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Introduction
In this article, we wish to derive a condition of transversality of two 

hypersurfaces Mn and Pn of 1nM +  along the boundary ∂Mn; provided 
that n nM P∂ ⊂ . This condition is given by the transversality of the 
classical Newton transformation Tr. In particular we proof that at a 
point p of the boundary ∂Mn and for every 1 ≤ r ≤ n-1 we have:

, r
r rTν ν ρ σ=                   (1)

Where , , rρ ξ ν σ=  is the r-th symmetric function of the principal 
curvatures of the inclusion n nM P∂ ⊂  with respect to the outward unit 
normal vector field ν normal to ∂Mn, and ξ is the vector field normal 
to Pn in 1nM + .

Relation (1) shows that the ellipticity of the Newton transformation 
Tr, for some 1 ≤ r ≤ n-1 on Mn, implies the transversality of the 
hypersurfaces Mn and Pn along ∂Mn. A similar formula of eqn. (1) 
was also obtained [1] by the author and Benalili in context of pseudo-
Riemannian spaces. It is to emphasize the importance of the application 
of Newton transformations in intrinsic Riemannian geometry [2-8].

Preliminaries
In this section, we will recall some properties of the Newton 

transformations and we will show how our method works.

Newton transformations

Let E be an n-dimensional real vector space, End(E) be the vector 
space of endomorphisms of E, and (A1,A2) ∈ End(E) × End(E).

For α∈{1,2} define the musical functions a|: 2 2→ 

 and α#: 2 2→   
by:
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It is clear that α|, is the inverse map of α#.

The generalized Newton transformations of (A1,A2) is a system of 
endomorphisms T(i,j)=T(i,j) (A1,A2), that satisfies the following recursive 
relations

T(0,0)=I where 0=(0,00 0)

T(i,j)=σ(i,j)I-A 1T(i-1,j)-A2T(i,j-2) where i + j ≥ 1

where σ(I,j) are the coefficients of the Newton polynomial P(A1,A2): 

2 → 

 of (A1,A2), given by
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I is the identity map on E.

If we replace the couple (A1,A2) by a one endormorphism0020A, 
then we recover the definition of the classical Newton transformations 
and the elementary symmetric functions introduced [7].

A geometric configuration

We establish some algebraic formulas which will be useful in the 
next section.

Let A be a symmetric (n-1) × (n-1) matrix and consider the n × 
n-matrix of the block form

A B
A

B cΤ

 
=  
 



where c is a constant. Let us compare symmetric functions of A  with 
symmetric functions of A. We have
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where f(t)=1 + tc-t2BT (In-1 + tA)-1B
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Abstract
In this article we study the transversality of two hypersurfaces Mn and Pn of a given Riemannian manifold 1nM +   

along the boundary ∑n-1 of Mn and the ellipticity of the Newton tranformations, provided that Pn is totally geodesic.
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|| , , PA A N Aξ ν ξ∑ ∑∑ = − +

Assuming Pn is totally umbilical in 1nM + , we have A|∑=λIT∑n-1, hence

1| , , nT
A A N Iξ ν λ ξ −∑ ∑

∑ = − +                       (5)

For brevity put ,ρ ξ ν= −  and , Nµ ξ=

The goal in this part is to show that
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Or in another terms
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When Pn is totally umbilical in 1nM +

By formula (5), we get
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Now we will recover the results [2] that is to say

( ), |rT r Aν ν σ ∑=                        (8)

Denote by A  the matrix of A with the respect of the basis (e1,…, 
en-1, ν) and by A|∑ the restriction of A to ∑n-1.
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 and ,c Aν ν= .

By the recurrence formula for Tr we have,
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Taking into account of the relation (2), to show (8) amounts to 
show that
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And assuming that (ei)i=1,…, n-1 is a basis consisting of 
eigenvectors of A|∑with eigenvalues ( γi)i=1,…n-1, it turns out to show 
that for  fixed i=1,…, n-1
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For every k≥1, where BT=”(bi)i

Now, since
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It is not difficult to see that

f (0)=1,f”(0)=c and f(j)(0)=(-1)j-1j!BTA|j-2
∑B for j≥2.

Therefore
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Let us now move to symmetric functions of two matrices. 
Notice  first that
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Indeed, ( ) ( ) ( )(11 ( ... 1
n nA IP t t tλ α λ α λ+ = + + + +



 if α1…,αn are the eigen 

values of A. Notice moreover that
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The Main Results
LetMn be an hypersurface of 1nM +  of boundary ∂M. Assume the 

boundary ∑n-1=∂M is an n-1 submanifold of 1n nP M +⊂ . Then we have 
the inclusions.

1 1n n nM M− +∑ ⊂ ⊂  and 1 1n n nP M− +∑ ⊂ ⊂

Denote the corresponding shape operators, respectively, by

A∑, A, A∑,P, AP:

In our consideration we will need only A∑, AP|∑, A. More precisely 
we will use

A∑, AP|∑, A

First two are represented by square matrices of dimension (n-1) 
whereas the last one by a square matrix of dimension n. The intrinsic 
geometry of ∑n-1 in Mn is coded in the pair (A∑,AP|∑) and the geometry of 

1n nM M +⊂  is given by A. Therefore we will use the following Newton 
transformation and the generalized Newton transformations.

Tr=Tr (A|∑) and T(k,l)=T(k,l) (A∑,AP|∑)

and corresponding symmetric functions

σr=σr (A|∑) and σ(k,l)=σ(k,l) (A∑,AP|∑).

Denote by ν the unit normal vector to ∑n-1 in Mn, by N the unit 
normal vector to with respect to the inclusion 1n nM M +⊂ , ξ the unit 
normal vector of 1n nP M +⊂  and ŋ is the unit normal vector to 1n nP−∑ ⊂  
and (e1,...en-1) is a local orthonormal basis of T∑n-1.The only geometric 
considerations involved are the ones which lead to the formulas [2].

, , , , ,N N Nν ξ η ξ ν= = −

,| , , , , Ni j ei e j PA e e A A ei ejξ ν ξ∑ ∑= − +

Suppose now that (e1,…en-1) is a frame basis of T∑n-1consists of the 
engenvectors of A|∑ i.e A|∑ei=γiei then
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We need to show that
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We procced by induction. First we have
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Which shows that equality () is fulfilled for the first term

Suppose now that, for any 1 ≤ k ≤ r-1, the relation (11) holds and 
calculate
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Which proves eqn. (11).

As a consequence of formula (8), we have formula (9).

Theorem 1: theorem Let 1nM +  be an (n+1)-Riemannaian 
manifolds and 1n nP M +⊂  oriented totally umbilical subn manifolds 

of 1nM + . Denote by 1n nP−∑ ⊂  an (n-1)-compact hypersurfaces of Pn. 

Let Ψ: Mn→ 1nM +  be a oriented connected and compact hypersurface 

of 1nM +  with boundary ∑n-1=Ψ(∂M), then along the boundary ∂M, 
we have

( ), |rT r Aν ν σ ∑=                    (12)

Corollary 1: With the conditions of the above theorem and 
assuming that 1n nP M +⊂  is totally geodesic, then for every r with 
length r ≤ n-1, we have

( ),r r rT Aν ν ρ σ ∑=

It suffices to use (12) with µ=0.

Transversality
The formula for the Newton transformations implies the relation 

between transversality of Mn and Pn and ellipticity of Tr provided that 
Pn is totally geodesic in n rM +  [9-12].

Theorem 2: With the conditions in Corollary 1 the submanifolds 
Mn and Pn are transversal along ∂M provided that for some r of length 
1 ≤ r ≤ n-1; the Newton transformations Tu is positive definite on Mn.

Proof. Saying that Mn and Pn are not transversal means that there 
exist p∈∂M such that

 , 0Nρ η= =  at p.

Therefore, if we suppose that for all p ∈ 1nM + , Tr is positive definite, 
then by Corollary 1, ρ(p) ≠0. Thus

, 0Nη ≠ .

Hence Mn and Pn are transversal.
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