pending
Chief complaint: Asthmatic; difficulty breathing; wheezy

Patient: 25-year old female
P: 96; R: 26; B/P: 136/77; SaO2: 95% (21%); GCS: 15
ED elapsed time: 15 minutes
Management: One aerosol in progress
Chief complaint: Poly-pharmacy OD

Patient: 21-year old female
P: 106; R: 18 (Ventilator); B/P: 96/57; SaO2: 95% (100%); GCS: 8
ED elapsed time: 135 minutes
Management: Invasive airway control, pressor support, sedation
Chief complaint: Ankle sprain (massively swollen); ambulatory capacity: 50% of normal

Patient: 35-year old male
P: 66; R: 16; B/P: 126/87; SaO2: 99% (21%); GCS: 15
ED elapsed time: 15 minutes
Management: Waiting to go to radiology
Chief complaint: Chest pain

Patient: 65-year old female
P: 106; R: 20; B/P: 166/97; SaO2: 95% (2 L/min); GCS: 14
ED elapsed time: 95 minutes
Management: EKG: Non-specific changes; CXR: Negative; Enzymes. Pending; IV NTG and heparin (discomfort resolved)
Chief complaint: Fever and delirium; full code

Patient: 85-year old female (Nursing home)
P: 116 (AF); R: 26; B/P: 86/47; SaO2: 91% (100%); GCS: 10; T: 102.8F
ED elapsed time: 100 minutes
Management: CPR/ACLS/ICE
Chief complaint: Cardiac arrest by LS; resuscitated; Hypothermia protocol

Patient: 42-year old male
P: VF; R: 20 (vent); B/P: 0; SaO2: NA; GCS: 3
ED elapsed time: 30 minutes
Management: CPR/ACLS/defibrillation x 3
Chief complaint: Cardiac arrest by LS; Full code

Nurse’s actions (Run-Hide-Fight)
- Now in the care of the selected patient as exemplified by the cases above, the location of the shooter, the nurse-player must decide upon a course of action: Run to safety; Hide because escape is deemed too risky; and Fight should there be, at some point, confrontation with the shooter who either breeched the hiding spot or was encountered during the escape process.
- Run (considerations)
 Why?
 Where?
 With whom?
 With what (ad hoc weaponry)?
- Hide (considerations)
 Why?
- How will the room be blockaded? (Table 1)

Table 1: Select improvisational blockade items (typically found in a patient room) to prevent entry into hiding area (patient care room). * These items can be used to restrict the actions of the automatic door closer. ** If the patient is somewhat mobile, taking him/her off the gurney and resting on the floor will allow the use of the gurney to block the entrance.
What preparations are being made should the shooter breech the area?

Fight (considerations)

Itemize hospital items in room that can be used as improvisational weapons. (Table 2)

To deflect shooter’s aim

To inflict harm

<table>
<thead>
<tr>
<th>Item</th>
<th>Improvised Weapon Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraosseous Needles</td>
<td>Suction canister</td>
</tr>
<tr>
<td>Intravenous needles</td>
<td>Thoracotomy equipment</td>
</tr>
<tr>
<td>Laryngoscopes *</td>
<td>Scapel</td>
</tr>
<tr>
<td>Endotracheal tube stylets</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>Flashlights *</td>
<td>Trauma shears</td>
</tr>
<tr>
<td>Ophthalmoscope</td>
<td>Drug vials</td>
</tr>
<tr>
<td>Otoscope</td>
<td>IV poles</td>
</tr>
<tr>
<td>Sharps box</td>
<td>Oxygen tanks</td>
</tr>
<tr>
<td>Backboard</td>
<td>Defibrillator</td>
</tr>
<tr>
<td>Furniture (e.g., chair)</td>
<td>Remote control</td>
</tr>
<tr>
<td>Cervical collars</td>
<td>Phone and phone cord</td>
</tr>
<tr>
<td>Computer mouse</td>
<td>Towels</td>
</tr>
<tr>
<td>Pillows</td>
<td>Bed linens</td>
</tr>
<tr>
<td>Trash can</td>
<td>Bar soap</td>
</tr>
<tr>
<td>Chest spreader</td>
<td>Splints</td>
</tr>
</tbody>
</table>

*(These items can be broken down to many parts and each can serve as a weapon. For example, the traditional laryngoscope is made of four parts (blade, handle, and two batteries)).

References

