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Abstract
In this case study, we validate a personalized approach to gut microbiome (GM) analysis and interpretation 

based on published association studies. We apply our ASAR data annotation and clustering package to a series of 
10 sequenced GM’s from individuals of different ethnical and geographical backgrounds, age and health groups. 
The differentially presented and detectable taxonomic and functional signatures in each GM metagenome are used 
to predict the hosts’ characteristics via correlations established in published studies, and the predictions are being 
validated by available individual-associated metadata. We also test sensitivity of the routine annotation and data 
clustering pipeline to an individual and family-linked signatures in GM structure and functionalities, when applied 
to a limited number of varying samples. The number of samples was sufficient to demonstrate 2 main types of GM 
composition, based on Bacteroides or Prevotella as main abundant genera, limitation of a variety of taxa as a result 
of antibiotics application, clustering of family members’ GM metagenomes both in taxonomic and in functional space, 
individual signatures related to chronic diseases and pharmacological interventions, and elements of ethnicity-
related characteristics in the metagenomes. The method and logical algorithms of the analysis applied here may be 
utilized in rather computational pipeline for a personalized microbiome analyses, and their potential useful outputs 
and limitations are being discussed.
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Introduction
Interactions between multicellular organisms and their 

environments are largely transmitted via associated prokaryotes 
providing beneficial as well as damaging chemical factors. A digestive 
system is an environmental frontline involving digestive secretions, 
intestinal cell metabolism and signalling and the gut microbiome (GM), 
where the latter adapts to an individual’s lifestyle, gut environment 
changing pathologies and pharmacological interventions [1,2] and 
also significantly modulate them [3].  Nutrients and prebiotics 
provide substrates for a dynamic GM which is estimated to consist of 
over 1000 different microbial species belonging to five predominant 
phyla: Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia 
and Proteobacteria [4-7]. The about 400 identified species are strictly 
anaerobic and hence will generally be found in mucosal regions such as 
the oral cavity and the GI tract [2,6].

GM are shown to affect our behaviour, cognitive functions and 
emotions, and, literally, make us. Two thirds of each microbiome were 
suggested to be individual-specific ‘fingerprint’ that may tell us a lot 
about an individual [2,8]. Taking in mind that each GM is comprised 
by about 3 million genes and there are particular correlations between 
GM and diet [1,9-11], geography and ethnicity of a host [12-15], age 
and longevity [10,16,17], and certain diseases [8,18-22]. However, it is 
still a challenge to define and interpret individual’s GM characteristics 
[23-25], where a selection of a control group seems to be the main 
challenge. We still need to be able to define a ‘healthy individual’s 
spectrum of GM composition variations, to contrast the latter to not 
only any well manifested disease but to rather a pre-diseased state of a 
host.  That will lead to a use of GM analysis as a part of the preventive 
medicine approach, and diagnostics. We also need to integrate more 
data to be able to interpret taxonomic and functional ‘signatures’ of 
a particular GM as many links from bacteria in a gut community to 

GM metabolic flows, metabolite absorption and host’s metabolism still 
remain a mystery.

By this small case study, we validate a personalized approach to 
GM analysis and interpretation. As an extensive research has been 
targeting potential correlations between diets, genetic background and 
gut microbiome’s composition, we rather try to apply the accumulated 
knowledge. We use our ASAR annotation and clustering analysis tool 
[26] on a series of ten sequenced GM’s from individuals of different 
ethnical and geographical backgrounds, age and health groups. By 
manual analysis of the defined individual signatures we’ve reconstructed 
connections from their exclusive taxonomic and differential metabolic 
capabilities to potential hosts’ characteristics to highlight the power 
and limitations of the approach. Most of metadata was not included 
in consideration until the post-analytic stage and have been used for 
validation of the predictions made from individual’s GM-specific 
taxonomic and metagenomic functional characteristics. A limited 
number and a diversity of bacterial compositions of the GM samples 
used in this study, presented a case that can be typical for  a clinical 
setting and also highlighted a need for rather flexible stratification  
approach in selection of specific contrasting datasets for personalized 
GM analysis to avoid complex family, ethnic and geographical biases. 
The results of our case study may help in design of new algorithms for 
selection of such contrasts and pipelines for a computerized GM-based 
preventive medical diagnostics.
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Methods
Sample preparation

The samples were taken using OMNI gene GUT/OM-200 kits 
(DNA-Genotek, Canada). We also tested if off-shelf treatment 
related to microbial bioelectricity (electrogenic treatment) may 
help to access the low-abundant GM bacterial genera. Stool samples 
from 3 individuals were also taken before  and  after an intake of 10 
capsules each containing 170 mg electrogenic treatment (purchased 
from Kannabe Hakutan Kobo, Hyogo, Japan) indicated in Table as /1 
for a day on electrogenic treatment, /2 for a day after a electrogenic 
treatment and /3 for the next day sample.

Whole genome sequencing

DNA was extracted, general DNA Library constructed and 
sequenced on BGISEQ PE100. 4GB of data were received for every 
metagenome.

Data processing

The sequencing data were uploaded to the MG-RAST server as 
FASTAQ files for processing, primary analysis, and storage (Figure 
1). H. sapience (human) genome sequences were marked for exclusion 
during data submission. Primary submission data and results of the 
MG-RAST pipeline are available publicly. The MG-RAST representative 
hit organism abundances calculation was performed against the 
SEED database at the level of genera, based on a maximum 𝑒-value 
of 1 × 10-5, minimum identity cut-off of 60%, and minimum sequence 
alignment of 15. Abundance data were downloaded as TSV files for 
further analysis. The representative hit data were downloaded from 
MG-RAST server via MGRASTer package [27] in R 3.1 environment. 
Abundance analysis was performed in metagenome Seq package [28] 
and ordination analysis was performed with phyloseq R packages [29]. 
Krona taxonomic community profiles were built by MG-RAST and 
stored as an image.

Data visualization

Functional, taxonomic, and KEGG orthology data were obtained 
from reads via MG-RAST pipeline. The functional and taxonomic 
annotations were merged based upon identical md5’s corresponding 
to unique read sequences. Then read counts were aggregated for 
reads annotated with the same function and taxon. Functional and 
taxonomic read annotations to lowest level are matched to the lowest 
level annotations in their corresponding hierarchy trees to generate the 
whole phylogeny of each read.

Our post-annotation analysis and visualization tool, ASAR 
(Figure 1) [26] uses data integration algorithm to merge taxonomic 
and functional data annotated at read level. The resulting 3D datasets 
with axes of Functions, Taxonomy and Metagenome samples were 
visualized via three heatmaps of each axis versus two others (F&T, F&M, 
T&M). Additionally, KEGG pathway enrichment sorting/heatmap 
and its map visualization were implemented. Advantages of the tool 
are: 1) Integrated functional and taxonomic analysis; 2) Comparative 
analysis of pathway enrichments; 3) KEGG pathway map visualization. 
The heatmaps show log abundance of reads annotated with selected 
functions in particular taxa within particular communities. On the 
KEGG map each functional box is split into sections corresponding 
to analyzed bacterial communities. The relative abundance of each 
function in each community is color coded from green (the lowest) to 
dark red (the highest proportion in the community).

Results and Analysis
Taxonomic analysis

The methods of stool sampling, sequencing and analysis used in 
this study lead to a consistent detection of at least 9 of 10 top abundant 
genera from each individual’s GM after 3 repeated feces collections. 
To check if there were biases in presentation of any narrowed gut 
compartment in each individual’s feces, we’ve used an off-shelf 
treatment related to microbial bioelectricity as a perturbation of a feces 
reaching microbiome composition. As result of the intake, Individual-
specific changes in ranking of the most abundant bacterial taxa were 
noticed, with Prevotella and Bacteroides dominance increasing after 
the intake (Table 1, Individuals 5, 6, 7). Some genera, as Oscillibacter 
show consistent decline after the treatment, though it doesn’t change 
the ranking of the bacterial group in the top 10 genera.

Relative percentage abundancies of individual’s top 10 GM 
bacterial genera in feces samples (Table 1). To estimate a consistency 
of a sampled GM composition, feces from 3 individuals were also 
collected straight after an intake of off-shelf supplementary medicine 
and a day after indicated in Table as /1 for a day before treatment, /2 
for a day after a electrogenic treatment and /3 for the next day sample.

Oncoming publication and here we would like to rather stress the 
fact of a relevant robustness of the individuals’ 5,6 and 7 GM structure. 
Interestingly, the top genera repeatedly provide 50-60% of the total 
GM DNA content with only one exception (34%-sample 6/1, which 
was brought to 58% after the electrogenic treatment). Several noticed 
correlations are well in accordance with the published observations. 
Individual GMs occurred to be Bacteroidetes family genera of either 
Prevotella or Bacteroides dominating, with only one exception 
(Individual 3), where high abundancies of both Prevotella (27.9%) 
and Bacteroides (16.5%) were balanced by a decreased abundancy of 
Faecalibacterium (3.2%). Individual 7’s signature in low content of 
both Prevotella (3.5%) and Bacteroides (2.3%) was compensated by 
sudden and progressive increase in Prevotella abundance after the 
electrogenic treatment. Both Bacteroides and Prevotella show a clear 
tendency to expand in abundancy after the electrogenic treatment that 
may be indicative of their particular attachment or unavailability for 
electrogenic treatment particles due to a specific geography of location 
of these genera in the gut [30]. Interestingly, Roseburia also shows 
similar tendency and suggestively also shares a niche with the most 
abundant GM residents. Firmicute Roseburia is a beneficial butyrate-
producing bacteria and a primary degrader of dietary beta-mannans 

Figure 1: A schematic presentation of an ASAR-based metagenome 
analytical pipeline.



Citation: Vasieva O, Sorokin A, Murzabaev M, Babiak P, Goryanin I (2019) A Study on the Analysis of Personal Gut Microbiomes. J Comput Sci Syst 
Biol 12: 71-79. 

Volume 12(3) 71-79 (2019) - 73 
J Comput Sci Syst Biol, an open access journal  
ISSN: 0974-7230

[31]. Butyrate produced by commensal bacteria serves as the main 
energy source for colonocytes and it exhibits anti-carcinogenic and 
anti-inflammatory properties in the distal gut [32-34], that makes our 
finding applicable to beneficial modulation of the composition of the 
gut microbiota.

There are differential taxonomic compositions signatures 
associated with each host that may be attributed to particular health 
characteristics and, therefore, used as predictive markers. First of all, 
compositions of GM of individuals 5 and 6 can be characterized as 
healthy by presence of such probiotics as Bifidum, Roseburia (6) and 
high levels of Alistips (>10% av.) with a high levels of Faecalibacterium 
(>10% AV)  associated with Prevotella (6) or rather Bacteroides (5) basic 
trends. GM of the 3d individual is not enriched by particular probiotics 
but it an illustration of the balanced GM composition, associated with 
the healthy trends according to a number of studies [1,8,18-22,35]. 
A limited number of samples used in our analysis was sufficient to 
illustrate an existence of gut GM ‘community types’ [23], identifiable by 
variations in the level of one of three genera: Bacteroides (Enterotype 
1), Prevotella (Enterotype 2) and Ruminococcus (Enterotype 3) [24] but 
found somehow controversial, as thoroughly reviewed [25].

Based on Prevotella prevalence we can attribute 3,4,6,7 GMs to 
rather vegetarian diet health styles or particular ethnicities [13]. The 
defined signatures would be in correspondence with the ethnicity of the 
individuals [5-7,36]. Interestingly, high levels of Alistipes were shown 
to be associated with a particular mucosa composition determined by 
secretor (FUT2) genotype [37]. Taking in mind a high frequency of 
this genotype in the Asian population the high abundance of Alistipes 
and comparably elevated Bacteroides abundancy level in GM 5 may 
be considered as a reflection of the particular genotype manifestation. 
GM composition of individual 6 is particularly based on a strong 
presence of Alistipes (> 15%) and is also characteristic by a presence of 
a probiotic mucin-degrader as Akkermansia [38].

There are also alarming microbiome composition signatures 
that may be taken in consideration. The 4th and 7th GMs show a 
presence of electrogen Desulfovibrio, which has been associated with 
particular host’s neural modulation via production of toxic sulphides 
[21,22]. However, both individuals are generally healthy and do not 
demonstrate any associations with the mentioned diseases. It is a good 
demonstration of a difficulty of extrapolation of statistically significant 
correlations shown on large cohorts on each particular individual’s 
case.

The 2nd GM’s composition is very limited, with a demonstrated 
striking Bacteroides domination (41.5%). The corresponding individual 
is under periodic prophylactic antibiotics treatment over the last 5 
years, which is in a good agreement with the poor taxonomic diversity 
of the GM. As in case with a electrogenic treatment, domination of 
mucus-adherent genera [39] can be caused by a selective elimination 
of the bacteria that are more accessible to the intervening medication. 
Faecalibacteria and Alistipes, distal gut bacterial genera show moderate 
abundancies (> 6%). The 1st GM’s host, who is a biological father to 
the host 2 is also characterized by a strong domination of Bacteroides 
genera (32%). Such a correlation makes us to suggest that there may 
be a role of genetic factors benefiting the environment for Bacteroides 
propagation [37]. Functional competition between bacteria for 
existence in the mucus layer is suggested to be a major determinant 
of the sustained microbiota composition within the host and may be 
strongly affected by the mucus structure [2,37,40]. 

GM of the individual 1 has also a high level of abundance of 
Streptococcus (1.2%), that could be indeed eliminated by a prophylactic 
antibiotic in the individual 1’s family member, individual 2. 
Interestingly, Streptococcus was the main target of that prophylactics, 
though a potential association of Streptococcus presence with a gut 
has not been suggested or discussed. We are keeping a time series of 
samples from individual 2 for further analysis and more support to 

Genus\Individual 1 2 3 4 5/1 5/2 5/3 6/1 6/3 7/1 7/2 7/3
Faecalibacterium 13.7 6.4 20.6 3.2 14.4 19.6 11.4 15.1 18.9 13.3 14.5 10.1

Prevotella  -  - 13.0 27.9  -  -  - 9.1 11.6 3.5 17.6 26.4
Alistipes 2.6 6.2 7.4 2.2 12.1 13.0 9.3 15.9 11.6 4.0 4.8 3.1

Ruminococcus  -  - 5.8 -  -  -  - 1.7 1.9 2.6  - 1.1
Bacteroides 32.4 41.5 3.1 16.5 16.4 16.0 29.6 3.0 4.8 2.3 4.0 8.2
Oscillibacter  - 0.4 1.7 1.2 2.2 1.7 1.0 1.5 1.0 3.8 3.3 1.5

Sutterella 1.4  - 1.3 1.7 1.6 3.4 1.5  -  - 1.5 2.9 1.0
Blastocystis  -  - 0.9 -  -  -  -  -  -  -  -  -
Clostridium 1.8 1.7 0.9 1.5 4.2 3.4 2.7 5.6 6.1 1.8 2.0 1.1

Parabacteroides 1.3 0.6 0.8 2.1 0.8 1.1 1.4  -  -  -  - 0.8
Bifidobacterium  -  -  - - 1.4  -  - 1.8 1.2  -  -  -

Bilophila  -  -  - - 1.0 0.9 1.1  -  - 1.1 1.4 -
Paraprevotella  -  -  - 1.0 0.9 0.9 1.3  -  -  -  -  -

Roseburia 1.2 0.6  - -  - 0.9 1.0  -  -  -  - 1.3
Desulfovibrio  -  -  - 1.3  -  -  -  -  - 2.0 2.0 -

Collinsella  -  -  - -  -  -  -  -  -  - 0.9  -
Akkermansia  -  -  - -  -  -  - 1.6 3.4  -  -  -
Flavonifractor  -  -  - -  -  -  - 1.3 0.8  -  -  -
Streptococcus 1.4  -  - -  -  -  -  -  -  -  -  -

Escherichia 0.6  -  - -  -  -  -  -  -  - -   -
Odoribacter 0.4  -  - -  -  -  -  -  -  -  -  -

Phascolarctobacterium  - 0.5  - -  -  -  -  -  -  -  -  -
Eubacterium  - 0.2  - -  -  -  -  -  -  -  -  -

Lachnoclostridium  - 0.2  -  -  -  -  -  -  -  -  -  -

Table 1: Relative percentage abundancies of individual’s top 10 GM bacterial genera in feces samples. To estimate a consistency of a sampled GM composition, feces from 
3 individuals were also collected straight after an intake of off-shelf supplementary medicine and a day after indicated in Table as /1 for a day before treatment, /2 for a day 
after a electrogenic treatment and /3 for the next day sample.
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our hypothesis of potentially gut origin of Streptococcus constant 
immunization source.

Relative high abundancy of Streptococcus in individual 1’s GM 
accompanied by a comparably high level of Escherichia may be linked 
to specific health aspects of faulty liver cholesterol metabolism: fatty 
liver and heart pathologies [2]. It has been explained by a sensitivity 
of Streptococcus and Escherichia to bile secreted into the proximal gut 
[41-44]. Bile acids, secreted through the bile duct at the proximal end 
of the small intestine, are bactericidal to certain species due to their 
surfactant properties and are known to broadly shape the composition 
of the microbiota, especially in the small intestine. For example, feeding 
mice excess bile acids generally stimulates the growth of Firmicutes 
and inhibits Bacteroidetes [45,46]. There is indeed a cholesterol 
metabolism and heart dysfunctions diagnosed for the individual 1, 
which is a potentially very striking fact of the explicit manifestation of 
a correlation defined via a population study.

Increased abundancy of Lactobacillus and Enterobacteriaceae 
genera and a depleted number of Roseburia group may indicate a 
decreased butyrate and propionate production in GM of the individual 
1 [3,43,47]. Actinobacteria e.g. Eubacterium, detected in the GM of 
individual 2, however, contribute significantly to butyrate production 
in the colon both directly and via metabolic cross-feeding [48], which 
makes GM of individual 2 more adherent to a healthy trait. Increased 
Enterobacteriaceae abundancy may be also signal of iron deficiencies 
[43,44], which, however, are not diagnosed at the time of this analysis 
for the individual 1.

Samples were distinguishable at different levels of taxonomic 
analysis (Figure 2). Sample 1 signature features, at different taxonomic 
levels, are shown in frames. Some genera from the strong signature at 
a level of class classification (Figure 2A) were below the top 50 rank 
threshold, which led to a dissipation of the signature cluster at the lower 
taxa levels (Figures 2B and 2C). Both class and genera level analysis 
were shown to be the most informative in defining an individual’s GM- 
specific features.

Functional analysis of GM metagenomes

Metagenomics allows analysis of not only taxonomic composition 
of a GM but also of genomic capabilities attributed to metabolic 

and virulent features of the bacteria comprising the community. 
More similarities were observed between the functionality profiles 
of microbial genes present in repeat samples from same individual’s 
GM than between their taxonomic profiles, suggesting that the core 
microbiota may be better defined at a functional rather than taxonomic 
classification level [49]. However, analysis of 50 most presented in 
each GM metagenome metabolic functions showed clear differences 
between the samples from different individuals (Figure 3). Despite 
the variety of the dominant taxa (Table 1) there is a clear clustering of 
the metagenomes from the family members’ GMs at the level of their 
functional capabilities, which is comparable to a clear co-clustering of 
metagenomes from repeat samples (7/1, 7/3). For more details please 
refer Supplementary Figure 3.

The family members’ GMs were found to share a specific increase 
in genomic presence of glycosidases function, fucosidase and 
galactosidase in particular. Fucose is a major component of human 
mucin glycoproteins and glycolipids and is also present in foods and 
may be affected by milk-reach diet [50]. However, a presence of milk-
degrading probiotic bacteria from the Bifidum genera is, on contrary, 
diminished in GMs from individuals 1 and 2 (Table 1). This functional 
signature thus can be attributed to a high abundancy of mucus-
degrading representatives of Bacteroides genus (Table 1, Figures 2 and 
3), typical for individuals 1 and 2, and may have a certain ethnicity 
background [B]. Destruction of the mucosal glycoproteins is one of 
the factors leading to increased permeability of mucus for bacteria 
that are not normal mucosal residents, such as E. coli, with consequent 
inflammation of endothelium of the gut and formation of ulcers 
[44,51-53]. As there is a potential hazard in the propagation of these 
functions, especially for an individual 1, specific recommendations 
for a diet and a health check could be made. Interestingly GM-1 
metagenome shows a clear aerobic signature of particularly abundant 
genomic functional features (Figures 4 and 5). Aerobicity of the gut 
environment is an indication of vascularization of the intestinal wall 
[40] which often corresponds to ongoing inflammation. In compare to 
all the other GM samples in terms of taxonomy (increased abundancy 
of E. coli) and functional capacity (increased abundancy of mucus 
degrading functions), the indicated acrogenic/oxidative environment 
would be counted as a negative prognosis component [2,40]. As it 
was mentioned above, there is also the individual 1 GM’s attributed 

Figure 2: Individual GM metagenomes (indicated by horizontal axis numbers in accordance with Table 1) were distinguishable at different levels of taxonomic analysis. 
Sample 1 signatures are shown in frames and indicated above the heatmaps. Top 50 taxa were shown in heatmaps B and C. A heatmap block colour corresponds to 
mapped sequences abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest.
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signature indicative of a faulty cholesterol metabolism/liver function 
that may be also causally relevant to gut inflammation.

An abundance of the most of top 50 functional signatures of 
individual 1’s metagenome has corresponded to the abundancy of the 
taxa possessing the particular functionality (such as Dihydroneopterin-
triphosphate epimerase typical for E. coli and Shigella of all the 
Enterobacteriaceae) [54] (Figure 6). Increased abundancy of genomic 
sequences for Hydroxymethylglutaryl-CoA synthase (HMGS) (Figure 

6), enzyme in a mevalonate pathway of isoprenoid biosynthesis, 
needed some other explanation as it is not specifically associated with 
the dominating taxa.  Human HMGS is the target of STATINS [55,56] 
acting to decrease rates of cholesterol biosynthesis, and a drug from 
this group, as a matter of fact, is prescribed to the individual 1. We 
have hypothesized that intake of STATINS could lead to a selection 
of the gut bacteria strains possessing increased number of the HMGS 
encoding genes to compensate for the bacterial HMGS inhibition. The 
latter may be responsible for the anti-bacterial effect of STATINS [57] 

Figure 3: Heatmap illustrating clustering of the functional metagenomics features attributed to the GMs from 1-7 individuals (as described in Table 1). A-general metabolic 
categories, B-metabolic subsystems (SEED). Columns attributed to 2 members of one family are framed A heatmap block color corresponds to mapped sequences 
abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest. For details see Supplementary Figures 1 and 2.

Figure 4: Heatmap illustrating clustering of the functional metagenomics features attributed to the GMs from 1-7 individuals (as described in Table 1). Sugar hydrolase 
functions corresponding to blocks of high abundancy sequences (framed) in GMs of individuals 1 and 2 (members of one family), are listed. A heatmap block color 
corresponds to mapped sequences abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest.  For more details see Supplementary Figures 
1 and 2.
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Figure 5: Heatmap illustrating clustering of the functional metagenomics features attributed to the GMs from 1-7 individuals (as described in Table 1). A heatmap block 
color corresponds to mapped sequences abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest. The individual 1’s GM metagenomics 
functional signature is highlighted.

Figure 6: Part of the Heatmap (Figure 5) illustrating clustering of the functional metagenomics features attributed to the 1-7GMs (as described in Table 1). The functional 
signatures of individual 1’s GM are highlighted.  A heatmap block colour corresponds to mapped sequences abundancies in the rainbow order: from dark red-the lowest 
to dark blue-the highest.  For more details see Supplementary Figures 1 and 2.

but the mechanism of this action still requires detailed investigation. 
Other plausible explanation may be that over presentation of the 
taxa able to synthesis mevalonate could be a way to compensate for 
the diminished amount of HMGS-downstream products normally 
synthesized and provided by the host.  

A unique profile of the GM metagenome of individual 1 can be 
also attributed to other pharmacological-interventions, such as by 
non-steroidal anti-inflammatory drugs [58] regularly taken by the 

individual 1. As the potential drug-linked GM profiles and predictors 
overlap, correlation between GM community structure/function and 
particular drugs is still not predictive and requires further investigation 
on a large number of cases.

Associated virulent factors show an increased abundancy in GM 
1 metagenome (Figure 7), that in general may reflect the discussed 
factors that affect interactions between a host and its gut microbiome. 
A very indicative and a unique feature of an individual GM is also its 
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Figure 7: Abundancies of sequences associated with ‘Virulent factors’ category in the metagenomes. A heatmap block colour corresponds to mapped sequences 
abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest.

Figure 8: Abundancies of sequences mapped to bacteriophages from the analysed GM metagenomes. The examples of signature clusters are shown in frames. A 
heatmap block colour corresponds to mapped sequences abundancies in the rainbow order: from dark red-the lowest to dark blue-the highest.

bacteriophage profile which likely follows the geographical and ethnical 
connections (Figure 8). The uniqueness of these attributes can be used 
to investigate connections between individuals in social environments.

Discussion
Given the complex relationship existing between the gut microbiota 
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and the host, it is not surprising to observe a divergence from the normal 
microbiota composition in individual GMs. Given the contribution of 
host genetics in many diseases associated with a dysbiotic microbiota, 
dual preventive strategies (targeting not only a host, but also its GM) 
may be required to restore the physiological balance. However, we still 
need to understand where dysbiosis starts. Can we suggest its presence 
solely from the analysis of the individual’s microbiota composition and 
known significant correlations at a population level? These correlations 
are subjected to particular quantitative ratios between all bacteria in 
the individual GM community and specific characteristics (genetics, 
ethnicity, age) of a healthy host [8-17], which we cannot yet see in their 
full integrative crosstalk.

From this study we can, however, advice on a design of new 
algorithms for selection of contrasts and pipelines for a potentially 
computerized GM-based preventive medical diagnostics. Taxonomic 
analysis allows comparison of individual GM composition with GM 
compositions shown to be significantly linked to particular diets 
and, in some cases, chronic diseases [1,9-11,14-17]. More statistically 
grounded analysis is required to allocate an individual microbiome in 
the space of GM compositions associated to potential health hazards 
and to avoid biases linked to ethnicity, geography and family diet 
trends that may have different manifestations in hosts with different 
backgrounds.

Cherry-picked individual’s GM signatures may not necessary 
correspond to significant correlations described in literature (as in 
the case of Desulfovibrio abundancy/autism link [21] not observed in 
our study), however, they may indicate a presence of certain hidden 
health issues. Reversed correlative analysis (from GM’s taxonomic and 
functional signatures to associated clinical data) should probably take 
place to accompany the usual approach centred at patients’ health/
clinical characteristics and patient contrasting groupings [1-22]. There 
is a number of gut microbiome markers [2,38,40,43,44], predicted 
via this approach, which need to be validated as indeed predictive in 
personalized preventive medicine.

Family-shared GM composition and the metagenome’s functional 
enrichment signatures can be suggested as baselines for a discovery of 
an individual health-related GM modulations. Clearly clustered in the 
spectrum of contrasts in machine-learning analysis, taxonomic and 
functional family signatures can also be used for a diet and a life-style 
change advice.

Ratios of certain functional genomic characteristics (for instance, 
abundancy of genes belonging to aerobic versus anaerobic respiratory 
pathways, or of glycosyltransferases with different specificity) may 
be used as markers for fast screening of GM metagenomes with the 
following detailed taxonomic and functional analysis of cases where 
the `marker values seem to be  alarming. This approach can become 
a part of a routine healthcare service, at least for the specific groups 
of patients. High abundancy of bacteriophages in a GM may be 
also considering as a reflection of a certain physiological stress [59], 
bacterial genome instability and increased virulence [60], and be 
used as an indicator of an individual’s GM well-being. A number of 
medications that show a strong correlation with following shifts in 
GM structure (such as STATINS [57] or antipsychotics drugs [61]) are 
to be accompanied with a prescribed probiotic or anti-inflammatory 
treatment and diet recommendations.

Conclusion
By this small study on GMs of several individuals we show that 

GM metagenomics data can be used in preventive health care, but no 

clear translation of the correlations shown at a population level onto an 
individual’s health can be easily performed. We can read individual GM 
metagenomes in details at taxonomic and functional levels and using 
cherry-picking approach we can suggest a number of plausible host’s 
health problems, such as liver and heart problems, potential neural 
dysfunction, risk of gut inflammation and to distinguish GMs from 
the individuals treated by antibiotics. There is a level of uncertainty 
that we still need to deal with, especially in how we can integrate the 
quantitative GM communal information into a graded valuable health 
recommendations. We are working on algorithms for integration of 
the detectable information and are open for collaborations and more 
data to add to our database.
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