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Introduction
A new set of internal symmetries for N-dimensional integer lattices 

ZN are inseparably linked to a new mathematical category named the 
Mask (Neighborhood). This category represents a successful attempt to 
generalize the notion of integer number (Z). There exists a generally 
accepted concept of hierarchy of numbers: Boolean number ⇒ natural 
number ⇒ integer number ⇒ real number ⇒ complex number. The 
author suggests a slightly different classification: the “tree” forks starting 
with the integer numbers. After the integer numbers, the standard 
limb (where all “continuous” numbers belong) goes to the right, and 
a discrete-space generalization of the “integer number”, which is 
referred in this paper as the Neighborhood (Mask), goes to the left. As 
the natural numbers can be prime or composite, so the Neighborhoods 
can be Correct (or Perfect) and... “not quite Correct”, i.e., Incorrect. For 
example: Neighborhood {-5;-2;-1;1;2:4} in one dimension is Correct 
and (apparently) Perfect, yet nothing can be said, for instance, about 
Neighborhood {-5;-3;-1;1;2:4}. The notion of Correctness, as we.

Definition of Neighborhood (Mask)
In the beginning, consider replacing the term Neighborhood with 

its synonym, the Mask. The reasons of doing this will be discussed 
below.

Let us define Mask M in N-dimensional space as the set of n integer, 
nonzero, and the different vectors of dimension N:

1 2 1 2{ ; ;... }; { , ..., }; 1,.... ;n j N kM a a a a i i i j n i Z= = = ∈

The Mask is normal if among other vectors it comprises all the 
vectors (we can call it unit vectors) wherein one element ik (k=1,..., N) 
is +1 or -1 while all others elements are 0. The Mask is called primitive 
if it contains ONLY unit vectors. Thus, primitive Masks are a subclass of 
normal Masks. The Mask that for any vector { i1,i2,…, iN} contains vector 
{ -i1,-i2, …, -iN} is called central- symmetric. In one-dimensional integer 
space, any Mask is easy to describe with two numbers (m, k) where the 
binary representation of m gives negative i, and the binary representation 
of k (after mirroring) gives positive i. For instance, (19,11) stands for 
Mask {-5;-2;-1;1;2;4}. This is due to the fact that (19,11)=(24+21+20, 
20+21+23)=(10011; 1101); after inversing (“mirroring”) the sequence 
of digits in the second component (1101Mir ⇒ 1011), we obtain {-5;-
2;-1;1;3;4}. Similarly, expression (21,11)=(24+22+20, 20+21+23)=(10101; 
1101 Mir)=(10101; 1011) denotes Mask {-5;-3;-1;1;2;4}. In the future, we 
will consider only normal Masks. From this point, any Mask=normal 
explained in Figure 1.

Definition of the Correct Mask. Theorem 1
Consider lattice ZN. Some or none of lattice dimensions can be 

closed (like in a torus) whereas all the other stay infinite, this property 
has no impact on our future analysis. Take any Mask in N-dimensional 
integer lattice and add Zero vector to it (all the elements of Zero vector 
equal 0). Using this Mask with Zero vectors we define a Cellular 
Automaton (CA; further we refer to this Automaton as Table CA) with 
the following properties:

1). CA cells can be in one of 6 states. At every moment of time, the 
state is one of the letters from following set

{-x;-y;-z; +x; +y; +z}

2). The state of each cell in the next moment of time is defined by 
Transition Tables R

-x
, R-y, R-z, R+x, R+y, R+z:
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The number of columns in the Tables is n (the number points in 
the Mask) plus 1. Then we take C as the number of rows in the Tables. 
Both n and C will be constantly used in the text below. Example of 
Transitional Table for a Mask (1,1); n=2, C=9 (the rule how to find C for 
a particular Mask will be explained further on):
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And similarly for the other letters. We remind here that there are  
+1 columns in Transition Tables R due to inclusion of Zero vector. No 
two rows of the Transition Tables can be the same.Then a set of standard 
routines is executed. First, we arbitrarily enumerate our Mask points 

plus Zero vector (the center) with numbers j. Figure 2 shows Zero 
“point” with a dot). Secondly, we superimpose (overlay) each cell in ZN 

with zero point of our Mask. Note: it is due to that “overlay” operation, 
the name “Mask” seems more appropriate than the “Neighborhood”. 

Figure 1: Primitive, normal, and central-symmetric Masks.

Figure 2: The illustration of one step of the Table CA “run” for a primitive Mask in two dimensions. For clarity, the Automaton run is shown for a single cell.
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Thirdly, we write out row {a0, …, aj, …, an} containing the sequence 
of states that are taken from the cells on the lattice ZN where the 
enumerated vectors comprising our Mask end up illustrated in Figure 2. 
Fourthly, we check Transition Tables R

-x
, R-y, R-z, R+x, R+y, R+z on a subject 

of whether or not such a row exists in any of the Transition Tables. If we 
find such a Table, we put its index as the state of CA in the next moment 
of time (t+1). For example, if row{ a0, …, aj, …, an } appears in table 
R

-x, then the next state is -x; if some other row appears in table R-y, then 
the next state is -y, etc. Because no rows of the Transition Tables can be 
the same, there is only one state of lattice ZN in each time point. Figure 
2 shows the transformation of arbitrary selected element from integer 
lattice Z2. It illustrates a single step of operation of a Table CA for a 
primitive Mask in two dimensions on a closed lattice (i.e., the lattice 
without “boundary”) in this particular case, a surface of 6 x 6 torus. In 
accordance to CA definition, the same operation should be performed 
at once for all cells of CA Figure 3. Let us compare, for example, the run 
of our Cellular Automaton with that of well-known CA named Rule 30 
by Stephen Wolfram [1] (Figure 4).

Rule 30 has 2 states of the cells while our CA has 6. Rule 30 works 
or runs (if we consider the “works” through our terms) for a primitive 
Mask (1,1) in one dimension. The binary decomposition of 30 is 
abbreviation for the transition rules [1] and Table 1.From those rules, 
we can determine the Transition Tables:

0 1

0 0 0 0 0 1
1 0 1 0 1 0

;
1 1 0 0 1 1
1 1 1 1 0 0

R R

   
   
   = =
   
   
   

                                    (4)

We can notice that contrary to our Automaton, CA Rule 30 is 
not reversible (see explanations below). Any Transition Table has a 
dedicated column (numbered as “h”) which is associated with the Zero 
Vector that we added to the Mask. It is logical to assume h=0 for the 
dimensions greater than one. Yet, in the case of one dimension, it is 
more convenient to leave the "natural” order (for instance, h=1 for 
Automaton Rule 30).

3) The obtained Transition Tables are interdependent and can be 
obtained from table R-x after following substitutions:

R-x: e={-x,-y,-z,+x,+y,+z};R-y:e1={-z,-x,-y,+z,+x,+y};R-z: e2={-y,-z,-
x,+y,+z,+x}; (5)

R+x: e={+x,+z,+y, -x,-z- y,};R+y:e4={,+y,+x+z, -y,-x, z,};R+z: 
e5={z,+y,+x,,-z, -y, -x }

These substitutions form a group; its multiplication table (u x v) is 
shown in Figure 5.

4) Our Automaton is reversible. The inverting Transition Tables are 
calculated from the same Table.

Figure 3: The operation shown in Figure 2 are performed for all the cells at once.

Figure 4: The plot “Automaton state vs. Time” for Wolfram’s Automaton “30”.

Current Pattern 111 110 101 100 011 010 001 000
New state for center cell 0 0 0 1 1 1 1 0

Table 1: Transition rules for Rule 30 Automaton.
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R-x using following substitutions:
1 1 1

1 1 1

:{ }; :{ }; :{ , , };

:{ , , , , , }; :{ , , }; :{ }.
x y z

x y z

R x,-z,-y,+z,+y,+x R y,-x,-z + x,+z,+y R z y x+ y,+x,+z

R z x y x y z R y z x,-z,-x,-y R x,+y,+z,-y,-z,-x

− − −
− − −

− − −
+ + +

− − − − −

+ + + − − − + + + +

5) When getting started from any initial state of the integer lattice 
(ZN) filled with only -x and +x (further we refer to this the state as the 
Beginning Point or BP), our CA will last forever. In other words, all the 
time as CA runs, only those states appear which are present in tables R.

6) At least one row containing only letters “-x” and “+x” must be 
found in tables R-y or R-x or Rz

or R+z. (In other words, the “unionized” table R-y U R+y U R-z U R+z 
should contain this row).

7) All points (vectors) in the Mask are important. In other words, 
no point of the Mask can be safely eliminated without changing the 
Automaton.

If, for a given Mask, it is possible to find CA meeting all seven 
conditions, then we call this Mask Correct. If it is not possible (or until 
proven otherwise), we call such a Mask Incorrect. Let us explain why the 
very existence of Correct Masks is a “miracle” of its kind. It is far from 
being obvious that at least one Mask is Correct in some N-dimensional 
space. From point 5) it follows that the Automaton must be able to 
make at least the first step, therefore, the Tables should contain all the 
2n+1 states formed from the letters of the same type “x”. At some initial 
conditions after the first step (see point 6) there must appear a new 
letter (not “+x” or “–x”) in the states. Now, we are curious about the way 
the rows containing these letters are transformed. Assuming that we 
know the answer, it will immediately be transferred into six Transition 
Tables by performing substitutions, see expressions (5). Note that it will 
also be transferred into six Inverting Tables and, in the end, into the 
same Transition Tables. Each step causes new transfers. It may very soon 
turn out that two identical rows appear in two different tables, and this 
is prohibited. Yet, a situation is not that bad. As a matter of fact, there is 
a huge number of the Correct Masks and apparently in all dimensions.

Theorem 1. All Masks in one and two dimensions which are not 
colored by black in Figure 6 (at least with n<9) are Correct. Panel B 
in Figure 6 also shows: the upper row – «a mandatory part» of all 
normal Masks in two dimensions and a primitive Mask ("cross" with 
n=4, C1/2=40); the second row – examples of Masks for n=5; the third 

Figure 6: In the entire figure, black colour means that the Mask is Incorrect. Panel A shows the Correct Masks (m, k) in one dimension - those are the cells with the 
numbers inside, colored differently from black. Because the number of rows in Tables R is always odd, we introduce important parameter: C1/2=(C-1)/2, which value 
is indicated in the cell. Numbers in cells: on the top – the number of points in a Mask; on the bottom – value C1/2for the same Correct Mask; a question mark means 
that C1/2was not calculated, yet most likely, the Mask is Correct. Values of ρ represent the “density” of our Table CA for seven Masks. Bordered area to the left shows ρ 
calculated for the cells indicated by arrows. Panel B shows C1/2 for the first Correct Masks in two dimensions. We remind that in this case “n” equals the number of cells 
in the Mask minus one whereas value C1/2 will be explained in the next chapter where we will deal with the Transition Tables. Further details are discussed in the text.

Figure 5: Illustration of configuration 2x3.
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row – examples of Masks for n=6; and the bottom row – the clockwise 
“attachment” of the cells to the primitive Mask that produces the Correct 
Masks with n=5, 6, 7, and 8. It is “obvious” that all primitive Masks in 
all dimensions are Correct, and values C for these Masks equal 9N-1 for 
any N, where N is the dimension of the space. The second row (Figure 
6B) shows two examples of Correct Masks for n=5 composed by the 
addition of points (x=1, y=1) or (x=2, y=0). The third row of panel B in 
Figure 6 also shows Correct Masks for n=6: one way to built the Correct 
Mask for n=6 is using the x-axis symmetry and another one, using 
central symmetry (С1/2 for n=6 are shown in the corresponding cells). 
In the bottom panel, we add the cells, one by one, to the mandatory 
part of the two-dimensional Mask starting from the top-right “cell” and 
then going clockwise. We obtain four Correct Masks: (n=5, C1/2=85); 
(n=6, C1/2=181); (n=7, C1/2=240); and (n=8, C1/2=424). The black cells 
in Figure 6B indicate some “additions” that yield the Incorrect Mask. 
Parameter ρ in Figure 6 is the “density” of corresponding CA, e.g., 11% 
for Mask (1,1); 12.5 % for Mask (3,1) etc. We define here the “density” 
as the ratio of the number of rows in six matrices R to a number of all 
possible states 6C/6n+1=C/6n expressed in percent. It is hard to imagine 

how accurately our CA must walk! In all states, except the first two, 
more than 90% of the rows are “forbidden”. Yet, those CA in its time 
propagation never set a foot on the “forbidden” ground. That is why it 
can be considered as a “miracle” of its kind.

Proof: Note, the proof for Theorem 1 is obtained using personal 
computer. The software program with the source code (common to 
dimensions N=1 and N=2). In the beginning, we present the Transition 
Tables for primitive Masks in one (Figure 7A and 7B) dimensions as 
well as for Mask (3,1) in one dimension (Figure 7C). Let us explain 
what is depicted in Figure 7. In each of three panels, we move from 
the left to the right. Some rows in Figure 7 containing only letter “y” 
and marked with inclined lines (shading) indicate that these rows are 
important to perform the “mathematical induction” step in our proof, 
which is conducted further on in the text. Let us consider letter “y” 
(note that in case of letter “x” everything is considered similarly). To 
prove the Correctness of our Mask, first, we need to make sure that our 
table contains all the 2n+1 rows consisting of one and the same letter 
“x”. The  R-x table has a row containing only “-z”. Therefore, table R-z 

Figure 7: Tables R-x for Correct Masks. Panel A for Mask (1,1); panel B for primitive Mask in two dimensions; panel C for Mask (3,1) in one dimension. The explanation 
is in the text.
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has a row containing only “-y” (see point 4), and table R+x has a row 
containing only “+y”. The remaining (2n+1-2)/2 variants are distributed 
over tables R-x

 and R+z. Moreover, the variants in R-x
 are complementary 

to variants R+z (note that all rows from R-x
 are multiplied by -1 in R+z). 

Let us check the number of shaded rows. Consider panel A (Figure 
7): on one hand, we have (22+1-2 )/2=3 rows containing only letter “y”. 
On the other hand, if in the same panel A, we sum up the numbers 
in the column S for rows containing only “y” (S stands for symmetry, 
explained below) then 1+2=3. Panel B (Figure 7): similarly, using the 
above expression we can find (23+1-2)/2=7 rows or, on another hand, 
summing up number in columns S, we get the same number 7 (S=1 
everywhere because of no symmetry for the Mask). Finally, panel C: 
(24+1-2 )/2=15 or summing up the rows with account of their symmetry 
we get 1+4+4+2+4=15 lines.

Column “∆” is just a sign of a letter in “zero” point (column) of 
table R (the relationship is shown by the connected dots; Figure 7). 
More detailed information about that column will be given in the next 
chapter. Column “Npr” (Figure 7C) shows the number of instances the 
given configuration appeared in our proof (see below). The values in 
this column are given in multiples of C (i.e., this entire column should 
be multiplied by 81). Then for Figure.7A and 7B it turns out that this 
entire column is filled only with value 1. We could have hypothesized 
that all the values in column Nprwere multiples of C all the time. But 
this is not so. This hypothesis turns invalid already for the next Correct 
Mask (5,3). Column “S” serves to reduce the list of entries. Each row 
can be found S times in that list, taking into account the axial symmetry 
(Figure 7A) or square symmetry (Figure 7B).

Let us return to the proof. If table R-x is already known for some 

Mask, then the following action on the proof is clear. Yet, we are not 
certain about the outcome of such a process.

We made the first step in the mathematical induction, i.e., we 
showed that all 2n+1 rows containing only letter “x” are present in the 
Transition Tables. Now, let us move on. Given: assume that at time point 
t in every point of CA the content of the Mask is permitted, i.e. all the 
rows in the Masks belong to tables R. It is necessary to prove that at the 
next time point (t+1) our CA will have the same property. The solution 
can be found through the proof by exhaustion performed on a personal 
computer.

Let us unite all Transitions Tables (R
-x

, R-y, R-z, R+x, R+y, R+z) into 
one Table and named it R(6). It has 6C rows numbered 0, 1,… k,… 6C-1 
and the numbering of its rows has the following construction. First, 
the rows of table R-x are placed in a descending order in accordance 
with the selected seniority - x>-y>-z>+x>+y>+z. Other Transition 
Tables can be found by using corresponding substitutions, i.e., using the 
rule (5) from point 3, and numbering in these Tables does not change 
relatively to that in R-x. After that, the Tables are concatenated (here 
it means the second one is attached to the bottom of the first one, etc) 
in similar order: R

-x
 … , R-y … R-z … R+x … R+y … R+z. To determine the 

specific Table for the row with number k, one has to determine the floor 
function [k/C], where C is the number of rows in a single Table of our 
Mask.

Let us introduce a new term. Let us name Mkj as the Mask filled 
with the row numbered kj from R(6); kj=0, …, 6C-1 (see an example 
of such a filling in Figure 8). We call set {k0, k1,, …kn} from n+1 (n- 
number of the points in the Mask) filled Masks “illegal” if after the 
placement of set Mk0 into a point with number 0 of our Masks, Mk1 - into 

Figure 8: “Legal” set {220, 165, 221, 358,177} in case of a primitive Mask in two dimensions.
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a point with number of 1 our Mask, etc., some point of our lattice will 
be filled with two different letters, that is the letters not equal to each 
other. Otherwise we call our set “legal”. Now consider, for example, the 
primitive Mask in two dimensions (see panel B in Figure 7). In Figure 
7 (panel B), a natural sequence of row numbering in the considered 
Transition Table R(6) is truncated (or skipped) in many places due to 
symmetries (e.g., instead of writing in three rows, one after another, we 
have placed a single row and indicated the corresponding symmetry). 
Yet, if we write out all the rows of combined Transition Table R(6) as they 
are, then it will turn out, that for instance, rows number k0=220; k1=165; 
k2=221; k3=358; k4=177 form a “legal” set (Figure 8). It is clear that only 
a limited number of all sets are “legal”. For example, it is easy to see, that 
if we have any “legal” combination {k0, k1, …, kn} and h=0 (Figure 7 to 
determine h) then any set {m, k1,…, kn} where m it is not equal k0, will be 
“illegal”. Further we find “legal” sets {k0 k1, …, kn} using the n+1 nested 
loops (each loop considers 6C variants for ki) thus going through all 
possible combinations of ki (Figure 9).

For each “legal” combination, we determine a row in the Mask 
in consecutive point in time {[k0/C], [k1/C],…,[kn/C]} and make two 
checks: i) whether or not the row under consideration can be found in 
R(6) and ii) whether or not the inverse transformation works. After that, 
we add “one” to column Npr corresponding to that row and move on to 
a next step in a cycle...We reach the end, and declare that the Theorem 
is proved. So, we have got a key observation. If we have the Transition 
Tables the proof of Correctness is always leads to a success. This fact can 
be considered as the greatest mystery in mathematics.

Definition of Simple reversible Automaton for the Mask
Let us return to the question how one obtains the Transition Table. 

To answer this, let us briefly describe the results presented [2]. Let us 
introduce the concept of Simple reversible Automaton on a Mask. 
It works on the same lattice (ZN), yet closed on all sides (because we 
require a limited number of states), and has 3 states A, B, C. Here we 
describe an ordinary second-order Automaton found by E. Fredkin that 

was studied by many authors, instance [3-5]. Each consecutive state 
depends on whether the Mask superimposed with a given point contains 
state C or not. In Case 1 (when the Mask contains state C) the following 
transitions are made A ⇒ C, B ⇒ A, C ⇒ B. In opposite Case 2, (no state 
C is contained in the Mask) the following transitions are made: A ⇒ A, B 
⇒ C, C ⇒ B. It is well known that Fredkin’s Automaton is reversible [6]), 
thus to change the direction of time, it is enough to replace all B with C 
and all C with B. Let us fill the cells only with the states taken from A 
and C (t=0) and consider the of the Automaton runs from the Beginning 
(Start) Point to the Mirror Point, and then back to the Beginning Point 
(Figure 10). An additional commentary to Figure 10. A normality of the 
Mask is necessary for two reasons. The first reason is that the Beginning 
point (BP) comprising cells A and C should have the Mirror point (MP) 
which is also composed of cells A and C (Figure 10A). The second 
reason is that the run of Automaton on the plot “Automaton state vs. 
Time” follows the distinct and non-crossing bands (Figure 10B). We will 
remind, in brief, how it has been proven.

Imagine a chess figure which makes only a one-unit move forward 
or backward along any of axes of the N-dimensional integer lattice (at 
each step, the figure can move along some arbitrary axis); also note that 
it is permitted for this figure to make a move on the field where the 
figure was in the past. It is obvious that the figure can eventually visit all 
the points of any closed integer lattice and return to its starting position. 
So, using the course of this figure we transform any N dimensions into 
one as shown in Figure 10B). After that, to prove that our bands do not 
cross each other bands, we use the property of a normality, [2].

Further, there is the main observation that, for any Correct Mask, 
CA of arbitrary size, and any initial conditions selected in the diagram 
“Automaton state vs. Time” where all B cells are removed, pictures for 
the “Ordinary run” and “Additional run” (wherein the replacement 
of the initial conditions A⇔C is made), literally coincide after the 
replacement all of cells A⇔C. Consider the issue again and in detail. 
Let us name the diagram “Automaton state vs. time” for the normal 

Figure 9: Five nested loops in the proof of Correctness of a primitive Mask in two dimensions. In each loops, it is checked: i) whether the row {i0, i1, i2, i3, i4} belongs 
R(6); and ii) whether this row belongs to R-1J, where J – the value of the Mask ke (k0) in a zero point in time t. In case of Figure8, row {-z,-z,-z, y,-z} belongs to R-x and 
to R-1+x.
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run of Automaton as the Ordinary World; and a similar diagram for 
the “additional run”, as Parallel World. First, let us introduce the terms 
describing the Ordinary World. The state of Simple CA in point r as a 

function of time t is denoted as

fABC(t,r)∈{A;B;C} (7)

Figure 10: Panel A – illustration of Simple CA run. One needs to take a notion that each grey “band” shown in this figure is actually a torus (it is rather difficult to 
depict the considered operations on a torus). Any run that starts from the Beginning Point (i.e., the state filled only “A” and “C” cells) follows the circle: the Beginning 
Point => the Mirror Point (MP also comprises cells “A” and “C”) => Beginning Point. We have two runs: Ordinary and Additional (in the initial conditions of the latter, 
the replacement A⇔C is made). Ordinary and Additional runs may have different Half Periods: T and T*. Yet, for some Masks (the Correct ones), it becomes clear 
that after removing all cells B from both pictures, the pictures will look the same after making replacement all picture Automaton state “vs time” for any of our runs 
(Ordinary or Additional). The straight yellow A⇔C. Panel B shows the w lines indicate the Beginning and Mirror Points. Orange lines connecting the centres of cells 
C show distinct C/B “bands” which do not cross each other. Further explanations see in the text.

Figure 11: Illustration to finding the Transition Tables R Panels A and B: the diagrams “State of Automaton vs. Time” for two Automaton runs (for Ordinary and Parallel 
worlds). Panels C and D – the corresponding transformations of cells with letters “A” and “C” after removal of all cells with letters “B”.
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Then, let us introduce function b which indicates whether a given 
cell is the B cell at a given time, or not

1, ( , )
( , )

0, ( , )
ABC

ABC

if f t r
b t r

if f t r


= 


 (8)

Transformation functions (with B removed) are defined as follows 
also explained in Figure 11.

0

0

0

( ( , ), )

( ( , ), )

( ( , ), )

0, ( , )
1, ( , )

1, ( , )
, ( , )

1, ( , )
, ( , )

i

AC
i t

i

A
i t

i

C
i t

ABC

ABC

ABC

ABC

ABC

ABC

t b i r r

F t b i r r

F t b i r r

if f t r A
if f t r C
if f t r C

t if f t r A
if f t r A

t if f t r C

θ
≤ ≤

≤ ≤

≤ ≤


− 




− 



− 


=
=

=

− =
=

=

− =
=

=

∑

∑

∑

Let us take the primitive Mask in one dimension on the closed 
row (a ring) of ten points, two points of 10 being colored with two 
different (“opposite”) colors. Yet, we repeat one more time, that all our 
methods can be applied without any changes to any Correct Mask in 
the N-dimensional space, for Automaton of any size, and for any initial 
conditions (Figure 12).

Let us introduce four new functions as follows:
( , ), ( , ) 0 ( , ), ( , ) 1

( , ) ( , )
( , ), ( , ) 1 ( , ), ( , ) 0

A AC A AC
AC CA

C AC C AC

F r if r F r if r
F r F r

F r if r F r if r
τ θ τ τ θ τ

τ τ
τ θ τ τ θ τ

= = 
= = = = 

Note that the construction of F
AC (τ, r) was shown merely as an 

intermediate supplementary function to demonstrate the construction 

of similar function (3)
ACF  with the only difference in mod 3 (we 

emphasize that mod 3 is an important manipulation, it makes all 
other things happen). It should be understood that these operations 
create completely different tables (3)

ACF  and (3)
CA . We introduce new 

notations: 0 ⇔-x, 1⇔ -y, 2⇔-z, 3⇔+x, 4⇔+y, 5 ⇔+z. We can see from 
the illustration of Figure 13 that these notations definitely give us the 
Transition Tables. The first Table is for one direction in time, and the 
second, for the opposite one. (If we have taken F

CA function instead of 
FAC one, it would lead to replacement R⇔R-1).

Now it is clear how to obtain Transition Tables. First, we set random 
initial conditions from A and C states defined on “small” integer 
lattices that are closed in all directions and form the torus and turn 
on a Simple Automaton on the Mask. Then, for every three moves of a 
Simple Automaton on the time scale, we can find L (total cell number) 
multiplied by 2 states in each of our new tables (3)

ACF . Finally, we stop 
after we reach the point of half-cycle and analyze the result. Then we 
change the initial conditions and repeat the trial. At each point in table 

(3)
ACF ,we can determine 12(!) new rows R-x taking into account the 

inverse motion. If the Mask is Correct, then R-x will be entirely filled in 
a short time. After that, it is necessary to perform standard check for 
Correctness (see Chapter 3).

Definition of a Perfect Mask. Strings
So, let us repeat again. Let us take a look on two runs (we call it as 

Standard and Additional) of i) a Simple Automaton on the Mask (f
ABC

; as 
a function of time t) and ii) Table Automaton on the same Mask (3)

ACF

Figure 12: Illustration of the transformation step shown in Figure 11 - i.e., the transition from panel A to panel C. First, we remove letters B from the cells (empty the 
cells of letter B). After the removal, letters “At” and “Ct”, where t is the row number (time coordinate) in the original (t, r) space, move up to fill the vacant spaces. After 
that, we apply Eq. 10 to “At” and “Ct”, thus converting the “colors” into numbers, and obtain Figure 11C.
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; as a function of time τ) induced by Simple Automaton. The cells we 
have obtained are the same and numbered with integers r. In the case of 
Simple Automaton, our run (the Ordinary World) starts with state filled 
with cells containing letters “A” and “С” at time t=0; Figure 10. In the 
additional run (Parallel World), the replacements A⇔C take place. In 
the case of Table Automaton, our run (the Ordinary World) starts with 
state filled –x (cells with letters “A” in Simple Automaton; t=0) and +x 
(cells with letters “С” in Simple Automaton; t=0). In the additional run 
(Parallel World) of the Table Automaton the replacements -x⇔ x take 
place.

Let us introduce function ∆(τ,r).
(3)

(3)

1 ( , )
( , )

1 ( , )
AC

AC

if F r x y z
r

if F r x y z
τ

τ
τ

− = − ∨ − ∨ −= 
+ = + ∨ + ∨ +

∆

And write out without any proof several formulas connecting our 
two Automatons. In any point r, parameters t and τ are connected by 
the relation:

0

3 1 ( , )
2

u

u
u rt

ττ ≤ ≤

+ ∆= ∑

Eventually, our final observation is that if all this is correct for the 
Ordinary World, then for Parallel Word (the functions are designated by 
asterisk) and for all τ и r the following is true explained in Figure 14.

*
1/2

0 0
( , ) ( , ) 2

u u

u u
u r u r d

τ τ≤ ≤ ≤ ≤

∆ = − ∆ =∑ ∑

*
1/2 1/2

*
1/2 1/2

3 3, ,
2 2

3 3, ,
2 2

ABC ABC

ABC ABC

if f d r A f d r C

if f d r C f d r A

τ τ

τ τ

   + = ⇒ − =   
   
   + = ⇒ − =   
   

If for some Correct Mask and for every run the Eqs. 13-17 are 
satisfied, then we can call our Mask (as well as two of its CA) Perfect. 
Further on, we will portray this situation as “the two CA make their 
runs (from BP to the MP) by a use of a contiguous String”. Note that 
theoretical physics has its own “strings”, but even if the author has not 
known about it, he would have called this object with this word. We will 
show our String on some simple example (Figure 15). Let us show in the 
same drawing each of two one-dimensional runs of Simple Automaton 
for Masks (3,1). The length of row (closed into a ring) is 15 cells. Initial 
conditions are as follows: one point of “opposite” color (in Ordinary 
World: all cells C, one cell is A; in Parallel World: all cells A, one cell 
is C). Moreover, we use line of different colors to depict C/B «bands» 
for both runs: the green line indicate the C/B band in the Ordinary 
World while the blue line shows the C/B band in the Parallel World. 
Horizontal strips shown in panel A of Figure 15: x (light-blue) designate 
t mod 3=0, band y (white) t mod 3=1, and z (pink) t mod 3=2, where t is 
time (see above). Note that if we had taken normal but Incorrect Mask 
(5,1) instead of Mask (3,1), we would have obtained no Strings at all. 
Our beautiful picture from Figure 15 would have turned into a mess 
at once. Coming back to that chess figure from Section 4 which carries 
out converting the N dimensions of integer lattice into a single one, the 
author suggests (he didn’t check it, yet) that whatever the method of 

Figure 13: Continuation of illustration shown in Figure 11. In this figure, panels (A, C) and (B, D) show the two pairs of practically identical Tables, the only difference 
between the top Table and bottom one is that in the bottom one, the numbers in the cells are replaced with letters (see straightforward conversion rules depicted on 
the left and right sides). Our task at this point is to find NEW rows in the table R-x. In each drawing (see Figure 12C and 12D). We selected three arbitrary points - 
the results of the F and FC(3)functions where the input parameter is the same cell (τ,r) in the corresponding top panels (are shown in ovals). For three points we can 
determine 6 new rows in different tables R (the corresponding rows are allocated in a gray three-cell rectangle). In the table R+x – a row {+y,-z,+z}; in the table R-1+x 
– a row{+z,+z,+z}; in the table R-x – a row {- y,+y,- y} etc. All these rows from the substitution (see Expressions 5-6) are then transferred to the table R-x. Further these 
rows are compared to the ones that are already present in R-x, and if the new rows aren’t there, we add those rows to the Table .
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Figure 14: Illustration of Equation 14.

Figure 15: Panel A shows the two superimposed runs for Mask (3, 1). It seems to be chaotic at the first glance. Panel B: vertical bars designate halves of Strings d1/2 
(see Equation16) from the Ordinary World (pink bars) and Parallel one (green bars). It is not easy to recognize the String in the picture taken as a whole, but it is there. 
The situation is very unusual. Both Automatons work completely independently, yet the two runs are connected through some sort of “wormhole”.
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transformation is chosen, the String will keep the same appearance: 
i.e., the distance (taken at modulus) between the adjacent cells (in one 
measurement) will never be more than one.

So, there goes a reference run presenting a single step of Table 
CA. Over the course of this step, one and a half steps of Simple CA 
occur. The dashed shaded horizontal and vertical cells – representing 
a “half ” of the Strings from the Ordinary World and the Parallel one 
– move down one cell (if there is no cell B beneath these cells) or two 
cells (if there is cell B beneath these cell, then one needs to jump over 
it). At every step and in every cell, the following event happens: either 
Ordinary World can go ahead of the Parallel World stays behind by the 
same amount) or lag (and then Parallel World is ahead). Parity of the 
String width (d=2*d1/2; the distance between the differently shaded cells) 
in each time point ofcoincides with the parity of the number τ itself 
(Figure 15). At the Half Period point, Strings are stretched into a line 
with width λ=T – T* from [2]. In Section 4, we did not use the notion of 
Parallel World anywhere. In principle, the Сorrectness of Masks could 
exist without existence of Eqs. 13-17. But, it is obvious that these things 
are connected directly. If the Mask is Correct, that means there Eqs. 13-
17 exist; if the Mask is Incorrect then Eqs. 13-17 do not exist. Naturally, 
the fact that the Mask is Perfect leads to a considerable reduction in the 
number of possible “ways” (rows of the states, parameter, Figure 6) and 
as a consequence, to a significant reduction (in a statistical sense) in the 
values of both half periods T and T* (see [7]). Immediately, there arises 
the Main problem (more correctly, a lot of problems). We denote it as 
the “Problem of the Number 3”. We do not know, yet, how broad is the 
problem. It is quite possible that it can be one of the main problems in 
Mathematics. Assume we know that the Mask under consideration is 
Correct. More accurately, we have found the Transition Tables with the 
aid of personal computer and proved by exhaustion that the given Mask 
is Correct. Now, we need to prove that the same very Mask is Perfect. 
Here arises a fundamental question of why the proof of Theorem 1 
always works. In some sense, it can be the case that we only came up 
with a new and “better looking” wrap for the Correct Masks.

It is possible to suggest that analogously to Theorem 1 we can also 
prove the Eq. 16. Yet, what to do next? Well, it is necessary to investigate 
algebraically our Strings in N dimensions. Obviously, it is quite a 
challenging task.

How many “problems” do we have? In other words, how large is the 
number of all Correct Masks? We introduce, informally, certain number 
K which is the approximate number of Masks in all dimensions, for which 
the Jaguar - the most powerful supercomputer on this day (February 2016) 
- can prove the Correctness of all the Masks in one day or maximum a 
week. (This definition, obviously, is necessary to correct somehow. It is well 
known, for example, that in one dimension, all Masks (-2k+1, 2k +1) are 
Correct and C (=81) for those Masks is not very large. We, of course, do 
not consider such Masks! We do not know how large is K. It can be equal 
to 10,000 or may be equal to a factorial of 100. No doubts that the Jaguar is 
a powerful computer. On the other hand, the number of inspections grows 
very rapidly with the increase of n and C. However, the inspections use the 
algebraic operations/steps of similar type. So perhaps it is better to do the 
calculations using a specialized computer.

As of today, the general program has been written to prove the 
Correctness of any Mask in one and two dimensions. shows the proofs 
of the Correctness for all of Masks from Figure 6 with n<9. The breadth 
of the proof at this point is limited by a performance of author’s 
personal computer. The Jaguar can increase “n” to several dozen (in one 
dimension) and number “N” to four or even five. In brief, Mathematical 
Strings definitely exist and in huge numbers. The author still does not 

know the answer to the question: whether or not all central-symmetric 
Masks are Correct Masks in all dimensions. The author employed 
the personal computer for weeks searching for abnormalities. The 
dimensions 1, 2, 3 have been checked. The criterion of Incorrectness 
was getting 2 in the expression AC AC* (Figure 11). Yet, not a single 
Incorrect Mask among central-symmetric ones has been found. To make 
the situation more intriguing, we note that there exist special Incorrect 
but “self- healing” Masks-Strings [8]. We cannot exclude a situation that 
starting with some n and N our proof stops working. Yet, the author 
tends to believe that a probability of such an outcome is extremely low. 
We suggest that all the material presented in the above to be named 
as the foundation of Theory of Mathematical Strings. Note: our theory 
should not be confused it with a well-known theory of strings in physics.

Conclusion
Let us briefly summarize our findings. The Number 3 (in other 

words, a group from Figure 5, or configuration 2x3) generates the 
unimaginable number of different symmetries in the N-dimensional 
integer lattice ZN. Here we remind that the number of symmetries 
is greater than the number of central-symmetric Masks in the 
N-dimensional integer lattice ZN. Computer calculations indicate 
(yet, indirectly) that in ZN with large N almost any Mask is Correct, 
and each Correct Mask represents a new “symmetry” in this ZN. The 
author developed the approach to finding the Correct Masks for low-
dimensional ZN. Utilizing the same approach (yet exploiting capabilities 
of a very powerful computer) it is feasible to find the Correct Masks 
for integer lattices of higher dimensions. Our main idea is illustrated 
by the following figure. It seems certain that these symmetries are 
directly related to the physical nature of space. We do this to suggest 
that professionals in the field of theory of numbers should take over 
the theoretical physicists concerning the question of constructing a 
consistent theory of the Universe. Yet, while physicists argue and debate 
about various peculiarities of string theory, one can contemplate how 
to use the theory of Mathematical Strings to build a consistent model 
describing fundamental properties of space (Figure 16).
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