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Introduction
Dengue fever

Dengue is a mosquito-borne viral infection that is usually found in 
tropical and subtropical regions around the world. Warmer weather 
and rain bring excellent breeding grounds for mosquitos that are 
carriers and transmit the disease. As human population sizes increase in 
areas with these climates, there is an increase of the number of human 
carriers of the disease who when bitten by a mosquito can then infect 
the mosquito with a version of the virus that enables the mosquito 
to transmit the virus in subsequent bites to humans. In recent years, 
transmission has increased predominantly in urban and semi-urban 
areas and has become a major public health concern [1].

There are four distinct, but closely related, serotypes of the virus 
that cause dengue (DEN-1, DEN-2, DEN-3 and DEN-4). Recovery 
from infection by one provides lifelong immunity against that 
particular serotype. However, cross-immunity to the other serotypes 
after recovery is only partial and temporary. Subsequent infections by 
other serotypes increase the risk of developing severe dengue.

Accordingly to the World Health Organization (WHO) [1], 
over 2.5 billion people are now at risk for dengue. Currently, the 
WHO estimates that there may be 50-100 million dengue infections 
worldwide.

Not only is the number of cases increasing as the disease spreads 
to new areas, but explosive outbreaks are also occurring. The threat 
of a possible outbreak of dengue fever now exists in Europe and local 
transmission of dengue was reported for the first time in France and 
Croatia in 2010 and imported cases were detected in 10 other countries 
in Europe apart from mainland Portugal. In 2013, cases have occurred 
in Florida (United States of America) and Yunnan (province of China) [1].

Mathematical modelling is a powerful tool to test and compare 
different intervention strategies that might be useful in controlling 
or eliminating dengue, which is especially important in our world 
of limited resources. The various mathematical models help us 
conceptualize the transmission dynamics in a quantitative way as well 
as allow us to test different hypotheses to understand their importance.

In this paper we compare and contrast five different models 
of dengue fever and identify their best features along with their 
performance for various scenarios.

The Basic S − I − R Model and Concepts
The S − I − R model is a basic model in which a constant population 

is divided into three compartments of people depending on their 
infection status: susceptible S, infected I and recovered R.

This is usually called the S − I − R model. The three compartments 
S, I, and R, are explained as follows:

• S is used to represent the number of individuals who are
susceptible to the disease at time t

• I denotes the number of individuals who have been infected with 
the disease and are capable of spreading the disease to those in
the susceptible category

• R represents the number of individuals who have been infected
and recovered from the disease. Those in this category are
immune to infection and they would not transmit the infection
to others.

• Assumptions: Each compartment is assumed to be homogeneous. 
In other words, people in each compartment are randomly
mixing with each other. This is similar to the mass action model
in chemistry. The per capita rate of infection and the per capita
rate of recovery are assumed to be independent of the length
of time the person has spent in each compartment. They are
assumed to follow an exponential distribution [2].

Consequently, the basic S − I − R model can be formulated as 
follows:

, ,

,

dS dIS S I
dt dt
dR I S I R N
dt

λ λ γ

γ

=− = −

= + + =

where λ is the force of infection and γ is the mean recovery rate.
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The parameter values are described in Table 1. One of the key 
features of the model is the fraction, p, which represents a (random) 
fraction of the human population that can be permanently immunized 
against the four serotypes that cause dengue fever.

For the vector population,

( )

( )

v
v v v lw h h v

v
hv h h v v v
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N C I N S

dt

dI
C I N S I

dt

µ µ

µ
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= −

 	  	                (2)

 Because Sh+Ih+Rh=Nh and Sv+Iv=Nv, Rh=Nh-Sh-Ih and Sv=Nv-Iv, 
equations (1) and (2) can be combined into the single system
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The main result of Derouich et al. [3] is that system (3) has two 
equilibrium points, E1=(Nh/(1+p/µh), 0, 0) and 2E (S ,  I ,  I )h h v

∗ ∗ ∗=  
where

S − I − R models can have two separate formulations, depending 
on the basic assumptions regarding the force of infection: density-
dependent and frequency dependent models.

•	 The density-dependent model: The density-dependent model 
assumes that members of a population existing in a fixed area 
all come in contact with one another no matter how many 
individuals are present in the population. Therefore, the force 
of infection is defined as λ=βI where β denotes the transmission 
coefficient (which is the product of the number of contact per 
susceptible person per unit time and the probability of a successful 
transmission of the infection given the contact). Assuming that β 
is a constant, the frequency of infection depends on the number 
of infected persons in the population.

The frequency-dependent model: It has been shown that for 
most human infections, the number of people each person is in 
contact per day is fairly constant across the world, regardless of the 
population density of the place. That is why an alternative, known as 
the “frequency-dependent,” formulation of the S −I −R model is often 
used to model the transmission of human diseases, where the force of 

infection is defined as I
N

λ β  =  
 

. The term I
N

 is the probability 

that any random contact that a susceptible person makes will be with 
someone infectious, which is equivalent to the proportion of the total 
population that is infectious.

It is important to clarify that all models considered here are 
frequency-dependent models.

Derouich model of dengue fever

We first study the model of dengue fever developed by Derouich et 
al. [3]. Their model is based on the compartmental diagram shown in 
Figure 1. The host population, Nh, consists of susceptibles, Sh, infectives, 
Ih , and removed, Rh. The corresponding vector population, Nv, consists 
of susceptibles, Sv and infectives Iv. Mosquitos are a reservoir host for 
the four viruses that cause dengue fever: they are carriers of the virus 
but not negatively affected by it. Hence, there is not a “removed vector 
population” to consider.

For the human population, the model developed by Derouich et al. 
[3], takes the form
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( ) ( )
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		                 (1)

Table 1: Parameter values used following the same choices as in Derouich et al. [3].

Parameter Notation Base Value
Transmission probability of vector to human
Transmission probability of human to vector
Bites per susceptible mosquito per day 
Bites per infectious mosquito per day 
Effective contact rate: human to vector 
Effective contact rate: vector to human 
Human life span
Vector life span
Host infection duration

phv
pvh
bs
bi

Chv = phv bs
Cvh = pvh bi

1/µh
1/µv

1/(µh + γh )

0.75
0.75
0.5
1.0

0.375
0.75

25000 days
4 days
3 days

Figure 1: The compartmental diagram used by Derouich et al. [3] in the 
formulation of their model of Dengue fever.
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β, M, and R are given by β=Chv/µv, M=(µh +γh )/µh , and R=Cvh Chv 

Nv/(µv (µh+γh )Nh). Analysis of the Jacobian at E1 and E2 shows that E1 
is globally asymptotically stable if R ≤ 1+p/µ and E2 is locally stable if 
R>1+p/µ.

To develop a deeper understanding of the model we conduct several 
simulations. Note that all simulations in this study were conducted 
using Wolfram Mathematica [4].

Our first simulation is based on the variation of vaccination levels 
of a whole population. We numerically demonstrate the change in 
outbreak behavior using four levels of total population vaccinated in 
Figure 2. In Figures 2 and 3, Sh is in black, Ih is in gray, and Iv is dashed.

From Figure 2, we see that if 20% of the population is vaccinated, 
the outbreak of the epidemic decreases the number of infected 
hosts during the outbreak by three times. If half of the population is 
vaccinated, there is almost no outbreak and if 90% of the population 
is vaccinated there is no outbreak. The second scenario is based on the 
assumption that for different environment temperatures the activity 
level of mosquitoes differs [5].

For this model, our final simulation is based on the hypothetical size 

of mosquito population and its influence on the size of the outbreak in 
human population. Figure 3 indicates that if the bite rate of mosquitoes 
increases, the number of infected mosquitoes increases drastically. 
Consequently, the size of the outbreak in the human population 
increases as well. This scenario is important because of global warming 
and the permanent average temperature on the Earth. Generally, it is 
thought that warmer weather will cause vectors such as mosquitoes to 
increase in population size.

The last simulation illustrates the importance of different 
control measures of mosquito population. In Figure 4, we see that a 
considerable decrease of mosquito population can almost prevent an 
outbreak of dengue in the human population.

According to these scenarios it is difficult to identify which 
parameter affects the severity of an outbreak the most. However, the 
number of mosquitoes and the vaccination level of the susceptible 
population appear to be of high importance. Despite the fact that 
vaccination campaigns can be easily implemented, they are effective 
only if just one strain of the virus is present in the environment. 
Otherwise, the vaccination program is a waste of resources. Therefore, 
the best way to decrease the severity of the outbreak is to reduce the 
number of mosquitoes.

Feng model of dengue Fever

Next, we study the model developed by Feng at al. [6]. For the Feng 
model, the host has size 

N=S+I1+I2+Y1+Y2+R,

where S represents the number of susceptibles, Ii represents the 
number with primary infection by strain i, Yj represents the number 
with secondary infection by strain j, and R represents the recovered 
population. For the vector (mosquitoes), T=M+V1+V2, where M 
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Figure 2: Numerical simulations of the model by Derouich et al. [3] for the different levels of population vaccinated (0/20/50/90% of a total population 
vaccinated). (Sh is in black, Ih is in gray, and Iv is dashed).
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represents the number not infected and Vi represents the number 
infected by strain i. The model assumes that the vector can only be 

infected by a single strain of the virus. The remaining parameter values 
are defined in Table 2. The model constructed by Feng at al. [6], is 
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Figure 3: Numerical simulations of the model by Derouich et al. [3], for different levels of mosquito activity (0.5-1/1-2/1.5-2.25/2-3) bites per susceptible/
infectious mosquito per day). (Sh is in black, Ih is in gray, and Iv is dashed).
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Figure 4: Numerical simulations of the model by Derouich et al. [3] for different levels of mosquito population (150000/50000/25000/5000). (Sh is in black, Ih 
is in gray, and Iv is dashed).
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and
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In (4) and (5), primary infections in humans are produced at rate

i i

h

V
Bi

C N
β
ω

=
+

by the vector infected with strain i. Similarly, infections in vectors 
(mosquitos) are produced at rate

 ( )i i i
i

v

a I Y
A

c Nω
+

= ⋅
+

The main result of Feng at al. [6], is that the system (4) has 
two equilibrium points, * * * *

2 2 1 1( ,0, ,0,0,0,0, )E S I V=  and
* * * *

2 2 1 1( ,0, ,0,0,0,0, )E S I V= . To obtain the precise result on 
the existence and stability properties of these equilibrium points it 
was assumed that dengue does not produce significant mortality. 
So, the dimension of the model was reduced by one. Finally, two 
equilibrium values were considered: * * *

2 2 2(0,0, , ,0,0,0, )E V I= and 
* * *

2 2 2(0,0, , ,0,0,0, )E V I=  (Table 2).
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For each of the equilibrium points the parameters are defined as
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For *
1E respectively

Analysis of *
1E  and *

2E  shows that:

•	 *
1E  is locally asymptotically stable if σ2<f (σ1) for every σ1>1, and 

unstable if σ2>f (σ1)

•	 *
2E  is locally asymptotically stable if σ2<g-1 (σ1) for every σ1>1, 

and unstable if σ2>g-1 (σ1)

•	 *
1E  and *

2E  are locally asymptomatically stable if g-1 (σ1)<σ2<f 
(σ1)

For the model three different scenarios were considered and 
simulations conducted: 

(1) Different numbers of mosquito population.

(2) Different mosquito recruitment rate.

(3) Different mosquito activity levels.

The first scenario (Figure 5) demonstrates that a considerable 
decrease in a mosquito population can significantly decrease the 
size of the outbreak. From the figure we see that the dependence is 
almost linear. If we decrease the number of mosquitoes by two times, 
we obtain nearly a 50% decrease of infected population. Another 
interesting observation is that the day when the peak of the outbreak 
is reached remains the same and does not depend on the number of 
mosquitoes. In Figure 5, the first graphic represents S in black and R in 
gray, the second graphic represents I1 and I2 in black and dashed black 
and Y1 and Y2 in grey and dashed grey respectively. The third graphic 
represents M in black and V1 and V2 in gray.

Parameter Notation Base Value
Host recruitment rate
Host life expectancy
Mean length of infectious period in host
Vector per capita infection rate (biting rate × vector infection probability) 
Host per capita infection rate (biting rate × host infection probability) 
Vector recruitment rate
Vector life expectancy
Rescaling parameter (αi /c and βi /c infection rates when N small) 
Saturation parameter (αi /ωi  and βi /ωi  give maximum infection rates) 
Disease-induced per-capita death rate
Susceptibility to strain i

h
u−1

r−1

αi 
βi 
q

δ−1

c 
ωi 
ei 
σi

variable
70 years
14 days 
(0, 0.05) 
(0, 0.05) 
variable
14 days

1
0.5 

variable 
(0, 5)

Table 2: Parameter values used following the same choices as in Fang and Velascol [6].
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The second scenario (Figure 6) demonstrates that the mosquito 
recruitment rate has almost no impact on the outbreak. However, 
the mosquito recruitment rate can considerably shift the susceptible-
infected distribution among vectors.

The third scenario (Figure 7) describes the outbreak given different 
mosquito activity levels. The infection rate represents the probability 
of getting infected by infected host or infected vector after the bite. So, 
the more active the mosquitoes become; the rate at which the number 
of hosts and vectors are getting infected increases. We see that even a 
slight increase of infection rate can significantly affect the form of the 
outbreak.

After varying several parameters of the current model we see that 
both vector population and vector activity level affect the severity of the 
outbreak. However, even though the mosquito activity level appears 

to have a higher impact on the outbreak, it seems difficult to control 
the outbreak. The easier way to control the outbreak is to implement 
public policies to reduce the size of the mosquito population. Examples 
of such policies include: destroying sites where larvae develop or using 
strategies to prevent larvae development when water-filled containers 
are present. At the same time, simpler approaches such as household 
screening, air- conditioning and other methods to isolate living areas 
from mosquitoes are also effective in preventing dengue [2] (Figure 5).

Syafruddin and Noorani Models of dengue Fever
The third and fourth models of dengue fever studied were developed 

by Syafruddin and Noorani [7,8] respectively. The parameter values 
they used in both models are the same and are defined in Table 3 
(Figure 6).
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Figure 5: Numerical simulations of the model by Feng et al. [6] for different levels of mosquito population (50000/25000/5000). In the first column, S is black, R 
is gray; in the second column, I1 is black, I2 is dashed black, Y1 is gray, Y2 is dashed gray; in the third column, M is black, V1 is gray, V2 is dashed gray.
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Parameter Notation Base Value
Human Population
Human Birth  Rate
Humans Exposed to Virus
Rate Humans Exposed to Virus Proportionality  Constant
Death Rate of Humans
Recovery Rate of Infected Humans 
Susceptible Human Population 
Infected Human Population
Death Rate of Infected Human Population
Recovered Human Population
Vector Population
Percentage of Vector Population Infected
Susceptible Vector Population
Death Rate of Vectors Infected 
Vector Population Death Rate 
of Infected Vectors
Average Number of Bites per Infected Mosquito 
Probability of Uninfected Vector being Infected by Human 
Probability  of Uninfected Human being Infected by Vector

Nh
µh
Eh
φh
µh
γh
Sh
Ih
αh
Rh
Nv
p
Sv
µv
Iv
γv
b

βh (bβh)
βv (γ = bβv)

variable
0.0045 
variable
0.16667 
variable

0.328833 
variable 
variable

0.0000002 
variable 
variable

0.09 
variable
0.02941 
variable 
variable 
variable

0.75 
(0.375)

Table 3: Parameter values used by Syafruddin and Noorani [7,8].

The first Syafruddin and Noorani model

The susceptible-infected recovered (S−I−R) model used by 
Syafruddin and Noorani in ref. [8] simplifies to 

(1 )

(1 ) .

h
dx x axz
dt
dy axz y
dt
dz z y z
dt

µ

β

γ δ

= − −

= −

= − −

 				                    (6)

Figure 6: Numerical simulations of the model by Feng et al. [6] for different levels of mosquito recruitment rate (50/750). In the first column, S is black, R is 
gray; in the second column, I1 is black, I2 is dashed black, Y1 is gray, Y2 is dashed gray; in the third column, M is black, V1 is gray, V2 is dashed gray.
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In system (6),  and vδ µ= . The parameter values are described in 
Table 3. The probability of a susceptible human being infected with 

dengue is h v

h

bI
N

β .

The main result of the first Syafruddin and Noorani model, [7] is 
that system (6) has two equilibrium points E1=(1, 0, 0) and E2=(x0, y0, 
z0) with the values:
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0 0
( )

, ,
( ) ( )
h H

h H

x y
µ γ βδ µ γα βδ
γ µ α βγ µ α

+ +
= =

+ +
 and 0

( )
( )
H

H

z µ γα βδ
α γµ βδ

+
=

+

Analysis of those equilibrium points for the South Sulawesi 
outbreak shows that E1 is globally asymptotically stable point and E2 is 
asymptotically stable point [7] (Figure 7).

To illustrate the behavior of this model several simulations were 
performed. In the first simulation we assumed that the proportions 
of susceptible and infected population can vary initially (Figure 8 and 
Table 3). As shown in Figure 8, this scenario illustrates that the more 
people initially infected, the faster the remaining susceptible population 
will decrease.

The second scenario describes the situation with different activity 
levels of mosquitoes. Figure 9 illustrates different situations depending 
on the probability of the mosquito to infect a human during a bite. 
We see that if the probability of being bitten by an infected mosquito 
is relatively small, there will not be any outbreak. However, if the 
probability of being bitten by an infected mosquito becomes high, the 
outbreak can be very severe with a high peak.

The last scenario describes the situation when we have different 
proportions of initially infected mosquitoes. Interestingly, Figure 10 
indicates that if initially not all mosquitoes are infected, we obtain a shift 
in the peak of the outbreak along with the decrease of the severity of the 
outbreak. At the same time, the percentage of infected mosquitoes will 

Figure 7: Numerical simulations of the model by Feng et al. [6] for different levels of infection rate (0.05, 0.05/0.05, 0.5/0.1, 0.5). In the first column, S is black, R is 
gray; in the second column, I1 is black, I2 is dashed black, Y1 is gray, Y2 is dashed gray; in the third column, M is black, V1 is gray, V2 is dashed gray.
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Figure 8: Numerical simulations of the model by Syafruddin et al. [8] for different proportions of susceptible and infected population (0.9-0.1/0.7-0.3/0.5-0.5/0.2-0.8). 
x is black, y is gray, and z is dashed black.
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Figure 9: Numerical simulations of the model by Syafruddin et al. [8] for different probabilities of humans being bitten by a mosquito and being infected by Dengue 
(0.1/0.15/0.35/0.7). x is black, y is gray, and z is dashed black.

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

x,y ,z
10% Contact Rate

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

x,y ,z
15% Contact Rate

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

x,y ,z
35% Contact Rate

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

x,y ,z
70% Contact Rate



Citation: Bakach I, Braselton J (2015) A Survey of Mathematical Models of Dengue Fever. J Comput Sci Syst Biol 8: 255-267. doi:10.4172/jcsb.1000198

Volume 8(5) 255-267 (2015) - 264 
J Comput Sci Syst Biol 
ISSN: 0974-7230 JCSB, an open access journal 

Figure 10: Numerical simulations of the model by Syafruddin et al. [8] for different proportions of initially infected mosquitoes (1/0.6/0.25/0.01). (x is black, y is gray, 
and z is dashed black.

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

x,y ,z
100% Infected Mosquitos

20 40 60 80 100
t

0.2

0.4

0.6

0.8

x,y ,z
60% Infected Mosquitos

20 40 60 80 100
t

0.2

0.4

0.6

0.8

x,y ,z
25% Infected Mosquitos

20 40 60 80 100
t

0.2

0.4

0.6

0.8

x,y ,z
0.01% Infected Mosquitos

grow and reach a maximum. However, a situation in which nearly all 
mosquitoes would be infected is virtually impossible.

The second Syafruddin and Noorani model

Using , , , ,h h h v

h h h v

S E I E
x u y

N N N N
ω= = = = and v

V

I
z

N
= , the 

susceptible-exposed-infected-recovered (S −E − I − R) model used by 
Syafruddin and Noorani in ref. [8] simplifies to

(1 ) ( )

( ) ( )

( )

(1 ) ( )

,

h

h h

h h h h

v v v

dx x z p x
dt
du z p x u
dt
dy u y
dt
dw z w y w
dt
dz w z
dt ν

µ α

α µ φ

φ µ γ α

γ µ δ

δ µ

= − − +

= + − +

= − + +

= − − − +

= −

		                  (7)

Where, h

h

bN
N

νβ
α =

Refer to Table 3 for the meanings of the parameter values. The 
main result of the second Syafruddin and Noorani model, [8], is that 
system (7) has one equilibrium point E1. This time, equilibrium points 
were numerically calculated for the Selangor (Malaysia) outbreak data 
and E1 is asymptotically stable.

In comparison to the previous models, the scaled Syafruddin and 
Noorani models are convenient because x, u, y, w, and z represent 
population percents rather than specific numbers. This makes it 
easier to compare the effects of the virus on the mosquito and human 
populations.

Nuraini Model of Dengue Fever
For, ,  1,  2,i j i j= ≠  the normalized dengue model developed by 

Nuraini et al. [9], takes the form

1 1 2 2

2 2 2 1 1 1 1 2

1 2

(1 ) ( )

( )

( ) ( )

(1 ) ( )

( )(1 )

h

i
i i i

i j j i h i

h

i
i i i j h i

i
i i i v i

dS S BV B V S
dt
dI

BV h I
dt
dRi I B V R R
dt

dD q B V R BV R D
dt
dY

q BV R Y
dt
dV

A I Y V V V
dt

µ

γ µ

γ σ µ

σ σ µ γ

σ γ µ

µ

= − − +

= − +

= − −

= + − +

= − − +

= + − − −

	               (8)

In system (8), for the host, S+I1+I2+Y1+Y2+R+D=1. S represents 
the percent of the population susceptible, Ii the percent infected with 
strain i, Ri represents the percent immune to strain i, Yi the percent of 
the population immune to strain j (j=2,1) but are infected with strain 
i (i=1,2), R the percent immune to both strains, and D the percent for 
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those who are immune to one strain but become infected with the other 
strain and develop severe symptoms (severe dengue Hemorrhagic 
fever). For the vector (mosquitoes), V0+V1+V2=1. Vi represents the 
percent infected with strain i. The parameter values are listed in Table 4.

The main result of the Nuraini et al. model [9] is that 
the system (8) has 4 equilibrium points: E0=(1, 0, 0, 0, 0, 0, 

Figure 11: Numerical simulations for the model by Nuraini et al. [9], for different levels of mosquito activity (3,2/7,6) (These numbers represent the number of 
susceptible hosts which can be infected by an infected vector and vice versa). (S is black, I1 is gray, I2 is dashed black, R1 is black, R2 is gray, D is dashed black, 
Y1 is black, Y2 is gray, V1 is black, and V2 is gray.
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and ** ** ** ** ** ** ** **
3 ( , , , , )i i iE S I I R R Y Y D= = = = , where
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For each of those points the following results were obtained:

E0 is locally asymptotically stable if and only if Ti<1.

E1 and E2, equilibrium points for one serotype are locally 
asymptotically stable when

 1iT > and 

2

, , 1, 2,
(1 )( 1)

1
( )( )

i
j

j i i

h i i h

T
T i j i j

B q T
T B

γσ
µ µ γ

< = ≠
− −

+
+ +

The last equilibrium point E3 unlike the previous ones represents 
the coexistence of two serotypes of viruses. It is locally asymptotically 
stable if and only if

2( 2 (2 ))
1 1 ( )

2
v h

h v h
h

B B A
T

σµ µ σ
µ µ µ γ

µ
+ + Γ +

< < + Γ = +
Γ
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( ), 1, 2

i i
i

v h

A B
T

iµ µ γ
=

+ =
and is defined as the expected number of cases in individuals of type 1 
caused by the infected individual of type 1 in a completely susceptible 
population.

As for previous models, we also explored the behavior of this model 
based on several different scenarios. The first type of scenarios describes 
different biting rates of mosquitoes. As described above, with an 
increase of atmospheric temperature, mosquitoes become more active 
and, consequently, the probability to infect an individual increases.

It can be observed that those graphs are different from all previous, 
which can be explained by the fact that this model describes not only 
an epidemic outbreak of the disease but the endemic situation of the 
disease. According to this model, after the end of the outbreak the disease 
will not vanish, but will remain at a very low level until the required 
number of susceptible hosts will not reappear in the environment. 
After that, a new outbreak will take place in the susceptible population.

As we can observe from the top left graphic in Figure 11, 
each subsequent out- break is smaller than the previous one. This 
phenomenon is because of the immunity of the percentage of the 
population that had a disease during a previous outbreak. Also, it 
can be observed that with the increase of the activity of the vectors 
(mosquitoes), peaks of the outbreaks become sharper. However, this 
does not mean that the number of infected hosts grows (Table 4).

Parameter Notation Base Value
Host life expectancy
Vector life expectancy
Mean length of infections period in host
Biting rate × successful transmission  from host to vector 
Biting rate × successful transmission  from vector to host 
Susceptibility index
Probability  of severe Dengue Hemorrhagic fever

µh-1

µv −1

γ−1

Ai
 Bi
σi
q

70 years
14 days

10-15 days 
variable 
variable 

[0, 5]
[0, 1]

Table 4: Parameter values used by Nuraini et al. [9].

Unlike some of the previous models, this model does not take 
deaths into account. However, when compared to the previous models, 
this model appears to be the most comprehensive because it attempts 
to capture only the most relevant parameters. For example, compare 
the number of values used in system (7) to those used in system (8).

Conclusion
General conclusions

This paper reviewed several continuous mathematical models of 
dengue fever. Five models with different approximations to modelling 
and different assumptions were considered and for each of them several 
outbreak scenarios were reviewed.

It was observed that every model is different. The models by 
Derouich et al. [3] and by Syafruddin et al. [7] are among the simplest 
one. Both of them are S − I − R continuous dynamical system models 
of one strain of the virus. The model developed by Feng et al. [6] is a 
more complicated one. This one is also S − I − R continuous dynamical 
system model, but of two different strains of dengue.

The most comprehensive model is developed by Nuraini et al. [9]. 
It not only describes the outbreak with two strains, but also takes into 
account the separate severe dengue Hemorrhagic Fever state which is 
not taken into consideration in any of previous models. In addition, 
this model describes the endemic behavior of the disease, whereas the 
other models are modelling only epidemic outbreak.

The other interesting model was developed by Syafruddin et al. 
[8]. This is the only example of S − E − I − R model considered here, 
which divide the whole human population into four compartments: 
susceptible, exposed, infected and recovered (removed).

On the next step in the investigation several hypothetic scenarios 
for each of the outbreaks were conducted to investigate the behavior 
of the each model and try to answer the question, “which intervention 
can be the most efficient in terms of decreasing the number of infected 
population?” Two different types of interventions are available to reach 
those goals: vaccination and the direct decrease of the mosquito’s 
population. Some models show that vaccination can be useful. 
However, those models assume only one strain of the virus. If there 
are more strains in the environment vaccination becomes practically 
useless since currently available vaccines can only protect from one 
strain, leaving the whole population completely susceptible to others. 
Therefore, the only feasible working strategy is to decrease the number 
of mosquitoes.

At the same time another interesting phenomenon was observed. 
Since the activity of mosquitoes is based on weather condition, mostly 
on the temperature, global warming will increase the possibility of 
being infected and, consequently, the risk of outbreaks.

Finally, there are other problems to consider. One is to develop more 
models to catch observe important features during the progression of 
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an epidemic. For example, the development of an S − E − I − R model 
of two different strains will be a step forward in this direction. The 
ultimate goal is to build a model that will describe the outbreak of four 
different strains at the same time. However, even a small increase in 
complexity of the initial model drastically increases the difficulty of its 
validation. Moreover, the amount of real data needed for validation 
also increases and this data is not easy to obtain.

Computational notes

The graphics and computations in this paper were carried out using 
Mathematica [4]. Jim Braselton will send you copies of the notebooks 
used here if you send a request to him at jbraselton@georgiasouthern.edu.
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