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Introduction
Benzene is an important industrial chemical and an environmental 

contaminant. Chronic occupational benzene exposure is associated 
with an increased risk of hematological malignancies. A study indicated 
that white blood cell counts were decreased in workers exposed to <1 
ppm benzene compared with controls [1]. However, the mechanisms 
of low level benzene-induced hematotoxicity remain to be elucidated. 

DNA methylation alteration is very useful in the diagnosis, 
prognosis and prediction of disease [2]. Methylation of 5’-CpG islands 
in gene promoter regions has consistently been found in malignant 
tissues and is hypothesized to be indicative of critical early changes in 
cancer development [3]. Aberrant DNA methylation, which may lead 
to genomic  instability and the altered gene expression, is frequently 
observed in  AML [4]. Repeated-element DNA hypomethylation, 
as well as  gene-specific hypermethylation or hypomethylation are 
commonly seen in hematological cancers [5]. DNA methylation has 
thus been proposed to reflect  environmentally-induced epigenetic 
reprogramming and risk of future disease [6-8].

Benzene, an established human leukemogen, is known to induce 
global DNA hypomethylation changes through its active metabolites 
including hydroquinone (HQ) in human TK6 lymphoblastoid cells 
[9]. Global DNA hypomethylation was reported based on PCR-
Pyrosequencing measures in gasoline station attendants exposed 
to benzene [10] and these studies suggest that DNA hypomethylation 
may be key mechanism underlying the leukemogenicity of  benzene. 
However, knowledge of the effects of benzene on DNA methylation 
is still limited. Therefore, we hypothesis that low level benzene 
exposure can induce population-specific methylation alterations in 
the promoter regions of specific genes, thus leading to changes in gene 
transcription and an increased risk for benzene hematotoxicity.  To 
gain an insight into the molecular mechanisms and new biomarkers, 

microarray analysis was used to identify the differentially expressed 
DNA methylation pattern critical for benzene hematotoxicity. Specific 
CpG sites (or genes) with altered methylation  in workers due to 
exposure to low level benzene were identified.

Materials and Methods
Characteristics of subjects

These benzene-exposed subjects are all paint sprayers and health 
controls are office workers without benzene exposure in the same 
factory. The detailed characteristics of study population can be seen 
in our previous published papers [11,12]. Air benzene exposure 
was determined by a passive sampler (stainless steel tube, internal 
diameter of 9 mm, length of 90 mm) containing Chromosorb 106, 
worn by the study subjects near the breathing zone during the work 
shift. Benzene was determined by thermal desorption followed by gas 
chromatography/flame ionization detector analysis [10,13]. Airborne 
benzene concentration between health controls without benzene 
exposure and low level benzene-exposed group without clinical 
symptoms is 0.06 ± 0.01mg/m3, 1.82 ± 1.16 mg/m3, respectively. 
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Abstract
Benzene  is an important industrial chemical and an environmental contaminant. The mechanisms of 

low level  benzene-induced hematotoxicity are unresolved. Aberrant DNA methylation, which may lead to 
genomic instability and the altered gene expression, is frequently observed in hematological cancers. The purpose 
of the present study was to conduct a genome-wide investigation to examine comprehensively whether low level 
benzene induces DNA methylation alteration in the benzene-exposed workers. Infinium 450K methylation array 
was used to compare methylation levels of the low level benzene-exposed individuals and health controls and 
the differentially expressed DNA methylation pattern critical for benzene hematotoxicity were screened. Signal net 
analysis showed that two key hypomethylated KRAS and RASGRF2 associated with low level benzene exposure 
were identified. Further, the hypomethylated RASGRF2 gene played central roles through regulation of Rho protein, 
MAPK, small GTPase mediated signal transduction. While the hypomethylated KRAS gene played important roles 
through small GTPase, Ras protein, MAPK cascade, Gap junction, Axon guidance, Tight junction, GnRH, T cell 
receptor signaling pathway, Acute myeloid leukemia, B cell receptor signaling pathway, Chronic myeloid leukemia, 
ErbB signaling pathway. Our preliminary study indicated that aberrant hypomethylated KRAS and RASGRF2 might 
be a potential methylated biomarker of low level benzene hematotoxicity.
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Each subject was given a physical exam  by a study physician. A 
questionnaire was administered to obtain the detailed information on 
occupation, environmental exposures  to solvents and pesticides, past 
and current tobacco, alcohol use and medical history including recent 
infections,  ionizing radiation  exposure, medication use and family 
history. The subjects in each group were matched by age, gender and 
life styles. These samples were used for microarray analysis. Briefly, 
peripheral blood samples were randomly obtained from four benzene-
exposed workers (average age 44.7 (39~51) yrs, average white blood cell 
6.4*109/L) and four health controls without benzene exposure (average 
age 43.3(34~55) yrs, average white blood cell 6.4*109/L) with informed 
consents, and the study was approved by the Committees for Ethical 
Review of Research involving Human Subjects of Capital Medical 
University.

Peripheral blood genomic DNA isolation and bisulphite 
conversion 

Genomic DNA from the peripheral blood mononuclear cells of four 
workers exposed to benzene levels ranging < 1 ppm and four health 
controls was isolated by using the QIAamp DNA Mini Kit (Qiagen, 
Valencia, CA, USA). DNA was prepared with a Wizard Genomic DNA 
purification kit (Promega Corp, Madison, WI), quantified, and diluted 
into aliquots of 25 ng/μl for genome-wide DNA methylation analysis. 
One μg of genomic DNA was treated using the EZ DNA Methylation Kit 
(Zymo Research, Orange, CA, USA) according to the manufacturer’s 
protocol. Unmethylated cytosines were  converted to uracils (which 
are then converted into thymines following subsequent PCR), while 
methylated cytosines remained unchanged. We used a total of 500 ng 
DNA for each bisulphite conversion reaction. Bisulfite treated DNA was 
aliquoted and stored at −80°C until ready for use.

Infinium DNA methylation analysis 

The  450K DNA Methylation array includes 485,764 cytosine 
positions  of the human genome. A general depiction of the 450K 
platform design, regarding functional genome distribution, CpG content 
and chromosome location, is reported and validated in two independent 
laboratories [14,15]. Genome-wide methylation analysis was performed 
using the high resolution Infinium 450K methylation array interrogating 
about 480 000 CpGs  distributed in promoters, gene bodies, 3’UTRs 
and intergenic  regions  [15]. DNA methylation  data were processed 
using GenomeStudio software  (ver.2012; Illumina, Inc.) applying 
the default settings.  Infinium arrays were hybridized and scanned 
as manufacturer’s instructions (Illumina, San Diego, USA). Individual 
probe β values (range 0-1) are approximate  representations of the 
absolute methylation percentage  of specific CpG sites within the 
sample  population. Beta (β)=1 indicates complete methylation; β=0 
represents no methylation.  The values are derived by comparing 
the ratio of intensities between the methylated and unmethylated alleles 
using the following formula: β value=Max (Signal B, 0)/[Max (Signal A, 
0) + Max (Signal B, 0)]. Where Signal B is the array intensity value for 
the methylated allele and Signal A is the non-methylated allele. Samples 
were processed using the Bioconductor package, which is specifically 
designed for Illumina  data. All the obtained DNA methylation data 
have been deposited in the Gene Expression Omnibus (GEO) database 
in the following link: acc=GSE50967

Hierarchical clustering 

To ascertain whether these differentially expressed hypomethylated 
and hypermethylated genes among groups were selected correctly, 
hierarchical cluster analysis was performed based on differentially 

expressed genes using Cluster Treeview software from Stanford 
University.

Differentially expressed hypomethylated and hypermethylated 
genes were identified through random variance model (RVM)

Because of high test fee, only four samples at each group were 
detected. The age, gender, lifestyle such as smoking, drinking, and 
medical history in each group were matched to reduce the impact of 
these confounding factors. In addition, the effective statistical method 
for small samples was adopted. RVM, t-test was commonly used for 
comparison of two groups, because the RVM, t-test effectively increased 
the degrees of freedom in the cases of small samples [16,17].  After 
the significance analysis and false discovery rate (FDR) analysis, we 
selected  the differentially expressed genes according to the statistical 
significance of t-test after adjustment with the Benjamini and Hochberg 
correction. The cut-off for t-test P-values is <0.001. 

Gene ontology analysis and pathway analysis

Gene ontology analysis was applied to analyze the main function 
of differential expression genes according to the Gene ontology project 
[18]. Fisher’s exact test and χ2 test were used to classify the GO category, 
and the FDR was calculated to correct the P value [19]. The standard of 
difference screening was P<0.05. Similarly, pathway analysis was used 
to find out the significant pathway of the differential genes according 
to KEGG, Biocarta and Reatome. Fisher’s exact test and χ2 tests were 
used to select the significant pathway, and the threshold of significance 
was defined by P value and FDR [20-22]. The standard of difference 
screening was P<0.05.

Signal-Net analysis

Gene-gene interaction network was constructed based on the data 
of differentially expressed mRNAs. For instance, if there is confirmative 
evidence that two genes interact with each other, an interaction edge 
is assigned between the two genes. The considered evidence is the 
source of the interaction database from KEGG. Networks are stored 
and presented as graphs, where nodes are main genes (protein, 
compound, etc.) and edges represent relation types between the nodes, 
e.g. activation or phosphorylation. The graph nature of networks raised 
our interest to investigate them with powerful tools implemented in R 
[23]. To investigate the global network, we computationally identify the 
most important nodes. To this end we turn to the connectivity (also 
known as degree) defined as the sum of connection strengths with the 
other network genes: . In gene networks, the connectivity 
measures how correlated a gene is with all other network genes. For 
a gene in the network, the number of source genes of a gene is called 
the indegree of the gene and the number of target genes of a gene is 
its outdegree. The character of genes is described by betweenness 
centrality measures reflecting the importance of a node in a graph 
relative to other nodes. For a graph G:(V,E) with n vertices, the relative 

betweenness centrality ( )BC v′  is defined by: 2
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where s t (v)σ  is the number of shortest paths from s to t, and is 
the number of shortest paths from s to t that pass through a vertex v. 
[24-26]. We were thus able to search for differential expression genes. 
Two nodes were connected when their corresponding  encoded gene 
products were either directly  connected or indirectly connected by a 
linker gene in the interaction network. The network for each gene was 
measured by counting the number of upstream and downstream genes 
or binding genes which were  expressed as in-degree and out-degree 
or degree, respectively. The higher degree of a gene indicates that it is 
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regulating or being regulated by a greater number of genes, implying 
it has a more important role in the  signaling network. P<0.05 was 
considered  statistically significant. Gene interactions could then  be 
drawn based on the data [27].

Results 
The differentially hypomethylated and hypermethylated 
CpG pattern associated with low level benzene exposure and 
functional analysis

Distinct genome-wide DNA methylation patterns were observed in 
benzene exposures workers compared with health controls. Hierarchical 
cluster analysis shows 1546 differential hypermethylated and 613 
hypomethylated CpG sites in low level benzene exposure workers 
compared to health controls (Figure 1a). GO analysis indicates that 
these hypermethylation genes are mainly involved in cell adhesion, 
signal transduction, transcription, DNA-dependent, regulation of 
small GTPase mediated signal transduction, apoptotic process, cell 
differentiation, positive regulation of cell proliferation, G-protein 
coupled receptor signaling pathway, coupled to cyclic nucleotide 
second messenger, oxidation-reduction process, Wnt receptor signaling 
pathway, cellular response to oxidative stress, innate immune response, 
induction of apoptosis, immune response, JUN phosphorylation, 
regulation of JUN kinase activity, leukemia inhibitory factor signaling 
pathway (Figure 1b); While these hypomethylation genes in low level 

benzene exposure workers are implicated in transcription, DNA-
dependent, small GTPase mediated signal transduction, cell adhesion, 
Ras protein signal transduction, synapse assembly, negative regulation of 
transcription, DNA-dependent, MAPK cascade, DNA damage response, 
signal transduction by p53 class mediator resulting in cell cycle arrest, 
post-translational protein modification, protein autophosphorylation, 
signal transduction, negative regulation of cell proliferation, negative 
regulation of NF-kappaB import into nucleus, negative regulation of 
JAK-STAT cascade, cell differentiation (Figure 1c).

Genomic distribution of the differentially methylated CpGs 
sites associated with low level benzene exposure with respect 
to functional genomic distribution (promoter, gene body, 
3'UTR and intergenic) and CpG content (CpG island, shore, 
shelf and open sea)

Our preliminary study identified a set of differentially methylated 
CpG  loci between low level benzene exposure workers and health 
controls. The location of differentially methylated CpG loci with respect 
to CpG content and functional genomic distribution was similar in our 
study, the majority of CpG loci were residing in gene promoters (Figure 
2a) and in CpG islands (Figure 2b).

Pathway analysis of the differential methylation genes 
associated with low level benzene exposure

To further investigate key pathways linked to these distinct genes, 

Figure 1: The differentially hypomethylated and hypermethylated CpG profiles associated with low level benzene exposure and functional analysis. (a) Hierarchical 
cluster of 2159 differentially methylated CpG sites in low level benzene exposure workers compared with health controls. Among them, there are 1546 differential 
hypermethylated and 613 hypomethylated CpG sites. The heatmap color corresponds to the Beta-value of the measured CpG-sites. The Beta-value is in the range 
of 0 (shown in green) and 1 (shown in red) with 0 representing purely unmethylated and 1 representing purely methylated. Each row represents a separate sample 
and each column represents a CpG site. (b) GO analysis of differential hypermethylated genes in low level benzene exposure workers compared to health controls. 
(c) GO analysis of differential hypomethylated genes in low level benzene exposure workers compared to health controls. X axis, negative logarithm of the P value 
(-LgP), the larger the value was, the smaller the P value was. Y axis, the name of the gene ontology category, significant GO terms of differential methylated genes.
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significant pathways, including MAPK signaling pathway, Gap junction, 
Cell adhesion molecules (CAMs), p53 signaling pathway, Cytokine-
cytokine receptor interaction, Notch signaling pathway, GnRH 
signaling pathway, T cell receptor signaling pathway, Acute myeloid 
leukemia, Mismatch repair, B cell receptor signaling pathway, Chronic 
myeloid leukemia (Table 1). While these differentially hypermethylated 
genes associated with low level benzene exposure were distributed in 
14 significant pathways, including Cell adhesion molecules (CAMs), 
Cytokine-cytokine receptor interaction, Apoptosis, MAPK signaling 
pathway, Acute myeloid leukemia, Hematopoietic cell lineage, Oxidative 
phosphorylation, Notch signaling pathway, Wnt signaling pathway, 
Toll-like receptor signaling pathway, p53 signaling pathway, Adherens 
junction, Tight junction, ErbB signaling pathway (Table 2 ).

To find the interaction among pathways directly and systemically, 
the interaction net of the significant pathways associated with low level 
benzene exposure was built according to the KEGG database. As shown 
in Figure 3, key pathway interaction of differentially methylated genes 
associated with low level benzene exposure in this study were mainly 
involved in MAPK signaling pathway, p53 signaling pathway, Adherens 
junction, Cytokine-cytokine receptor interaction, Cell adhesion 
molecules (CAMs), ErbB signaling pathway. Interestingly, T cell 
receptor signaling pathway, Focal adhesion, B cell receptor signaling 
pathway were special pathways for differentially hypomethylated 
genes. However, apoptosis, Wnt signaling pathway, TGF-beta signaling 
pathway, calcium signaling pathway were special pathways for 
differentially hypermethylated genes.

Signal-net analysis of distinct methylated genes in low level 
benzene-exposed workers

To investigate the key genes involved in low level benzene exposure, 
Figure 2: Genomic distribution of the differentially methylated CpGs sites 
in low level benzene exposure workers compared with health controls with 
respect to functional genomics distribution (promoter, gene body, 3′UTR and 
intergenic) and CpG content (CpG island, shore, shelf and open sea). The 
location of differentially methylated  CpG  loci with respect to  CpG  content 
and functional genomics distribution was similar in our study, with the majority 
of CpG loci residing in CpG islands and in gene promoters. 

Pathway p-Value FDR Gene Symbol

MAPK signaling 
pathway 6.40E-08 5.65E-06

MKNK2, CACNB4, EGF, HSPA1L, 
MOS, RASGRF2, MAPK8IP3, 
CEBPZ, HSPA1A, HSPA1A, 

KRAS, MAPKAPK5, PTPN7, TNF

Gap junction 1.09E-04 6.33E-04 GNA11, EGF, ADCY2, CDC2, 
CDK1, KRAS, PDGFD

Cell adhesion 
molecules (CAMs) 1.12E-04 6.33E-04 NRXN1, HLA-DQA2, HLA-F, HLA-

DQA1, HLA-G, PDCD1, PVRL2
p53 signaling 
pathway 0.002349 0.005206 ATR, GTSE1, CDC2, CDK1, 

MDM2
Cytokine-cytokine 
receptor interaction 0.005546 0.010259 EGF, BMP7, FLT4, CCL14, RELT, 

TNF, TNFSF13B
Notch signaling 
pathway 0.006421 0.0117 NCOR2, CTBP2, JAG2

GnRH signaling 
pathway 0.011063 0.017584 GNA11, PLD1, ADCY2, KRAS

T cell receptor 
signaling pathway 0.011779 0.01834 PDCD1, CARD11, KRAS, TNF

Acute myeloid 
leukemia 0.011996 0.01856 JUP, KRAS, RUNX1T1

Mismatch repair 0.014568 0.021396 CDC2, MSH2
B cell receptor 
signaling pathway 0.022695 0.028704 CARD11, FCGR2B, KRAS

Chronic myeloid 
leukemia 0.022695 0.028704 CTBP2, KRAS, MDM2

Table 1: Pathway analysis of differentially hypomethylated genes associated with 
low level benzene exposure.

the significant pathways categories (P<0.05) of  differential genes 
associated with benzene exposure were performed. Our  analysis 
showed that differentially hypomethylated genes were distributed in 12 

Pathway p-Value FDR Gene Symbol

Cell adhesion 
molecules (CAMs) 3.27E-05 2.02E-04

HLA-DQB1, NFASC, NLGN4X, 
CD34, CDH2, MAG, MAL, 

VCAN

Cytokine-cytokine 
receptor interaction 1.57E-04 6.61E-04

TNFRSF8, IL17RB, KIT, 
BMPR2, CXCL1, CXCL6, 

IFNGR2, INHBC, TNFRSF11B, 
TNFRSF19

Apoptosis 1.64E-04 6.73E-04 BAD, MYD88, NGF, APAF1, 
CASP7, PRKAR2B

MAPK signaling 
pathway 9.92E-04 0.00264

CACNA1H, ECSIT, BDNF, NGF, 
CACNG4, DUSP10, DUSP3, 

JUN, MEF2C
Acute myeloid 
leukemia 0.00204 0.00477 TCF7L2, BAD, CCNA1, KIT

Hematopoietic cell 
lineage 0.008189 0.012519 KIT, CD34, CD7, MAL

Oxidative 
phosphorylation 0.008911 0.012955 NDUFV2, ATP6V0E2, 

ATP6V0A4, LOC642502, SDHC
Notch signaling 
pathway 0.008914 0.012955 LFNG, HES5, NUMB

Wnt signaling 
pathway 0.01276 0.016638 TCF7L2, FZD8, JUN, 

PRICKLE1, SFRP2
Toll-like receptor 
signaling pathway 0.014075 0.017825 TIRAP, MYD88, JUN, MAL, 

TLR2
p53 signaling 
pathway 0.02491 0.02784 TEP1, APAF1, CHEK2

Adherens junction 0.035213 0.034955 TCF7L2, ASIP, IQGAP1
Tight junction 0.035657 0.034955 TEP1, PRKCZ, ASIP, PARD6B
ErbB signaling 
pathway 0.0448 0.040811 BAD, NRG1, JUN

Table 2: Pathway analysis of differentially hypermethylated genes associated with 
low level benzene exposure.
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signal-net analysis of differential methylated genes associated with low 
level benzene exposure showed that two key hypomethylated KRAS 
and RASGRF2 were identified according to the degree size (Figure 4 
and Table 3). Further GO analysis indicated that the hypomethylated 
RASGRF2 gene played central roles through regulation of Rho 

protein signal transduction, MAPK signaling pathway, small GTPase 
mediated signal transduction, synaptic transmission (Supplemental 
material, Supporting Table S1) and through MAPK signaling pathway 
(Supplemental material, Supporting Table S2). While hypomethylated 
KRAS gene played important roles through small GTPase mediated 

Figure 3: Pathnet analysis of differential methylation genes in low level benzene-exposed workers. Nodes represent pathways. The area of nodes displays the degree 
which is the number of other pathways that interact with this pathway. Lines indicate interactions between pathways, where pathways indicated by the arrow head are 
regulated by pathways of the arrow tail. Red denotes the hypermethylated pahtway. Blue denotes the hypomethylated pahtway. Yellow denotes the hypermethylated 
and hypomethylated pahtway.

Figure 4: Signal-net analysis of differential methylated genes in low level benzene-exposed workers. The molecular networks were constructed, where nodes are 
main genes and edges represent relation types between the nodes, e.g. activation or phosphorylation. Red denotes the hypermethylated genes. Blue denotes the 
hypomethylated genes. 
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signal transduction, Ras protein signal transduction, MAPK cascade, 
axon guidance, blood coagulation (Supplemental material, Supporting 
Table S1) and through MAPK signaling pathway, Gap junction, 
Regulation of actin cytoskeleton, Axon guidance, Tight junction, 
GnRH signaling pathway, T cell receptor signaling pathway, Acute 
myeloid leukemia, B cell receptor signaling pathway, Chronic myeloid 
leukemia, Colorectal cancer, ErbB signaling pathway (Supplemental 
material, Supporting Table S2). 

Discussion
In this study, the  overall goal is to provide early methylated 

biomarkers  of low level benzene exposure and to have an in-
depth insight into the molecular mechanisms regulating benzene 
hematotoxicity. Our study indicated that aberrant hypomethylated 
KRAS and RASGRF2 might be a candidate methylation biomarker 
of low level benzene hematotoxicity. This study suggests that low 
level benzene may cause toxicity via non-mutagenicity mechanisms 
and benzene-induced toxicity may be mediated in part by epigenetic 
mechanisms.

Toxicogenomic studies of exposed population are an important 
alternative approach to the human health risk assessment of 
environmental exposures and have been used to identify potential 
biomarkers of early effects and mechanisms underlying associated 
diseases. Microarray techniques have been used successfully to monitor 
DNA methylation profile changes. The recent advances in methods 
to examine epigenetic modifications, such as DNA methylation, 
have led to interest in determining the genome-wide epigenetic 
profiles characterizing many different disease states. Various efficient 
technological platforms have been developed in recent years for 
high-throughput genome-wide analysis of DNA methylation. One 
of these is the Infinium 450K methylation array by Illumina [15]. 
The Infinium 450k DNA methylation array from Illumina offers the 
possibility to analyze more than 480,000 individual CpG sites in a user 
friendly standardized format [14,15]. This setup enabled us to unravel 
alteration in DNA methylation at high resolution independent  of 
genetic variation. This platform has been successfully applied to detect 
aberrantly methylated genes [28,29]. Deneberg et al. derived genome-
wide DNA methylation profiles of 29 childhood B-ALL patients and 
four normal B-cell samples using the Infinium 450 K DNA methylation 
Bead assay [30].

Compared with previously released Illumina DNA methylation 
platforms, the recently launched Infinium Human Methylation 
450 BeadChip represents a significant increase in the CpG site density for 
quantifying methylation events. At the gene level, the 450K microarray 
covers 99% of RefSeq genes with multiple sites in the  annotated 
promoter (1500 bp or 200 bp upstream of transcription  start site), 
5-UTR, first exon, gene body and 3-UTR. From the  CpG context, it 
covers 96% of CpG islands with multiple sites in the annotated CpG 

Islands, shores (regions flanking island) and shelves (regions flanking 
shores) [15]. While the role of  DNA methylation in promoter and 
CpG island regions has  been appreciated, the importance of DNA 
methylation in gene body or shore regions for transcription regulation 
and tumor initialization  has recently come to attention [31,32]. The 
significantly increased coverage makes 450K  microarray a powerful 
platform for exploring methylation profile in these annotated regions. 
As each targeted region contains at least one  CpG site, treating the 
region as a unit in the differential methylation  analysis might help 
identify regions with consistently coordinate  methylation changes. 
The promoter, 5-UTR, first exon,  gene body and 3-UTR are gene-
based regions. The CpG island and  its surrounding shore and shelve 
regions are not necessary gene based, depending on their distance to 
the nearest genes. Our preliminary study indicated that the majority of 
differentially hypomethylated and hypermethylated CpG loci associated 
with low level benzene exposure were residing in gene promoters and 
in  CpG  islands. Our results provide direct experimental evidence 
that benzene, associated with increased cancer risk, cause changes in 
promoter CpG methylation in numerous genes. 

DNA methylation is an essential epigenetic mark that is required 
for normal development. DNA methylation plays a  vital role in 
transcriptional regulation and chromatin remodeling. The aberration 
of DNA methylation profile has been found to be associated with many 
human diseases including cancer. Use of DNA methylation microarray 
is a popular approach to characterize the epigenetic landscape of human 
cells [33]. DNA methylation alterations in gene promoters have also 
been found repeatedly following exposure to various environmental 
chemicals, including pesticides [34], phenol and hydroquinone [35] 
and dioxidine [36],  suggesting that DNA methylation is inducible by 
chemical exposures. 

We previously  observed DNA methylation alterations in specific 
genes and our data showed effects of benzene on DNA methylation of 
specific genes such as PARP-1 and PTEN in cells and animal modes 
treated by benzene [37,38]. Epigenetic mechanisms of gene regulation are 
heritable, reversible modifications that are critical for the organization 
of chromatin  and regulation of tissue-specific gene expression. DNA 
methylation  is a dynamic epigenetic mark primarily localized to 
cytosine  residues in the context of a CpG dinucleotide in mammals. 
While the critical  role for DNA methylation in early development is 
clearly established, however the role for DNA methylation in peripheral 
blood mononuclear cells is less understood. In this study, we conducted 
genome-wide DNA methylation analyses on DNA samples obtained 
from the peripheral blood mononuclear cells of low level benzene 
exposure workers (< 1 ppm) and health controls using the high resolution 
Infinium 450K methylation array. To our knowledge, this is the first 
pilot study of  genome-wide DNA methylation analyses for low level 
benzene exposure workers (<1 ppm) using the high resolution Infinium 
450K methylation array. Thus, the use of  noninvasive measurements 

Gene symbol Gene symbol Description Betweenness centrality Degree Regulation stytle 
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 0.0377 6 low 
RASGRF2 Ras protein-specific guanine nucleotide-releasing factor 2 0.0348 4 low 
JUN jun proto-oncogene 0.0261 4 high 
CACNA1H calcium channel, voltage-dependent, T type, alpha 1H subunit 0.0239 2 high 
RYR3 ryanodine receptor 3 0.020 3 low 
KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 0.010 4 high 

The degree is defined as the sum of connection strengths with the other network genes. For a gene in the network, the number of source genes of a gene is called the 
indegree of the gene and the number of target genes of a gene is its outdegree. The character of genes is described by betweenness centrality measures reflecting the 
importance of a node in a graph relative to other nodes.

Table 3: The top 6 significantly methylated genes according to the degree size Supporting Information.
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of peripheral blood samples could  provide a highly feasible method 
to examine benzene hematotoxicity-associated  epigenetic changes of 
certain genes. The methylation of the gene from peripheral blood cells 
was commonly associated with all kinds of diseases [36,39-41].

Hypermethylation of tumor  suppressor p15, which leads to 
inactivation of the gene and  subsequent uncontrolled proliferation 
of the cell, is commonly  observed in AML and other hematological 
cancers [42-45]. A significant reduction in LINE-1and AluI methylation 
and hypermethylation in p15 and hypomethylation in MAGE-1 were 
associated with increasing airborne  benzene  levels [10]. Seow WJ 
et al showed statistically significant but weak associations of LINE-1 
and p15 hypomethylation with SPMA in 158 Bulgarian petrochemical 
workers [46]. Carugno M et al found that low-dose benzene exposure 
was associated with increased mitochondrial DNA copy number. 
Benzene  exposure may be associated with hypermethylation in 
ERCC3 [47]. The  melanoma antigen family A (MAGE) gene, which 
encodes tumor rejection  antigens, is widely expressed in cells from 
hematological  malignancies and is found to be hypomethylated 
with benzene  exposure [10,48]. All these results suggested that 
effect of benzene hematotoxicity  may be mediated in part by 
DNA  methylation  which can substantially affect gene transcription 
without changing DNA sequence.

In this study, we investigated the association between 
occupational benzene exposures with gene specific DNA methylation 
in low level benzene exposures workers.  Our study indicated that 
aberrant hypomethylated KRAS and RASGRF2 might be a candidate 
methylation biomarker of low level benzene hematotoxicity. Further 
GO and pathway analysis indicated that hypomethylated RASGRF2 
gene played central roles through regulation of small GTPase mediated 
signal transduction. While hypomethylated KRAS gene played 
important roles through small GTPase mediated signal transduction, 
Ras protein signal transduction, T cell receptor signaling pathway, Acute 
myeloid leukemia, B cell receptor signaling pathway, Chronic myeloid 
leukemia, ErbB signaling pathway. Functional analysis of methylation 
changes revealed that differential methylation genes were involved in 
carcinogenesis-related processes. Our results provide  experimental 
evidence that benzene exposures may modify gene promoter DNA 
methylation levels,  suggesting that epigenetic mechanisms may 
contribute to benzene-induced carcinogenesis. 

Aberrant  methylation  of promoter CpG that causes silencing 
of tumor suppressor genes (TSGs) may play a key role in the 
carcinogenesis of many cancer types. RASGRF2 has only been reported 
to possibly play a role in the pathogenesis of pancreatic cancer cell 
lines [48]. Frequent methylation and silencing of RASGRF2 in tumor 
cells may play an important role in the carcinogenesis of non-small 
cell lung cancer (NSCLC) [49]. Our recent findings also showed that 
PIK3R1, PIK3CG, PIK3R2, GNAI3, KRAS, NRAS, NFKB1, HLA-
DMA, and HLA-DMB played central roles in benzene hematotoxicity 
and immune response signaling pathways such as B/T cell receptor 
signaling pathway, acute myeloid leukemia, hematopoietic cell lineage 
and natural killer cell  mediated cytotoxicity were most significantly 
associated with benzene exposure [11]. 

These data, coupled with human epidemiology evidence linking 
benzene with cancers and recent evidence indicating DNA methylation 
alterations as a hallmark of  cancer, support the notion that benzene 
exposure may lead to cancer in part via inducing the alterations of DNA 
methylation. 

Unlike genetic mutations, DNA methylation is an inherently 

reversible change, and therefore is of great interest as an active target 
of drug development [50-52]. Because DNA methylation is potentially 
modifiable  through lifestyle and pharmacological interventions, 
if confirmed, our findings may open new paths for prevention against 
benzene-induced carcinogenesis. 

Previous studies have reported that the aberrant hypermethylation 
of promoter CpG islands is linked to gene silencing and loss of tumour 
suppressor function. DNA methylation of cytosine residues in CpG 
dinucleotides leads to transcriptional silencing of associated genes. 
Promoters with methylated CpG units, which have their transcriptional 
activity reduced, may function as an alternative mechanism of repressing 
tumour suppressor genes. Further research is needed to precisely 
define the mechanisms leading to benzene-induced DNA methylation 
changes. Our findings should be interpreted with caution, as there were 
a few limitations to this study. Further studies in other cell types and 
human samples are required, as well as determining the impact of these 
methylation changes on gene expression. 

In conclusion, DNA methylation expression profiles along with 
GO, KEGG pathway annotation analysis have highlighted potential 
gene-based biomarkers of benzene exposure.
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