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Particle swarm optimization

In the field of computer science, PSO is a method that aims to 
optimize a problem by trying to improve a possible solution with 
iteration in limitation and manipulation of a pre-defined quality 
measure. PSO processes an initial population of possible solutions, 
dubbed particles in this case, and changing the position of these 
particles in the search-space according to mathematical formula which 
is consisting of the particles’ (a) position and (b) velocity. An individual 
particle’s movement is altered according to its “local best known 
position” and is also manipulated toward the “best known positions” 
in the search-space. The best known positions are updated as positions 
which are more satisfactory for quality criteria, are discovered by other 
particles. This mode of action is supposed to conduct the movement of 
the swarm toward the best solutions [5]. 

PSO was first intended for simulating social behavior, as a stylized 
representation of the movement of organisms in a bird flock or fish 
school [6,7]. The algorithm was simplified and it was observed to be 
performing optimization.

Particle swarm optimization on longest common subsequence 
problem

This study uses PSO heuristic technique on LCSP. First, the 
algorithm will take n sequences and generate an alphabet among all of 
the distinct sequence elements without uncommon elements. Then it 
will generate a population of random sequences of the alphabet. Every 
sequence will be a particle. It will do the evaluation with the technique, 
occurrence evaluation, which will be described in detail in this paper. 
After the evaluation, known local best score will be compared with the 
global best score. If local best score is bigger, then it is the new global 
best (initial global best is 0). After this, each particle move towards to 
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Introduction
In the clinical diagnosis of cancer, the corresponding biomarker 

methods and measurements are based on the correct algorithms, which 
are used for sequencing. The necessity of development new or possibly 
re-establishing previous biomarkers in the field of cancer research 
initiated us to work on new sequencing techniques.

Here, we describe “Longest Common Subsequence Problem” 
(LCSP) with Particle Swarm Optimization (PSO), with the proposal of 
novel “Occurrence Listing” (OL) technique as an evaluation function. 
Previous studies shows, that despite the wide differences between 
popular approaches, like dynamic programming or other heuristic 
methods, even there are some variations of dynamic programming 
for three or more sequences [1], they generally work on two inputs 
(sequences) [2,3]. The benefits of our system are as follows: First, one 
can work with minimum two or more sequences. Second, one has 
flexibility of working with arbitrary number of sequences. 

Longest common subsequence problem
LCSP dwells on longest common subsequence of two or more 

sequences. 

Although general case of a random number of input sequences, the 
problem is NP-Hard, Dynamic programming can manage to solve the 
problem on polynomial time provided that the number of is constant 
[4]. 

What is “subsequence”?
A subsequence is a sequence that is created from another sequence 

by excluding some elements but without changing the initial order. For 
example, <A,B,D> sequence derived from <A,B,C,D,E,F> by omitting 
element C, E and F.

Given two sequences X and Y, sequence G can be defined as a 
common subsequence of X and Y, if G can be derived from both X and 
Y individually.

For example, 

if X=<A,B,C,D,E,G,C,E,D,B,G> and 

Y=<B,E,G,C,F,E,U,B,K>

then a common subsequence of X and Y could be 

G=<B,E,E> 

This would not be the longest common subsequence. The longest 
common subsequence of X and Y is <B,E,G,C,E,B>.
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the local best particle with a velocity (x - decimal representation of the 
sequence, y – length of the particle); it will iterate this process t times, 
where t is the threshold which has been set before the run. 

The Algorithm and Representation 
In this section, the algorithm will be explained in detail and after 

that, constraints which had been found during the algorithm will be 
mentioned.

Generate alphabet

Each subsequence has a number and variety of elements as much 
as input sequence it is derived from. Because of that, the algorithm first 
finds the distinct elements of each input sequence. Since aim is to find 
a subsequence, only common elements should remain in the alphabet. 
Thus, the algorithm checks every character if it exists in every input 
sequence or not. If not, then remove the element from the alphabet. 

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

Alphabet, A=<A,B,C,D,E,G,F,U,K> at first iteration. At second 
iteration, we will look for existence of every character in every sequence. 
Since the characters <A,D,F,U,K> don’t exist in both sequences, they 
will be removed from the alphabet. Thus, A=<B,C,E,G>.

Generate occurrence lists
Occurrence lists are check-lists for every character which records 

conditions in sequence. Occurrence lists are for evaluating sub-
sequence accuracy.

Maximum occurrence of characters list before last occurrence 
of the character: This list keeps each and every character’s position 
in sequence in a relation to other characters. The algorithm looks 
for last occurrences of every character in every input sequences, and 
counts every character’s occurrences before the last occurrence of the 
examined character. The algorithm is required to look for minimum 
number of repeats before a character in order to provide the longest 
valid subsequence elements, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’ 
for an example and look for ‘C’

X=<A,B,C,D,E,G,C,E,D,B,G> two C’s before the last occurrence of 
E

Y=<B,E,G,C,F,E,U,B,K> one C before the last occurrence of E

The algorithm take the lowest count, then now it knows that; if 
there are more than one C before an E, then it’s not a subsequence.

Maximum occurrence of character list after first occurrence of 
the character: This is a list, which keeps each character’s relation with 
other characters as well as itself. The algorithm is required to look for 
minimum number of repeats after a character in order to provide the 
longest valid subsequence elements, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’ 
for an example and look for ‘B’

X=<A,B,C,D,E,G,C,E,D,B,G> one B after the first occurrence of E

Y=<B,E,G,C,F,E,U,B,K> one B after the first occurrence of E

Now the algorithm knows that; if there are more than one B after 
an E, then it is not a subsequence.

Maximum occurrence of character list after last occurrence of the 
character: This list keeps each character relation with other characters 
but not itself since it is ‘the last one’ by definition. The algorithm 
looks for last occurrence of every character in the alphabet for every 
input sequences and counts every characters occurrences after the last 
occurrence of the character. The algorithm needs to consider worst 
case situation, so it keeps lowest count. This list will not be used to 
check every occurrence of a character but the last one.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’ 
for an example and look for ‘B’

X=<A,B,C,D,E,G,C,E,D,B,G> one B after the last occurrence of E

Y=<B,E,G,C,F,E,U,B,K> one B after the last occurrence of E

Now the algorithm knows that; if there are more than one B after 
the last occurrence of E, then it’s not a subsequence.

Maximum occurrence of character list before first occurrence 
of the character: This list keeps each character’s relation with other 
characters but not itself since it’s the first one already. The algorithm 
looks for first occurrence of every character in the alphabet for every 
input sequences and counts every characters occurrences before the 
first occurrence of the character. The algorithm needs to consider worst 
case situation, so it keeps lowest count. This list will not be used to 
check every occurrence of a character but the last one.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’ 
for an example and look for ‘C’

X=<A,B,C,D,E,G,C,E,D,B,G> one C before the first occurrence of 
E

Y=<B,E,G,C,F,E,U,B,K> no C’s before the first occurrence of E

The algorithm take the lowest count, now it knows that; if there are 
any C’s before the first occurrence of E, then it’s not a subsequence.

Total occurrence of a character: This is a list of characters, which 
looks for the minimum of the total occurrences of each character’s 
in every input sequence. The algorithm needs to consider worst case 
situation, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’ 
for an example
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X=<A,B,C,D,E,G,C,E,D,B,G> two E’s Y=<B,E,G,C,F,E,U,B,K> two 
E’s

Now the algorithm knows that, if the count of E is bigger than two 
then it’s not a subsequence.

Occurrence evaluation

In particle swarm optimization, we need an evaluation function 
to tell particles what to do for their next step. For longest common 
subsequence problem, we need an evaluation function to tell how 
close a particle to being a subsequence. Occurrence evaluation uses the 
occurrence lists as mentioned above to evaluate a particle and outputs 
a score between 0 and 1. 1 means the particle is 100% subsequence.

-	 Initially, output score (eval) is particle length (pl)

-	 For every “faulty” character, it drops by -1

-	 At the end, last score will be divided by pl

Generate population

The algorithm generates totally random, S sized population. 
Minimum size of a particle is 1 and maximum size of a particle is the 
lowest length between all of the input sequences, because generating a 
common subsequence bigger than any sequence is not possible.

Updates and particle moving

After initial procedures, (generating population and occurrence 
lists) we put every particles to the occurrence evaluation function. 
According to their score and length, the algorithm evaluates a fitness 
score for every particle. Biggest score will be the local best of that 
iteration and then it will be compared with the global best (global best 
is initially set to 0) If it’s bigger, then it will be the new global best [8]. 

For the last part, all of the particles in the population will be moved 
to the local best (fitness and moving part will be described in detail in 
the representation section). The update part will be repeating itself T 
times and algorithm will be stop (T is the threshold value which will 
be set before running the algorithm) Usually, there would be also a 
convergence condition to stop PSO but in LCSP, max possible outcome 
is in the length of the minimum input sequence and this condition is 
highly unlikely for determining a condition. So in this study, threshold 
value is the only condition to stop the algorithm.

Representation
We need a solid representation in order to apply PSO on any 

problem. For LCSP, we need to represent particles, solutions, 
positioning, movement, evaluation and fitness. So, pretty much 
everything.

Particles

Each particle is a sequence generated by a random function. 
Minimum length of a particle is one and maximum length is the lowest 
length of the input sequences. Sequence will be generated with the 
alphabet, which we generated before.

Solutions

In this study, each particle is not a solution. A solution is 100% 
valid subsequence of the given input sequences and the best solution 
is the longest of the solutions. In this study, particles are “potential” 
solutions.

Positioning

Each particle has position information in a 2D solution space.

X axis: In this study, X axis is the decimal value of the sequence. For 
calculating this decimal value, we need; 

-	 “base” value which is the length of the alphabet plus 1, b+1. That 
plus one is necessary, because 0123 and 123 is the same value 
for decimal values. abcd and bcd is not the same for sequences. 
So we need to increase position values by 1. If we increase the 
position values, we have to increase the base value also.

-	 “power” value which is the position value in the particle for 
every element in a particle, p. 

-	 Every element in the alphabet has a unique position number, u.

-	 Thus, decimal value of a particle p, X is; (l : particle length)
b
p=

p
o u*(b+1)X =∑

Example:

Let, P=<BCCEBG> 

Alphabet, A=<B,C,E,G>

Unique Position Values

B=1, C=2, E=3, G=4

Base

Alphabet Length+1=4

Power

From 0 to length of the particle.

X Value For BCCEBG

X=(1*40)+(2*41)+(2*42)+(3*43)+(1*44)+(4*45)

1.1.1	 Y axis: Y axis is basically length of the particle.

Example: 

Let, P=<BCCEBG> 

Y Value for P is 6.

Movement: Movement is the most important part of the PSO 
algorithm. Particles move to the best position with a velocity (in this 
study, velocity values are given before the run). 

Move to X: Pick a random element in a sequence, take its position 
value, add velocity x value, divide it to the alphabet length, replace 
the element with the position value with remaining of the division 
(modulus). 

Example:

Let, P=<BCCEBGE>, let’s move it by 1

Pick a random element: <BCCEBGE>

Move it by 1 <BCCEBBE>.

Move to Y: Increase or decrease the particles length by given 
velocity with random elements within the alphabet. 

Evaluation and Fitness: As mentioned in the second section (the 
algorithm), the algorithm evaluates particles with the occurrence lists 
and outputs a value between 0 and 1. Since our desire is not finding a 
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Chart 1: Average process time results. According to the results, main differences between two particular tests come up at interval six (256–512) and further. It proves 
that, the alphabet length is a crucial factor for the speed performance of the algorithm, since English Alphabet has 26 unique characters and a Nucleic Acid Sequence 
has only 4 unique characters.
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Chart 2: Average Success Ratio Results.
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Chart 3: Maximum success ratio results. Success ratio stands for how close the output sequence to being a common sub-sequence. Since it is a heuristic approach, 
it may not give a 100% common subsequence but thanks to the OL technique, the output can be evaluated for it.
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subsequence but finding the longest subsequence, we multiply it with 
the length of the particle, and acquire fitness score.

Results
Two different types of tests have been applied. One has took 

two sequences generated with English Alphabet (26 characters) and 
the other one has two DNA strings (4 characters, A – G – C - T) as 
input. Every instance has been made with random sequences which 
has random number of length between specific boundaries (8-16, 16-
32... etc.). PSO algorithm generates 1000 population and each particle 
moves one unit to X axis and one unit to Y axis, through the global 
best on each iteration. Whole run of the algorithm does ten iteration. 
The algorithm has run ten times with the same couple of sequences for 
each interval. 

The algorithm were implemented in Java and executed on 2 GB 
of memory and AMD Turion X2 Ultra Dual-Core Mobile Processor 
ZM-82 (2.2 GHz, 2 MB L2 cache) under Ubuntu 10 operating system.

Analyzing the test results 

The results have been analyzed on three criteria; process time, 
success ratio, and output length (Tables 1 and 2).

Process time result analysis

Process time result analysis is described in Chart 1.

Average success ratio result analysis

Test results show that, the algorithm is having trouble for English 
Alphabet sequences as input lengths increase. Yet, this situation is not 
valid for nucleic acid sequences, since the output is 100% near at almost 
every interval. Thus, the algorithm is very dependant to the alphabet 
unique character count (as known as alphabet length) for precision 
(Charts 2 and 3).

Output length analysis 

Output length is the most important part of the LCSP. Maximum 
common subsequence length is equal to the length of the shortest input 
sequence. Although that result is unrealistic for different sequences, 
which may only occur, if one sequence contains the other completely 
(Chart 4).

According to the test results, the algorithm can find really good 
results for nucleic acid sequences since outputs are close to the 
maximum length. It is not true for English Alphabet results, though. 
But we cannot be sure about those are “bad” results, since they’re 
completely random sequences. 

Future Work
Currently, our study aims to create a new heuristic approach to 

the LCSP. Our future plan is to study on real prostate cancer data to 
test the applicability of this sequencing technique. Further, we planned 
to test dynamic programming and some of the best known heuristic 
techniques in the contemporary literature using the same datasets in 
order to compare them to PSO with OL more accurately. Additionally, 
the tests in the future work will be running through more than two 
sequences, which will help us to understand the competency of 
algorithms in a task structure with increasing complexity.

Conclusion
The purpose of this study is to apply particle swarm optimization 

technique to the longest common subsequence problem. We propose 
OL technique as an evaluation function to PSO for applying PSO to 
LCSP. Since there are severe differences between popular approaches, 
like dynamic programming or other heuristic methods, it’s not very 
easy to fully compare this algorithm with them, but there are obvious 
benefits in PSO with OL approach: it is not bounded with prerequisites 
of “fixed number sequences” such as known length and equal length of 
input sequences [7,9]. With correct population settings and parameter 
tuning, it can give good solutions, and accurate evaluation score, yet it 
may not give the “best” (longest) solution since it’s a heuristic approach.
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Avg Output 
Length
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