
Volume 3 • Issue 1 • 1000118

Open AccessReview Article

Law and Cheng, Adv Robot Autom 2014, 3:1
DOI: 10.4172/2168-9695.1000118

Keywords: DNA Sequence Compression, suffix-based approach,
dynamic programming approach, seed extension approach, rule-based
approach and parsing approach

Introduction
Study of DNA sequences is important in areas such as forensic

application and crime investigation. Due to the advancement in
DNA sequencing technologies, the number of DNA sequences
stored in public databases has been increased significantly i n r ecent
years [1,2]. Typically, these DNA sequences in public databases are
in “uncompressed form”. The u ncompressed d ata n ot o nly n eed
large storage, but also make sequence distribution ineffective. A s a
result, many lossless compression algorithms have been proposed for
compressing the DNA sequences.

Traditionally, DNA sequences are compressed by exploring intra-
sequence similarity (also known as the horizontal mode [3]). In
other words, identical subsequences within the DNA sequence to be
compressed are searched and encoded together to achieve compression.
As DNA sequence often does not have strong intra-sequence similarity,
these intra-sequence based compression methods cannot give a high
compression gain. An average of less than 10% compression gain is
obtained for most DNA sequences.

In order to achieve a better compression, DNA sequence
compression method uses inter-sequence similarity (also known as the
vertical mode [3]) in addition to intra-sequence similarity. In other
words, a reference DNA sequence or a set of reference sequences is
considered. Similar subsequences within the set of the reference
sequences and the DNA sequence to be compressed are searched and
encoded together. The inter-sequence based compression method
is very effective for compressing a set of genome-wide sequences.
A compression gain of over 1000% can sometimes be achieved if
proper reference sequences are used in searching the inter-sequence
similarities.

For both intra-sequence and inter-sequence compression methods,
a crucial component is the identification of similar subsequences. A
higher compression is achieved if more similar subsequences are
found. Many different pattern recognition methods have been used
for identifying the similar subsequences. They include s uffix-based,
dynamic programming, seed extension, rule-based and parsing
methods. In this paper, a survey of these different techniques is
provided while other reviews of DNA sequence compression with

different focuses can be found in [4-8].

This paper is organized as follows. Existing DNA Sequences
Compression Algorithms first describes the basic principles of DNA
sequences compression algorithms. Techniques for Searching Similar
Subsequences then discusses the different pattern recognition
techniques used for searching similar patterns. In Discussion and
Future Development these techniques are briefly compared. A
discussion on future development is also given. Finally, Conclusion
concludes the paper.

Existing DNA Sequences Compression Algorithms
A DNA sequence is a long sequence consisting of four types of

bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). As
DNA sequence has a double helix structure, nucleotide in one DNA
strand would bind to its complementary nucleotide in the other strand.
The nucleotide A is complementary to T while C is complementary to
G. Knowledge of one strand can loss lessly reconstruct another strand.
Hence, compressing a DNA sequence means compressing one strand
in the double helix DNA structure. Without compression, two bits per
base are required for encoding the four nucleotides {A, C, G, T}. A
DNA sequence compression algorithm thus needs to achieve a bit per
base smaller than two in a lossless manner.

There are generally two classes of methods for DNA sequences
compression. They are intra-sequence compression method and inter-
sequence compression method. The intra-sequence compression
is based on the fact that subsequences which are thousands of bases
apart in a DNA sequence could have similar bases compositions
and orderings. Figure 1 shows a conceptual idea of intra-sequence
similarity. The DNA sequence S consists of six subsequences {A, B, C,
D, E, F}. Bases in subsequence B are identical to those in F. Similarly,

*Corresponding author: Law NF, Center for Signal Processing, Department of
Electronic and Information Engineering, The Hong Kong Polytechnic University,
Hung Hom, Hong Kong, Tel: 27664746; E-mail: ennflaw@polyu.edu.hk

Received March 28, 2014; Accepted April 16, 2014; Published April 18, 2014

Citation: Law NF, Cheng KO (2014) A Survey of Techniques for Sequence Similarities
Matching in Compression. Adv Robot Autom 3: 118. doi: 10.4172/2168-9695.1000118

Copyright: © 2014 Law NF, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
DNA Sequence Compression can be achieved through exploiting the intra-sequence and inter-sequence

similarities. In order to have a good compression gain, effective methods have to be used to search for all the similar
subsequences within the DNA sequences so that these similar subsequences can be encoded together. Different
pattern recognition methods have been used to search for these similar subsequences. They are suffix-based
approach, dynamic programming approach, seed extension approach, rule-based approach and parsing approach.
A survey of their main ideas and application domains has been given in this paper.

A Survey of Techniques for Sequence Similarities Matching in
Compression
Law NF* and Cheng KO
Center for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Advances in Robotics
& AutomationAd

va
nc

es
 in

Robotics &Autom
ation

ISSN: 2168-9695

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Law NF, Cheng KO (2014) A Survey of Techniques for Sequence Similarities Matching in Compression. Adv Robot Autom 3: 118. doi: 10.4172/2168-
9695.1000118

Page 2 of 5

Volume 3 • Issue 1 • 1000116

bases in C and E are also identical. Then the intra-sequence similarity
implies that E and F can be obtained through C and B with proper

sequence compression finds similar subsequence from other DNA
sequences called reference sequences. Figure 2 shows a conceptual
diagram depicting the inter-sequence similarity between the DNA
sequence S and its reference sequence R. The following subsequences
are assumed to be repeats: {B, F, H}, {C, E} and {D, G}. Hence, by using
proper indexing and assuming the reference sequence R is available,
we only need to compress the sequence S as {A, C}, instead of {A, B, C,
D} as in Figure 1. As opposed to the consideration of intra-sequence
similarity only, the use of inter-sequence similarity always results in a
better compression gain.

An important issue in inter-sequence based compression methods
is the choice of the reference sequence. If the reference sequence
has a high similarity to the DNA sequence to be compressed such as
the DNA sequences from different individuals of the same species, a
high compression gain can be obtained. Examples of popular inter-
sequence DNA compression methods include the delta compression
method that encoded the base-to-base differences, [20-24], the Lempel-
Ziv (RLZ) compression [25,26], RLCSA [27], COMRAD [28] and GDC
[29,30].

Irrespective of which compression method is used, an important
component of the two classes of methods is the searching of similar
subsequences. If many long similar subsequences are obtained, a high
compression gain can be achieved. Many methods have been used in
finding similar subsequences in DNA compression methods. These
methods use different pattern recognition methods to identify similar
subsequences. In the next section, a survey of these pattern recognition
methods is given.

Techniques for Searching Similar Subsequences
An important component of the DNA sequence compression

methods is the searching of similar subsequences. Pattern recognition
methods are often used to identify these similar subsequences. In this
section, methods for searching similar subsequences are classified
into five groups; namely suffix-based, dynamic programming, seed
extension, rule-based and parsing approaches.

Suffix-based approaches

Suffix-based approaches such as suffix tree and suffix array have been
used in both intra-sequence and inter-sequence DNA compression.
A suffix of a sequence S can be represented as S[i, n], where n is the
length of the sequence S and i is between 1 and n. If a subsequence is
repeated in S, the repeated subsequence would appear as a common
prefix in certain suffixes S[i, n]. The suffix tree representation [31]
is usually applied to a sequence S ended with an additional symbol $
which denotes the termination of a sequence, i.e. S$. The ith terminal
node corresponds to the ith suffix S[i, n]. Each edge is labeled with a
substring in S$ such that the ith suffix can be obtained by traversing
from the root to the ith terminal node and concatenating the substrings
in the edges. Meanwhile, each nonterminal node branches to at least
two children and acts as the divergence point for some suffices after the
longest common prefix.

An example of a suffix tree for the sequence ATATGTA$ is shown in
Figure 3. Starting from the root node, all subsequences can be obtained
by traversing the suffix tree. For example, S[1, n]=ATATGTA$ while
S[3, n]=ATGTA$. Comparing the traversing of S[1, n] and S[3, n],
the repeated sequence “AT” appears as their common prefix. Another
example is S[2, n] (TATGTA$) and S[6, n] (TA$). The repeated
sequence “TA” appears as the common prefix. In the intra-sequence
based algorithm Cfact [16], the suffix tree is employed to efficiently

A B C D E F

Figure 1: A DNA Sequence, S.

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

base T T A G C G T T A G C G C G C T A A

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

base T T A G C G T T A G C G C G C T A A

indexing information. Hence, the compression algorithm only needs
to compress the subsequences {A, B, C, D} which results in a reduction
of the compression size.

The similar subsequences can be exact repeats with the same bases
or with reverse complementary bases [9, 10]. Consider the sequence
S1 as,

The sequence S1 contains both repeat and reverse complementary
repeat. Subsequence from base 1 to base 6 and subsequence from
base 7 to base 12 are repeats (both are TTAGCG). The subsequence
“CGCTAA” in the last six bases is reverse complementary repeat of
the subsequence of the first six bases (TTAGCG). This is because
the complementary bases of “CGCTAA” are “GCGATT”. The

Position 1 2 3 4 5 6 7 8 9

base T T A G C T A A C

reverse ordering of “GCGATT” is “TTAGCG” which is same as the
subsequence in the first six bases. Hence encoding S1 reduces to
compress the first six bases “TTAGCG” together with some indexing
information for reconstructing bases from position 7 to18.

Besides exact repeats, approximate repeats can also be considered
[11-15]. The approximate repeats mean that the two subsequences
have essentially the same bases but may have some mismatched bases.
The mismatched bases can be obtained through substitution, deletion
and insertion operations. Consider the sequence S2 as,

The subsequence from base 6 to 9 can be obtained from the
subsequence from base 1 to 5 by substitution and deletion operations.
In particular, “TAAC” is obtained by replacing the second base
in “TTAGC” by A and removing the fourth base “G”. Encoding S2
reduces to compress the first five bases together with some indexing
information and edit operations for reconstructing bases from position
6 to 9. Examples of intra-sequence DNA compression methods include
BioCompress [3], Cfact [16], GenCompress [11-13], DNACompress
[14], DNAPack [15], DNAC [17] and GeNML [18,19].

The inter-sequence compression methods also consider finding
similar subsequences. In contrast to intra-sequence compression, inter-

Figure 2: A DNA Sequence, S and the reference sequence R.

Sequence

S

A B C D E F

Reference

R

G H I

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Law NF, Cheng KO (2014) A Survey of Techniques for Sequence Similarities Matching in Compression. Adv Robot Autom 3: 118. doi: 10.4172/2168-
9695.1000118

Page 3 of 5

Volume 3 • Issue 1 • 1000116

identify a similar subsequence for the currently un encoded portion of
the sequence as the longest common prefix.

The inter-sequence based algorithm, run-length compressed suffix
array (RLCSA) [27] considers the other structure called suffix array
which represents a sorted array of suffixes in lexicographic order. The
ith element in a suffix array, A[i], is an index of a sequence S$ such
that S [A[i], n+1] < S[A[i+1], n+1] for . The inequality is defined such
that the symbol $ is always less than all the other symbols while S[A[i],
n+1] is ordered before S[A[i+1], n+1] in the lexicographic order. The
repeated patterns are localized in the suffix array and so does their sub-
patterns. To remove the redundancy, RLCSA first transforms the suffix
array A[i] into another sequence ()iψ which satisfies the condition

[[]] [] 1= +A i A iψ . Then, the difference [1] []+ −i iψ ψ is calculated and
encoded using run-length coding for compression. The compressed
data structure can be extended for inter-sequence compression by
concatenating a set of sequences together. Furthermore, RLCSA has an
added advantage of allowing random sequence access. This is achieved
by including properly sampled indexing information.

Dynamic programming approaches

Dynamic programming has been used for finding similar
subsequences in different sequences including DNA sequences [15,
32]. In intra-sequence based compression algorithms such as DNA
Pack [15], the selection of similar subsequences is formulated as an
optimization problem which is solved recursively through dynamic
programming. The compressed size is usually considered as the cost
function for minimization in DNA sequence compression. Define S[1,
i] be the prefix of an input sequence S up to position i and 0 (i)C be the
minimal cost for compressing S[1, i]. Suppose that only substitutions
are considered in similar subsequences. The minimal compression cost
of the sequence S, i.e. 0 ()C n , can be determined recursively from i = 2
using the following formula

{ }0 1 2 3() min (), (), ()=C i C i C i C i (1)

Where 1 2(), ()C i C i and 3()C i are minimal compression cost of
S[1, i] by compressing the suffix of S[1, i] in different manners and

are determined partially on 0 ()C j for 1≤ <j i . In particular, 1()C i considers a similar subsequence with a copy of no reverse complement
in the way that

{ }1 1 ,1 0() min () (j 1,i,k)≤ < ≤ ≤= + +j i k j rC i C j C (2)

Where (j 1,i,k)+rC is the compression cost of the subsequence
from j + 1 to i with reference to another subsequence of the same
length but starting before it at 2(1 k j).C (i)≤ ≤k involves a similar

subsequence with a reverse complement copy and is given by

{ }2 1 ,1 0() min () (j 1,i,k)≤ < ≤ ≤= + +j i k j pC i C j C (3)

where (j 1,i,k)+pC is the compression cost of the subsequence
from j + 1 to i with reference to a reverse complementary copy of a
subsequence of the same length starting at is computed by treating the
suffix as a subsequence of no similarity with the other as follows

{ }3 1 0() min () (1,)≤ <= + +j i bC i C j C j i (4)

where (1,)+bC j i is the cost using compression for non-repeated

pattern such as, arithmetic coding [33].Initially, 0 (1) (1,1)= bC C as there
is no other selection. At the end, an optimal set of similar subsequences
will be obtained by tracing back the recursive process. The dynamic
programming has a high computation cost. Its direct implementation
has a complexity of 3()O n

Seed extension approaches

Although dynamic programming can identify optimal similar
subsequences for a given cost function, its computational cost is high
particularly for long DNA sequences. The cost is still too high even
only approximate subsequences with substitutions are considered.
Various seed-based approaches have been proposed to improve the
computational complexity. For example, BLAST [34] improves the
processing time by first searching for those short seed matches, i.e.,
the subsequence pairs at a small fixed length of k (e.g. k = 4) with a
similarity score not less than a certain threshold. After identifying
these short seed matches, the seed matches are extended to longer
subsequence matches with another pre-set similarity score threshold.

Pattern Hunter [35] improves the sensitivity of BLAST by relaxing
the constraint of seeds to have matches in non-consecutive positions.
For example, a seed match of length k = 6 can be found using a mask
111011, where the value of 1 indicates a position required to be identical
while 0 refers to a position which can be matched or not matched (a
state of “don’t cares”).The intra-sequence compression algorithm DNA
Compress [14] adopts Pattern Hunter to search subsequence matches
for compressing a single DNA sequence. As the subsequence matches
may overlap with each other, DNA Compress applies a greedy strategy
to remove the overlap such that the subsequence matches with a larger
similarity score are preserved in the overlapping region.

In contrast to the dynamic programming approach, the seed
extension approach has been exploited for multiple sequence
compression in [9,10,29,30]. In [9,10], a set of chromosome sequences
is compressed together in which identical subsequences are searched
within all the chromosome sequences in addition to itself. Another
algorithm called GDC [29,30] applies hashing to a reference sequence
so that seed matches can be searched from the reference sequences for
other sequences. A heuristic strategy is proposed to extend the seed
matches for minimizing the compressed size. In addition, random
access can be enabled by dividing each sequence into blocks of nearly
equal size. However, the block strategy makes no similar subsequences
found across block boundaries.

Rule-based approaches

The rule-based compression approaches usually involve grammar
rules which can capture long term repetitions in data. A grammar
rule can be expressed in the form X → r, where r is a subsequence in a
sequence S and X is a symbol which can represent and substitute r. For

Figure 3: A suffix tree of a sequence ATATGTA$.

31

GTA$ATGTA$

62

$TGTA$

7

$ GTA$

4

58

A

T

T

A

$
GTA$

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Law NF, Cheng KO (2014) A Survey of Techniques for Sequence Similarities Matching in Compression. Adv Robot Autom 3: 118. doi: 10.4172/2168-
9695.1000118

Page 4 of 5

Volume 3 • Issue 1 • 1000116

example, a DNA sequence S = CGATGACGAT can be represented by
YXY using two rules X→GA and Y →CXT. As seen, a rule can be created
to describe a repeated pattern. The rule-based approaches have been
applied in both intra-sequence and inter-sequence compression. DNA
Sequitur [36] applies rules designed for exact subsequence matches
and those of reverse complements in intra-sequence compression.
The algorithm alternates between construction of rules and generation
of sequence representation using the new rules until no more rule is
generated. Each rule is constructed for a repeated pair of symbols, any
of which may be one of the original symbols in the DNA sequences
or the symbols substituted previously using other rules. The final
representation of the sequence and the grammar rules are entropy-
encoded to obtain a compressed bitstream.

The inter-sequence compression method COMRAD [28] applies
the rule-based principle for capturing the inter-sequence similarity.
However, only subsequence matches which satisfy certain frequency
and pattern requirements are kept in the rules, due to the consideration
of the compressed size and computational complexity. Besides, random
access can be realized by including extra information about locations of
subsequence matches described by the rules.

Parsing approaches

The parsing approaches can be found in the intra-sequence
compression method such as LZ77 [37] and the inter-sequence
compression method such as RLZ [25]. In the parsing approaches
based on intra-sequence similarity, a long sequence is usually divided
into a number of separated phrases using a greedy strategy in which
each of the phrases is the longest subsequence that has an identical copy
found before it (if it does not begin with symbols not seen before). For
example, a DNA sequence S = CGATGACGAT can be decomposed
into phrases C, G, A, T, GA and CGAT. Reverse complement copies can
also be considered to minimize compressed size for DNA sequences.
RLZ [25] applies the parsing strategy by using a reference sequence as
the searching space for identical copies of phrases.

The greedy search of subsequence matches is sub-optimal as implied
by equations (1) – (4) used in dynamic programming. RLZ-opt [26]
changes the parsing to be non-greedy by allowing lookahead after the
parsing point. In other words, the longest match could be anywhere (in
a restricted region) after the starting point of the unencoded portion of
the sequence. This makes a potential longer subsequence matches for
better compression.

Discussion and Future Development
In previous section, the pattern recognition methods for DNA

sequence compression have been divided into five categories; suffix-
based, dynamic programming, seed extension, rule-based and
parsing approaches. Dynamic programming can search for optimal
set of similar subsequences for compression. Despite that its high
computational cost hindered its application in a large dataset such as
individual sequences of the same population which becomes prevalent
due to advanced sequencing technology. Seed extension methods
compromise computational time and optimal compressed size by
considering short seed matches. The methods are usually accompanied
with some heuristic methods to extend the seed matches for longer
similar subsequences.

The parsing approaches focus on searching identical copies
for subsequences at current encoding point or lookahead in
some restricted region. To further exploit the redundancy due to
approximate similar subsequences, special encoding strategies such as

finding longest increasing subsequence [26] are required. The suffix-
based approach, suffix-tree, can be used as an efficient tool for finding
identical subsequences but they do not provide efficient representation
unless transformed into other structures such as RLCSA. Besides
compression, RLCSA has an additional advantage of random access.
However, even with RLCSA, experimental results in [25,26,30] show
that the compression algorithms based on explicit identification of
similar sequences such as RLZ and GDC can outperform RLCSA, likely
because of the efficient representation based on LZ77.

The rule-based approaches provide alternative for describing
similar subsequences. However, efficiently encoding of the dictionary
produced by the grammar rules is also important in compression
performance. DNA Sequitur may result in more than 2 bases per bit for
intra-sequence compression [36]. Although another rule-based method
COMRAD can achieve high compression ratio in inter-sequence
compression, further improvement is required as compared with the
parsing approach and the seed-based approaches when compressing
individual sequences from the same population [26, 30].

While the use of different pattern recognition methods in searching
similar subsequences would affect the compression performance,
another important issue is the choice of the reference sequences. The
reference sequence needs to be a good representation of the DNA
sequences to be compressed. The use of a good reference sequence
can significantly reduce the size of the compressed sequence [21,25].
There are different proposals for choosing the reference sequences. For
example, in [29,30], the reference sequence is chosen as the one with
the largest number of repeated patterns. Artificial reference sequences
can also be considered. In [21], the consensus sequence was chosen as
the artificial reference sequence. In [29,30], artificial reference sequence
was constructed from a real sequence appended with extra phrases. In
[38], the reference sequence was constructed by using the dictionaries
produced from three different compression algorithms.

Despite the above investigation, no optimal method is obtained yet.
As low bit per base is obtained primarily through a set of highly similar
reference sequences, a reliable and systematic way to choose them is
needed. Further research results confirm that the use of more than
one sequence can reduce the compressed size as well [30]. However,
the selection of an appropriate set of reference sequences could be
challenging. This will be our future research direction.

Conclusion
State-of-the-art DNA sequences compression methods work by

exploiting intra-sequence and/or inter-sequence similarities. Pattern
recognition techniques are often used to search for similar subsequences
in the DNA sequences. In this paper, a survey of different pattern
recognition methods for identifying the similar patterns is performed.
They include the suffix-based, dynamic programming, seed extension,
rule-based and parsing approaches.

The suffix-based approach is a type of data structure that facilitates
the searching of the longest similar subsequences in the data. The
dynamic programming approach formulates the problem as an
optimization problem which is then solved recursively. The seed
extension method performs the searching by extending the size of
the similar subsequence matches in multiple passes. The rule-based
method models the similar subsequence as some kinds of rules. The
parsing approaches divide the long sequence into different segments in
which the segments are similar subsequences.

Besides compressed size, the pattern recognition methods have

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Law NF, Cheng KO (2014) A Survey of Techniques for Sequence Similarities Matching in Compression. Adv Robot Autom 3: 118. doi: 10.4172/2168-
9695.1000118

Page 5 of 5

Volume 3 • Issue 1 • 1000116

impact on other issues such as random access. On the other hand,
existing works show that the reference sequence is one of the critical
factors in compression performance. In future, we will investigate the
further improvement by selecting one or more appropriate reference
sequences.
References

1. Bgenson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, et al.
(2013) GenBank. Nucleic Acids Research 41: 36-42

2. Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive:
explosive growth of sequencing data. Nucleic Acids Research 40: 54-56.

3. Grumbach S, Tahi F (1994) A new challenge for compression algorithms:
genetic sequences. Journal of Information Processing and Management 30:
875-886.

4. Giancarlo R, Scaturro D, Utro F (2009) Textual data compression in
computational biology: a synopsis. Bioinformatics 25: 1575-1586.

5. Giancarlo R, Scaturro D, Utro F (2012) Textual data compression in
computational biology: Algorithmic techniques. Computer Science Review 6:
1-25.

6. Bakr NS, Sharawi AA (2013) DNA lossless compression algorithms: review.
American Journal of Bioinformatics Research 3: 72-81.

7. Zhu Z, Zhang Y, Ji Z, He S, Yang X (2013) High-throughput DNA sequence
data compression. Briefings in Bioinformatics.

8. Giancarlo R, Scaturro D, Utro F (2013) Compressive biological sequence
analysis and archival in the era of high-throughput sequencing technologies.
Briefings in Bioinformatics.

9. Paula CPW (2009) An approach to multiple DNA sequences compression.
MPhil Thesis, The Hong Kong Polytechnic University.

10.	Wu P, Law NF, Siu WC (2009) Analysis of cross sequence similarities for
multiple DNA sequences compression. International Journal of Computer
Aided Engineering and Technology 1: 437-454

11. Chen X, Kwong S, Li M (2001) A compression algorithm for DNA sequences.
IEEE Engineering in Medicine and Biology Magazine 20: 61-66.

12.	Chen X, Kwong S, Li M (1999) A compression algorithm for DNA sequences
and its applications in genome comparison. Genome Informatics 10: 51-61.

13.	Li M, Badger JH, Chen X, Kwong S, Kearney P, et al. (2001) An information-
based sequences distance and its application to whole mitochondrial genome
phylogeny. Bioinformatics 17: 149-154

14.	Chen X, Li M, Ma B, Tromp J (2002) DNA Compress: fast and effective DNA
sequence compression. Bioinformatics 18: 1696-1698.

15.	Behzadi B, Fessant FL (2005) DNA compression challenge revisited: a
dynamic programming approach. Combinatorial Pattern Matching.Lecture
Notes in Computer Science 3537: 190-200.

16. Rivals E, Delahaye JP, Dauchet M, Delgrange O (1996) A guaranteed
compression scheme for repetitive DNA sequences. Processing of Data
Compression Conference.

17.	Chang CH (2004) DNAC: a compression algorithm for DNA sequences by non-
overlapping approximate repeats. Master Thesis.

18.	Tabus I, Korodi G, Rissanen J (2003) DNA sequence compression using the
normalized maximum likelihood model for discrete regression. Proceedings of
Data Compression Conference.

19.	Korodi G, Tabus I (2005) An efficient normalized maximum likelihood algorithm
for DNA sequence compression. ACM Transactions on Information System 23:
3-34.

20.	Scott C, Yiming L, Chen L, Xiaohui X (2009) Human genomes as email
attachments. Bioinformatics 25: 274-275.

21.	Brandon MC, Wallace DC, Baldi P (2009) Data structures and compression
algorithms for genomic sequence data. Bioinformatics 25: 1731-1738.

22.	Afify H, Islam M, Wahed MA (2011) DNA lossless differential compression
algorithm based on similarity of genomic sequence database. International
Journal of Computer Science and Information Technology 3: 145-154.

23.	Wang C, Zhang D (2011) A novel compression tool for efficient storage of
genome resequencing data. Nucleic Acids Research.

24.	Deorowicz S, Danek A, Grabowski S (2013) Genome compression: a novel
approach for large collections. Bioinformatics 29: 2572-2578.

25.	Kuruppu S, Puglisi SJ, Zobel J (2010) Relative Lempel-Ziv compression
of genomes for large-scale storage and retrieval. String Processing and
Information Retrieval, Lectures Notes in Computer Science 6393: 201-206.

26.	Kuruppu S, Puglisi SJ, Zobel J (2011) Optimized relative Lempel-Ziv
compression of genomes. Proceedings of the Thirty-fourth Australasian
Computer Science Conference 113: 91-98.

27.	Makinen V, Navarro G, Siren J, Valimaki N (2010) Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology 17:
281-308.

28.	Kuruppu S, Beresford-Smith B, Conway T, Zobel J (2011) Iterative dictionary
construction for compression of large DNA data sets. IEEE Transactions on
Computational Biology and Bioinformatics 9: 137-149.

29.	Grabowski S, Deorowicz S (2011) Engineering relative compression of
genomes.

30.	Deorowicz S, Grabowski S (2011) Robust relative compression of genomes
with random access. Bioinformatics 27: 2979-2986.

31.	B. Smyth, Computing Patterns in Strings, Pearson Education Limited, 2003.

32.	Smith TF, Waterman MS (1981) Identification of common molecular
subsequences. Journal of Molecular Biology 147: 195-197

33.	Moffat A (1998) Arithmetic coding revisited. ACM Transactions on Information
Systems 16: 256 – 294.

34.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. Journal of Molecular Biology 215: 403-410.

35.	Ma B, Tromp J, Li M (2002) Pattern Hunter: faster and more sensitive homology
search. Bioinformatics 18: 440-445.

36.	Cherniavsky N, Ladner R (2004) Grammar-based compression of DNA
sequences. UW CSE Technical Report 2007-05-02.

37.	Ziv J, Lempel A (1977) A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 23: 337 – 343.

38.	Kuruppu A, Puglisi SJ, Zobel J (2011) Reference sequence construction for
relative compression of genomes. String Processing and Information Retrieval,
Lecture Notes in Computer Science 7024: 420-425.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

http://www.ncbi.nlm.nih.gov/pubmed/22009675
http://www.ncbi.nlm.nih.gov/pubmed/22009675
http://www.sciencedirect.com/science/article/pii/0306457394900140
http://www.sciencedirect.com/science/article/pii/0306457394900140
http://www.sciencedirect.com/science/article/pii/0306457394900140
http://www.ncbi.nlm.nih.gov/pubmed/19251772
http://www.ncbi.nlm.nih.gov/pubmed/19251772
http://www.sciencedirect.com/science/article/pii/S1574013711000311
http://www.sciencedirect.com/science/article/pii/S1574013711000311
http://www.sciencedirect.com/science/article/pii/S1574013711000311
http://article.sapub.org/pdf/10.5923.j.bioinformatics.20130303.04.pdf
http://article.sapub.org/pdf/10.5923.j.bioinformatics.20130303.04.pdf
http://bib.oxfordjournals.org/content/early/2013/12/03/bib.bbt087.short
http://bib.oxfordjournals.org/content/early/2013/12/03/bib.bbt087.short
http://bib.oxfordjournals.org/content/early/2013/12/17/bib.bbt088.short
http://bib.oxfordjournals.org/content/early/2013/12/17/bib.bbt088.short
http://bib.oxfordjournals.org/content/early/2013/12/17/bib.bbt088.short
http://repository.lib.polyu.edu.hk/jspui/handle/10397/2665
http://repository.lib.polyu.edu.hk/jspui/handle/10397/2665
http://inderscience.metapress.com/content/8504kg0n73557t57/
http://inderscience.metapress.com/content/8504kg0n73557t57/
http://inderscience.metapress.com/content/8504kg0n73557t57/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=940049
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=940049
http://www.ncbi.nlm.nih.gov/pubmed/11072342
http://www.ncbi.nlm.nih.gov/pubmed/11072342
http://bioinformatics.oxfordjournals.org/content/17/2/149
http://bioinformatics.oxfordjournals.org/content/17/2/149
http://bioinformatics.oxfordjournals.org/content/17/2/149
http://www1.spms.ntu.edu.sg/~chenxin/paper/BIOINFO02.pdf
http://www1.spms.ntu.edu.sg/~chenxin/paper/BIOINFO02.pdf
http://link.springer.com/chapter/10.1007/11496656_17
http://link.springer.com/chapter/10.1007/11496656_17
http://link.springer.com/chapter/10.1007/11496656_17
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488385&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488385
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488385&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488385
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=488385&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D488385
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fnewweb.management.ntu.edu.tw%2Fchinese%2Fim%2Ftheses%2Fr92%2FR91725026.pdf&ei=pNdUU_OLO437rAeE_4DQDw&usg=AFQjCNFbVC-J0sPlBqxQO3WxxZQdUBHugg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCUQFjAA&url=http%3A%2F%2Fnewweb.management.ntu.edu.tw%2Fchinese%2Fim%2Ftheses%2Fr92%2FR91725026.pdf&ei=pNdUU_OLO437rAeE_4DQDw&usg=AFQjCNFbVC-J0sPlBqxQO3WxxZQdUBHugg
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1194016&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1194016
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1194016&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1194016
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1194016&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1194016
http://dl.acm.org/citation.cfm?id=1055711
http://dl.acm.org/citation.cfm?id=1055711
http://dl.acm.org/citation.cfm?id=1055711
http://bioinformatics.oxfordjournals.org/content/25/2/274
http://bioinformatics.oxfordjournals.org/content/25/2/274
http://bioinformatics.oxfordjournals.org/content/25/14/1731.short
http://bioinformatics.oxfordjournals.org/content/25/14/1731.short
http://arxiv.org/abs/1109.0094
http://arxiv.org/abs/1109.0094
http://arxiv.org/abs/1109.0094
http://www.ncbi.nlm.nih.gov/pubmed/21266471
http://www.ncbi.nlm.nih.gov/pubmed/21266471
http://bioinformatics.oxfordjournals.org/content/29/20/2572.short
http://bioinformatics.oxfordjournals.org/content/29/20/2572.short
http://link.springer.com/chapter/10.1007/978-3-642-16321-0_20
http://link.springer.com/chapter/10.1007/978-3-642-16321-0_20
http://link.springer.com/chapter/10.1007/978-3-642-16321-0_20
http://dl.acm.org/citation.cfm?id=2459307
http://dl.acm.org/citation.cfm?id=2459307
http://dl.acm.org/citation.cfm?id=2459307
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0169
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0169
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0169
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5765935&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5765935
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5765935&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5765935
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5765935&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5765935
http://arxiv.org/abs/1103.2351
http://arxiv.org/abs/1103.2351
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fbioinformatics.oxfordjournals.org%2Fcontent%2F27%2F21%2F2979.full.pdf&ei=qtlUU6BsyqWtB5WdgPgI&usg=AFQjCNGtzJSO8jlPJ_rSk5FawSzKPUuBsQ&cad=rja
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fbioinformatics.oxfordjournals.org%2Fcontent%2F27%2F21%2F2979.full.pdf&ei=qtlUU6BsyqWtB5WdgPgI&usg=AFQjCNGtzJSO8jlPJ_rSk5FawSzKPUuBsQ&cad=rja
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://ww2.cs.mu.oz.au/~alistair/abstracts/mnw98:acmtois.html
http://ww2.cs.mu.oz.au/~alistair/abstracts/mnw98:acmtois.html
http://www.sciencedirect.com/science/article/pii/S0022283605803602
http://www.sciencedirect.com/science/article/pii/S0022283605803602
http://www.ncbi.nlm.nih.gov/pubmed/11934743
http://www.ncbi.nlm.nih.gov/pubmed/11934743
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8912&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8912&rep=rep1&type=pdf
http://campus.hesge.ch/Daehne/2011-2012/Module635.1W/Algo/Documents/02-Compression/LZW/A%20universal%20algorithm%20for%20sequential%20data%20compression.pdf
http://campus.hesge.ch/Daehne/2011-2012/Module635.1W/Algo/Documents/02-Compression/LZW/A%20universal%20algorithm%20for%20sequential%20data%20compression.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-24583-1_41
http://link.springer.com/chapter/10.1007%2F978-3-642-24583-1_41
http://link.springer.com/chapter/10.1007%2F978-3-642-24583-1_41

	Title
	Corresponding author
	Abstract
	Introduction
	Existing DNA Sequences Compression Algorithms
	Techniques for Searching Similar Subsequences
	Suffix-based approaches
	Dynamic programming approaches
	Seed extension approaches
	Rule-based approaches
	Parsing approaches

	Discussion and Future Development
	Conclusion
	Figure 1
	Figure 2
	Figure 3
	References

