
Metabolomics
ISSN:2153-0769 JOM an open access journal

Conference Proceedings Open Access

Unay and Guzey, Metabolomics 2013, 3:2
DOI: 10.4172/2153-0769.1000120

Volume 3 • Issue 2 • 1000120

Particle swarm optimization

In the field of computer science, PSO is a method that aims to
optimize a problem by trying to improve a possible solution with
iteration in limitation and manipulation of a pre-defined quality
measure. PSO processes an initial population of possible solutions,
dubbed particles in this case, and changing the position of these
particles in the search-space according to mathematical formula which
is consisting of the particles’ (a) position and (b) velocity. An individual
particle’s movement is altered according to its “local best known
position” and is also manipulated toward the “best known positions”
in the search-space. The best known positions are updated as positions
which are more satisfactory for quality criteria, are discovered by other
particles. This mode of action is supposed to conduct the movement of
the swarm toward the best solutions [5].

PSO was first intended for simulating social behavior, as a stylized
representation of the movement of organisms in a bird flock or fish
school [6,7]. The algorithm was simplified and it was observed to be
performing optimization.

Particle swarm optimization on longest common subsequence
problem

This study uses PSO heuristic technique on LCSP. First, the
algorithm will take n sequences and generate an alphabet among all of
the distinct sequence elements without uncommon elements. Then it
will generate a population of random sequences of the alphabet. Every
sequence will be a particle. It will do the evaluation with the technique,
occurrence evaluation, which will be described in detail in this paper.
After the evaluation, known local best score will be compared with the
global best score. If local best score is bigger, then it is the new global
best (initial global best is 0). After this, each particle move towards to

*Corresponding author: Meral Guzey, Department of Math and Life Sciences,
Main campus of University Maryland University College (UMUC), USA, E-mail:
meral.guzey@faculty.umuc.edu

Received June 25, 2013; Accepted August 06, 2013; Published August 13, 2013

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to
Longest Common Subsequence Problem for Arbitrary Number of Sequences.
Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Copyright: © 2013 Unay AT, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

A Swarm Intelligence Heuristic Approach to Longest Common
Subsequence Problem for Arbitrary Number of Sequences
Ali Teoman Unay1 and Meral Guzey2

1Department of Intelligent Computing Systems, İzmir University of Economics, İzmir, Turkey
2Department of Math and Life Sciences, Main campus of University Maryland University College (UMUC), USA

Introduction
In the clinical diagnosis of cancer, the corresponding biomarker

methods and measurements are based on the correct algorithms, which
are used for sequencing. The necessity of development new or possibly
re-establishing previous biomarkers in the field of cancer research
initiated us to work on new sequencing techniques.

Here, we describe “Longest Common Subsequence Problem”
(LCSP) with Particle Swarm Optimization (PSO), with the proposal of
novel “Occurrence Listing” (OL) technique as an evaluation function.
Previous studies shows, that despite the wide differences between
popular approaches, like dynamic programming or other heuristic
methods, even there are some variations of dynamic programming
for three or more sequences [1], they generally work on two inputs
(sequences) [2,3]. The benefits of our system are as follows: First, one
can work with minimum two or more sequences. Second, one has
flexibility of working with arbitrary number of sequences.

Longest common subsequence problem
LCSP dwells on longest common subsequence of two or more

sequences.

Although general case of a random number of input sequences, the
problem is NP-Hard, Dynamic programming can manage to solve the
problem on polynomial time provided that the number of is constant
[4].

What is “subsequence”?
A subsequence is a sequence that is created from another sequence

by excluding some elements but without changing the initial order. For
example, <A,B,D> sequence derived from <A,B,C,D,E,F> by omitting
element C, E and F.

Given two sequences X and Y, sequence G can be defined as a
common subsequence of X and Y, if G can be derived from both X and
Y individually.

For example,

if X=<A,B,C,D,E,G,C,E,D,B,G> and

Y=<B,E,G,C,F,E,U,B,K>

then a common subsequence of X and Y could be

G=<B,E,E>

This would not be the longest common subsequence. The longest
common subsequence of X and Y is <B,E,G,C,E,B>.

Abstract
Personalized cancer care strategies involving sequencing requires accuracy. We aimed to develop a novel

approach to solve the longest common subsequence problem, which is a common computer science problem in the
field of bioinformatics to facilitate the next generation sequencing of cancer biomarkers. We are using particle swarm
optimization heuristic technique, which uses a novel “Occurrence Listing” (OL) technique as the evaluation function. This
aims to keep lists of the sequence elements and offers criteria to evaluate randomly generated population of sequences.

M
et

ab

olomics: OpenAccess

ISSN: 2153-0769
Metabolomics: Open Access

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to Longest Common Subsequence Problem for Arbitrary Number of
Sequences. Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Page 2 of 7

Volume 3 • Issue 2 • 1000120
Metabolomics
ISSN:2153-0769 JOM an open access journal

the local best particle with a velocity (x - decimal representation of the
sequence, y – length of the particle); it will iterate this process t times,
where t is the threshold which has been set before the run.

The Algorithm and Representation
In this section, the algorithm will be explained in detail and after

that, constraints which had been found during the algorithm will be
mentioned.

Generate alphabet

Each subsequence has a number and variety of elements as much
as input sequence it is derived from. Because of that, the algorithm first
finds the distinct elements of each input sequence. Since aim is to find
a subsequence, only common elements should remain in the alphabet.
Thus, the algorithm checks every character if it exists in every input
sequence or not. If not, then remove the element from the alphabet.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

Alphabet, A=<A,B,C,D,E,G,F,U,K> at first iteration. At second
iteration, we will look for existence of every character in every sequence.
Since the characters <A,D,F,U,K> don’t exist in both sequences, they
will be removed from the alphabet. Thus, A=<B,C,E,G>.

Generate occurrence lists
Occurrence lists are check-lists for every character which records

conditions in sequence. Occurrence lists are for evaluating sub-
sequence accuracy.

Maximum occurrence of characters list before last occurrence
of the character: This list keeps each and every character’s position
in sequence in a relation to other characters. The algorithm looks
for last occurrences of every character in every input sequences, and
counts every character’s occurrences before the last occurrence of the
examined character. The algorithm is required to look for minimum
number of repeats before a character in order to provide the longest
valid subsequence elements, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’
for an example and look for ‘C’

X=<A,B,C,D,E,G,C,E,D,B,G> two C’s before the last occurrence of
E

Y=<B,E,G,C,F,E,U,B,K> one C before the last occurrence of E

The algorithm take the lowest count, then now it knows that; if
there are more than one C before an E, then it’s not a subsequence.

Maximum occurrence of character list after first occurrence of
the character: This is a list, which keeps each character’s relation with
other characters as well as itself. The algorithm is required to look for
minimum number of repeats after a character in order to provide the
longest valid subsequence elements, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’
for an example and look for ‘B’

X=<A,B,C,D,E,G,C,E,D,B,G> one B after the first occurrence of E

Y=<B,E,G,C,F,E,U,B,K> one B after the first occurrence of E

Now the algorithm knows that; if there are more than one B after
an E, then it is not a subsequence.

Maximum occurrence of character list after last occurrence of the
character: This list keeps each character relation with other characters
but not itself since it is ‘the last one’ by definition. The algorithm
looks for last occurrence of every character in the alphabet for every
input sequences and counts every characters occurrences after the last
occurrence of the character. The algorithm needs to consider worst
case situation, so it keeps lowest count. This list will not be used to
check every occurrence of a character but the last one.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’
for an example and look for ‘B’

X=<A,B,C,D,E,G,C,E,D,B,G> one B after the last occurrence of E

Y=<B,E,G,C,F,E,U,B,K> one B after the last occurrence of E

Now the algorithm knows that; if there are more than one B after
the last occurrence of E, then it’s not a subsequence.

Maximum occurrence of character list before first occurrence
of the character: This list keeps each character’s relation with other
characters but not itself since it’s the first one already. The algorithm
looks for first occurrence of every character in the alphabet for every
input sequences and counts every characters occurrences before the
first occurrence of the character. The algorithm needs to consider worst
case situation, so it keeps lowest count. This list will not be used to
check every occurrence of a character but the last one.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’
for an example and look for ‘C’

X=<A,B,C,D,E,G,C,E,D,B,G> one C before the first occurrence of
E

Y=<B,E,G,C,F,E,U,B,K> no C’s before the first occurrence of E

The algorithm take the lowest count, now it knows that; if there are
any C’s before the first occurrence of E, then it’s not a subsequence.

Total occurrence of a character: This is a list of characters, which
looks for the minimum of the total occurrences of each character’s
in every input sequence. The algorithm needs to consider worst case
situation, so it keeps lowest count.

Example:

X=<A,B,C,D,E,G,C,E,D,B,G>, Y=<B,E,G,C,F,E,U,B,K>

A=<B,C,E,G>

The algorithm will check all over the alphabet but let’s take just ‘E’
for an example

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to Longest Common Subsequence Problem for Arbitrary Number of
Sequences. Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Page 3 of 7

Volume 3 • Issue 2 • 1000120
Metabolomics
ISSN:2153-0769 JOM an open access journal

X=<A,B,C,D,E,G,C,E,D,B,G> two E’s Y=<B,E,G,C,F,E,U,B,K> two
E’s

Now the algorithm knows that, if the count of E is bigger than two
then it’s not a subsequence.

Occurrence evaluation

In particle swarm optimization, we need an evaluation function
to tell particles what to do for their next step. For longest common
subsequence problem, we need an evaluation function to tell how
close a particle to being a subsequence. Occurrence evaluation uses the
occurrence lists as mentioned above to evaluate a particle and outputs
a score between 0 and 1. 1 means the particle is 100% subsequence.

- Initially, output score (eval) is particle length (pl)

- For every “faulty” character, it drops by -1

- At the end, last score will be divided by pl

Generate population

The algorithm generates totally random, S sized population.
Minimum size of a particle is 1 and maximum size of a particle is the
lowest length between all of the input sequences, because generating a
common subsequence bigger than any sequence is not possible.

Updates and particle moving

After initial procedures, (generating population and occurrence
lists) we put every particles to the occurrence evaluation function.
According to their score and length, the algorithm evaluates a fitness
score for every particle. Biggest score will be the local best of that
iteration and then it will be compared with the global best (global best
is initially set to 0) If it’s bigger, then it will be the new global best [8].

For the last part, all of the particles in the population will be moved
to the local best (fitness and moving part will be described in detail in
the representation section). The update part will be repeating itself T
times and algorithm will be stop (T is the threshold value which will
be set before running the algorithm) Usually, there would be also a
convergence condition to stop PSO but in LCSP, max possible outcome
is in the length of the minimum input sequence and this condition is
highly unlikely for determining a condition. So in this study, threshold
value is the only condition to stop the algorithm.

Representation
We need a solid representation in order to apply PSO on any

problem. For LCSP, we need to represent particles, solutions,
positioning, movement, evaluation and fitness. So, pretty much
everything.

Particles

Each particle is a sequence generated by a random function.
Minimum length of a particle is one and maximum length is the lowest
length of the input sequences. Sequence will be generated with the
alphabet, which we generated before.

Solutions

In this study, each particle is not a solution. A solution is 100%
valid subsequence of the given input sequences and the best solution
is the longest of the solutions. In this study, particles are “potential”
solutions.

Positioning

Each particle has position information in a 2D solution space.

X axis: In this study, X axis is the decimal value of the sequence. For
calculating this decimal value, we need;

- “base” value which is the length of the alphabet plus 1, b+1. That
plus one is necessary, because 0123 and 123 is the same value
for decimal values. abcd and bcd is not the same for sequences.
So we need to increase position values by 1. If we increase the
position values, we have to increase the base value also.

- “power” value which is the position value in the particle for
every element in a particle, p.

- Every element in the alphabet has a unique position number, u.

- Thus, decimal value of a particle p, X is; (l : particle length)
b
p=

p
o u*(b+1)X =∑

Example:

Let, P=<BCCEBG>

Alphabet, A=<B,C,E,G>

Unique Position Values

B=1, C=2, E=3, G=4

Base

Alphabet Length+1=4

Power

From 0 to length of the particle.

X Value For BCCEBG

X=(1*40)+(2*41)+(2*42)+(3*43)+(1*44)+(4*45)

1.1.1 Y axis: Y axis is basically length of the particle.

Example:

Let, P=<BCCEBG>

Y Value for P is 6.

Movement: Movement is the most important part of the PSO
algorithm. Particles move to the best position with a velocity (in this
study, velocity values are given before the run).

Move to X: Pick a random element in a sequence, take its position
value, add velocity x value, divide it to the alphabet length, replace
the element with the position value with remaining of the division
(modulus).

Example:

Let, P=<BCCEBGE>, let’s move it by 1

Pick a random element: <BCCEBGE>

Move it by 1 <BCCEBBE>.

Move to Y: Increase or decrease the particles length by given
velocity with random elements within the alphabet.

Evaluation and Fitness: As mentioned in the second section (the
algorithm), the algorithm evaluates particles with the occurrence lists
and outputs a value between 0 and 1. Since our desire is not finding a

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to Longest Common Subsequence Problem for Arbitrary Number of
Sequences. Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Page 4 of 7

Volume 3 • Issue 2 • 1000120
Metabolomics
ISSN:2153-0769 JOM an open access journal

8 - 16 16 - 32 32 - 64 64 - 128 128 - 256 256 - 512 512 - 1024

3500

3000

2500

2000

1500

1000

500

0

Av
er

ag
e

Pr
oc

es
s T

im
e

Sequence Length

English Alphabet APT (sec)

Nucleic Acid Seq. APT (sec)

Chart 1: Average process time results. According to the results, main differences between two particular tests come up at interval six (256–512) and further. It proves
that, the alphabet length is a crucial factor for the speed performance of the algorithm, since English Alphabet has 26 unique characters and a Nucleic Acid Sequence
has only 4 unique characters.

8 - 16 16 - 32 32 - 64 64 - 128 128 - 256 256 - 512 512 - 1024

Sequence Length

M
ax

im
um

 S
uc

ce
ss

 R
ati

o

English Alphabet Sequence

Nucleic Acid Sequence

100

80

60

40

20

0

Chart 2: Average Success Ratio Results.

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to Longest Common Subsequence Problem for Arbitrary Number of
Sequences. Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Page 5 of 7

Volume 3 • Issue 2 • 1000120
Metabolomics
ISSN:2153-0769 JOM an open access journal

English Alphabet Sequence

Nucleic Acid Sequence

8 - 16 16 - 32 32 - 64 64 - 128 128 - 256 256 - 512 512 - 1024
Sequence Length

M
ax

im
um

 S
uc

ce
ss

 R
ati

o

100

80

60

40

20

0

Chart 3: Maximum success ratio results. Success ratio stands for how close the output sequence to being a common sub-sequence. Since it is a heuristic approach,
it may not give a 100% common subsequence but thanks to the OL technique, the output can be evaluated for it.

8 - 16 16 - 32 32 - 64 64 - 128 128 - 256 256 - 512 512 - 1024
Sequence Length

O
ut

pu
tS

eq
ue

nc
e

Le
ng

th

English Alphabet Sequence

Nucleic Acid Sequence

900

800

700

600

500

400

300

200

100

0

Chart 4: Average output length results.

Citation: Unay AT, Guzey M (2013) A Swarm Intelligence Heuristic Approach to Longest Common Subsequence Problem for Arbitrary Number of
Sequences. Metabolomics 3: 120. doi:10.4172/2153-0769.1000120

Page 6 of 7

Volume 3 • Issue 2 • 1000120
Metabolomics
ISSN:2153-0769 JOM an open access journal

subsequence but finding the longest subsequence, we multiply it with
the length of the particle, and acquire fitness score.

Results
Two different types of tests have been applied. One has took

two sequences generated with English Alphabet (26 characters) and
the other one has two DNA strings (4 characters, A – G – C - T) as
input. Every instance has been made with random sequences which
has random number of length between specific boundaries (8-16, 16-
32... etc.). PSO algorithm generates 1000 population and each particle
moves one unit to X axis and one unit to Y axis, through the global
best on each iteration. Whole run of the algorithm does ten iteration.
The algorithm has run ten times with the same couple of sequences for
each interval.

The algorithm were implemented in Java and executed on 2 GB
of memory and AMD Turion X2 Ultra Dual-Core Mobile Processor
ZM-82 (2.2 GHz, 2 MB L2 cache) under Ubuntu 10 operating system.

Analyzing the test results

The results have been analyzed on three criteria; process time,
success ratio, and output length (Tables 1 and 2).

Process time result analysis

Process time result analysis is described in Chart 1.

Average success ratio result analysis

Test results show that, the algorithm is having trouble for English
Alphabet sequences as input lengths increase. Yet, this situation is not
valid for nucleic acid sequences, since the output is 100% near at almost
every interval. Thus, the algorithm is very dependant to the alphabet
unique character count (as known as alphabet length) for precision
(Charts 2 and 3).

Output length analysis

Output length is the most important part of the LCSP. Maximum
common subsequence length is equal to the length of the shortest input
sequence. Although that result is unrealistic for different sequences,
which may only occur, if one sequence contains the other completely
(Chart 4).

According to the test results, the algorithm can find really good
results for nucleic acid sequences since outputs are close to the
maximum length. It is not true for English Alphabet results, though.
But we cannot be sure about those are “bad” results, since they’re
completely random sequences.

Future Work
Currently, our study aims to create a new heuristic approach to

the LCSP. Our future plan is to study on real prostate cancer data to
test the applicability of this sequencing technique. Further, we planned
to test dynamic programming and some of the best known heuristic
techniques in the contemporary literature using the same datasets in
order to compare them to PSO with OL more accurately. Additionally,
the tests in the future work will be running through more than two
sequences, which will help us to understand the competency of
algorithms in a task structure with increasing complexity.

Conclusion
The purpose of this study is to apply particle swarm optimization

technique to the longest common subsequence problem. We propose
OL technique as an evaluation function to PSO for applying PSO to
LCSP. Since there are severe differences between popular approaches,
like dynamic programming or other heuristic methods, it’s not very
easy to fully compare this algorithm with them, but there are obvious
benefits in PSO with OL approach: it is not bounded with prerequisites
of “fixed number sequences” such as known length and equal length of
input sequences [7,9]. With correct population settings and parameter
tuning, it can give good solutions, and accurate evaluation score, yet it
may not give the “best” (longest) solution since it’s a heuristic approach.

Acknowledgement

Dr. Meral Guzey acknowledges her sincere thanks to the Department of
General Medicine, NIH, Bethesda, Maryland, USA (Research Supplements to
Promote Re-Entry into Biomedical and Behavioral Research Careers (PA-08-191).

References

1. Irving RW, Fraser C (1992) Two algorithms for the longest common
subsequence of three (or more) strings. Combinatorial Pattern Matching 644:
214-229.

2. Hirschberg DS (1977) Algorithms for the longest common subsequence
problem. Journal ACM, 24: 664-675.

3. Tseng TC, Yang CB, Ann HY (2013) Efficient algorithms for the longest
common subsequence problem with sequential sub-string constraints. Journal
of Complexity 29: 44-52.

4. Maier D (1978) The complexity of some problems on subsequences and
supersequences. JACM 25: 322-336.

5. Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Neural Networks
4: 1942-1948.

6. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proceedings of
IEEE International Conference on Evolutionary Computation 69-73.

7. Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann
-Academic Press.

8. Poli R (2008) Analysis of the Publications on the Applications of Particle Swarm
Optimization. Journal of Artificial Evolution and Applications.

9. Hinkemeyer B, Julstrom BA (2006) A genetic algorithm for the longest common
subsequence problem. Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, Seattle, Washington, USA 609-610.

Sequence
Length

Avg Process
Time (sec)

Avg Subsequence
Ratio

Max Success
Ratio

Avg Output
Length

8-16 0.48 90.6 100 4
16-32 0.81 87.2 100 5
32-64 0.96 81 96 6
64-128 11 63 80 9

128-256 44.7 74.3 85 8
256-512 2895.5 63 90 10
512-1024 3310.2 45 52 392

Table 1: Test Results (English Alphabet).

Table 2: Test Results (DNA Strings A-G-C-T).

Avg Process
Time (sec)

Avg Subsequence
Ratio

Max Success
Ratio

Avg Output
Length

8-16 0.12 86.5 100 7
16-32 0.67 85.5 93.3 10
32-64 1.9 77.1 95.6 27

64-128 8.9 95.3 97.6 60
128-256 15.6 97.6 98.4 150
256-512 618.2 98.5 99 278
512-1024 978.5 99.5 99.8 365

http://link.springer.com/chapter/10.1007%2F3-540-56024-6_18
http://link.springer.com/chapter/10.1007%2F3-540-56024-6_18
http://link.springer.com/chapter/10.1007%2F3-540-56024-6_18
http://www.ics.uci.edu/~dan/pubs/p664-hirschberg.pdf
http://www.ics.uci.edu/~dan/pubs/p664-hirschberg.pdf
http://www.sciencedirect.com/science/article/pii/S0885064X12000635
http://www.sciencedirect.com/science/article/pii/S0885064X12000635
http://www.sciencedirect.com/science/article/pii/S0885064X12000635
http://dl.acm.org/citation.cfm?id=322075
http://dl.acm.org/citation.cfm?id=322075
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488968&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488968
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488968&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488968
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=699146&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D699146
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=699146&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D699146
http://www.4shared.com/web/preview/doc/85Tn3J_u
http://www.4shared.com/web/preview/doc/85Tn3J_u
http://www.hindawi.com/archive/2008/685175/abs/
http://www.hindawi.com/archive/2008/685175/abs/
http://dl.acm.org/citation.cfm?id=1144105
http://dl.acm.org/citation.cfm?id=1144105
http://dl.acm.org/citation.cfm?id=1144105

	Title
	Corresponding author
	Abstract
	Introduction
	Longest common subsequence problem
	What is “subsequence”?
	Particle swarm optimization
	Particle swarm optimization on longest common subsequence problem

	The Algorithm and Representation
	The algorithm
	Generate alphabet
	Generate occurrence lists
	Occurrence evaluation
	Generate population
	Updates and particle moving

	Representation
	Particles
	Solutions
	Positioning

	Results
	Analyzing the test results
	Process time result analysis
	Average success ratio result analysis
	Output length analysis

	Future Work
	Conclusion
	Acknowledgement
	Table 1
	Table 2
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	References

