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Introduction
Stars are hot, massive, and luminous celestial objects in plasma 

state. Observed masses of stars range from 0.01 MΘ  to 100 MΘ  where  
MΘ is the solar mass and we have MΘ  = 1.989x1033 gram. Stars with 
masses greater than 100 MΘ may also exist. But their lifetime is very 
short, being of the order of 106 years. Harm & Schwarzschild [1] has 
shown that the maximum possible mass of a stable normal stars is 60 
MΘ . There is a bit uncertainty in the minimum mass of a star. It is 
believed that stars with mass less than 0.01 MΘ can also exist. But they 
will never be main sequence stars. Because their interior will not be hot 
enough to burn hydrogen [2]. They will shrink directly to the while 
dwarf state.

The chemical composition of stellar matter is obviously very im-
portant, since it directly influences such basic properties as absorption 
of radiation or generation of energy by nuclear reaction. These reac-
tions in turn alter the chemical composition, which represents a long-
lasting record of the nuclear history of the star. 

The composition of stellar matter is extremely simple compared to 
that of terrestrial bodies. This is because of the high temperatures and 
pressures these are no chemical compounds in the stellar interior, and 
the atoms are for the most part completely ionized. It suffices then to 
count and keep track of the different types of nuclei [3].

The main constituent of a star is hydrogen. The composition of star 
is usually determined by the abundances X, Y and Z of hydrogen, he-
lium and other heavier elements in ionized form respectively such that 

X + Y + Z = 1 

This means that one gram of stellar material contains X gram of 
hydrogen, Y gram of helium and Z gram of heavy elements. For the 
sun, for example,

X = 0.73, Y = 0.25, Z = 0.02;

The only measurable quantity of star is its luminosity, which ob-
viously depends on the physical conditions prevailing in its interior. 
The distribution of the thermodynamic variables such as pressure (P) 
temperature (T), and density (ρ) inside a star determines its interior 
physical condition in other words, its structure. The basic problem in 
determining the structure of a star is to obtain a set of differential equa-

tions defining the structure with necessary boundary conditions and 
solve them for given mass (M), radius (R) and luminosity (L) and also 
derive information about the chemical composition, the energy source 
and the transport of energy from the centre to the surface of the star.

Methodology
The structure of a star is determined by the requirements of mass 

conservation, energy conservation, equilibrium of force, and by the 
mode of energy transport. On the other hand, the structure of the star 
depends on the chemical composition, which may vary in course of 
time either due to nuclear reaction in the deep interior, or due to mix-
ing in convective layers of the star. If the star is taken to be non-mag-
netic, non-rotating, and spherically symmetric, all physical quantities 
are function of one single spatial variable (Lagrangian co-ordinate), 
and of time t. But it is convenient to use the radius r directly as an 
independent variable. 

If the chemical composition remain fixed in time, and on atmo-
sphere is considered then the partial differential equation defining the 
stellar structure reduces to the following set of equations [4].

2

( ) ( ) ( )dP r GM r r
dr r

ρ
= −  ,    hydrostatic equation (a)

( ) ( )24
dM r

r r
dr

π ρ=  ,     conservation of mass    (b) 

( ) ( ) ( )24
dL r

r r r
dr

π ρ ε=  ,     conservation of energy (c) 

 ( )
3 2

3
4 4

L rdT
dr ac T r

κρ
π

= −  ,    radiative temperature gradient    (d)

11dT T dP
dr P dTγ

 
= − 
 

  ,     convective temperature gradient    (e)
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These equations pose the overall problem of the theory of stellar 
interior.

In addition to the above differential equations which character-
ize general conditions, have three explicit relations which characterize 
more specifically the behavior of the interior of the star, the equation 
for the absorption coefficient, and the equation for the energy genera-
tion by nuclear processes, which represent by the following formal 
equations 

P = P (ρ, T, X, Y)  

κ = κ( ρ , T, X, Y)

ε = ε (ρ, T, X, Y)

All these characteristic relations directly depend on the hydrogen 
abundance X and the helium abundance Y. equations (a) to (e) must 
all be fulfilled in every layer of the star. This study has the following 
boundary conditions also. 

Considering a sphere of infinitesimal radius r at the centre, find 
that    

             34( )
3

M r rπ ρ=       34( ) ( )
3

and L r r M rρ ρε ε= =

Since it may treat ρ and ε sensibly constant in the sphere, hence as 
r→ 0.

M(r) → 0 and L(r) → 0 				                                                                      
(f)  

for ρ and ε remain finite as r→ 0. It is clear that the condition   L(r) 
=0 at r = 0.

is a consequence of the condition      M(r) = 0    at     r = 0 

This gives only one independent boundary condition at the center 
namely, 

M(r) =0     at      r = 0                                                                           (g)

It is clear that 

M(r) = M    and    L(r) = L.  	                                                                    (h)

At the surface, i.e., at r = R 

In addition, this study can derive suitable conditions for pressure 
and temperature of a star at its surface. The surface temperatures of 
stars are in general of order of a few thousand degrees while their cen-
tral temperatures are of order of a few million degrees, so that the sur-
face temperatures may approximately be taken as zero. The mass of the 
atmosphere of a stare is just a minute fraction of its total mass; there-
fore we may take the pressure on its surface as approximately equal to 
zero. Thus we have two more condition at the surface, namely, 

T =0,    P = 0        at   r = R                                                                         (i)

Which are referred to as the “zero boundary condition”. For stars 
whose outermost layers are in radiative equilibrium, these conditions 
provided a good approximation to the actual boundary conditions.   

Thus this study consist of four simultaneous, total, non-linear 
first order differential equations for four variables ( P, M, L, and 
T) all are the function of the fifth variable r. These five differential 
equations(equations(a), (b), (c), (d), and (e), together with the four 
boundary conditions above (equations (f) to (i) represent a typical, well 
define boundary value problem. According to Volgt-Rrussel theorem 
[5] if the pressure P , the opacity κ and the rate of energy generation 

ε are function of the local values of density ρ , temperature T, and the 
chemical composition only, then the structure of a star is uniquely de-
termined by its mass and chemical composition [6]. 

The model star

This study consider a star of mass 2.5MΘ with composition X = 0.90, 
Y = 0.90, and Z = 0.01, in which ideal gas laws hold. Since for star of 
masses 2MΘ≥  the energy is principally due to CN cycle, the energy gen-
eration law is taken as

        
16

0 610CN CN
TXXε ε ρ  = ×  

 
                                                  (1)                                     

       Where  
17

0, 10
3CN
zX andε −= =

For most main sequence stars opacity is caused by bound free 
and free-free transitions while for very hot stars it is due to electron 
scattering. For upper main sequence stars in the intermediate regime 
the opacity is likely to be mixed. Stellar models of mixed opacity have 
been calculated by Harm and Schwarzschild, Kushwaha, Morton and 
S.S. Huang [1, 7-9]. In high density and low temperature condition, 
the other two opacity sources collectively called Kramer’s opacity, are 
dominant. In these calculations opacity has been taken due to Kramer’s 
opacity combined by straight addition. However Reiz [10] proposed an 
expression for mixed opacity where free-free transition and electron 
scattering are of the same order. In our problem, we have chosen the 
Kramer’s opacity which is given by

  
0 3.5T

ρκ κ  =  
 

                                                                                 
(2)

 Where  ( )25
0 4.34 10 1Z Xκ = × × × +

The structure of the modal star is given by equations (28-32) to-
gether with (1), (2) and P Tρ

µ
ℜ

=  , the of state for an ideal gas. Since 
the model star is likely to have a small convective core with a radiative 
envelope, in principle we have two solutions, one in the envelope and 
one in the core. These two solutions must match at the interface.

Polytropic core solutions

In the convective core the non dimensional equations are

     
2

dp pq
dx tx

= −                                                                       	               (3)

    
2dq px

dx t
= 					                   (4)

   5
2

dq p dt
dx t dx

=  or p = Et      			                 (5)

Therefore the solution of equation is 

  2 4 6
3 3 3(8 5)1 2 2 21 .......

6 120 42 360
θ µ µ µ

× −
= − + − +

×
For small η this is a rapidly converging series.

 
2 4

31 21
6 120

θ µ µ= − +
				                  

(6)

Introducing Schwarzschild homology variables define by
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3 3( )

( )
r dM r x dq px pxU

M r dr q dx dt qt
= = = =                                                   

(7)

	  
r dp x dp qV
p dr p dx tx

= − = − =   		                                 (8)

	    
8.5

21 T dp t dp qtn
p dt p dt Cp

+ = = =                                                   (9)

The advantage of these variables is that they are scale independent, 
multiplying r and M(r) by constant does not change U since they occur 
on both the numeration and denominator. 

So as to good approximation 

		    
183 ....
50

U ν= − +                                                      (10)
This gives the core solution in the U-V plane. 

Envelope solution of the matching point 

The envelope of the model star is in radiative equilibrium. Its struc-
ture is determined by equation (3) to (5). The equation (5) contains an 
unknown parameter C. This study thus have an one-parameter family 
of solutions, this studies aim is to determine the correct value of C and 
obtain the envelope solution for the value of the parameter. In order 
to do this parameter this study have to solve the envelope solutions 
for different trial value of C and find which value of C the solution 
just matches the core solution at the interface. However the solution is 
not straightforward. Because of the existence of singularity at the sur-
face, integration cannot be started right from the surface (x = l). To 
avoid this difficulty this study looks for series expansion of the variables 
about the singular point. 

The envelope solutions calculated numerically, however since the 
equations are singular at the surface, p = t = 0, this study chosen the 
series expansion of the variables near the singular point in the follow-
ing way.

	 Let  1 1 ,
x

ξ− =

	 i.e,  1
1

x
ξ

=
+

 			                                 (11)

   
, dp qpor
d tξ

=
 					                

(12)
  

2

8.5, dt por C
d tξ

= 					                (13)

4,
(1 )

dq por
d tξ ξ

= −
+ 				                (14)

Here the singular point is ξ = 0 since x = l i.e, ξ = 0. Now the series 
expansion of the variables about ξ = 0 can easily be done. By Fuchs 
theorem [6] a convergent development of the solution in a power series 
about the singular point having a finite number of terms is possible. 

Therefore, taking 

  0 1( ..... )u n
nt C C Cξ ξ ξ= + + +     			               (15)

0 1( ..... )v n
np b b bξ ξ ξ= + + +

			               
(16)

 2
1 21 ...... n

np g g gξ ξ ξ= + + + + 			               (17)

In equation (98) used the condition that

		  q =1 at ξ = 0

Using p, q, and t in equation (12) have the follows, 

 ( )
( )

1
0 0 1 0 0 1 0 1

1
0 1 0 1

........

.......

v u u v

v v

c d v c d v c d v c d higher order terms of

d d d g higher order terms of

ξ ξ ξ

ξ ξ ξ

+ − +

+

+ + + +

= + + +

Since the two polynomials are equal, 

U + V - 1 = V, U +V = V + 1, etc.                         	            (18)

And, 0 0 0c d v d=                                                                                 (19)

From the equation (18) and (19), have the follows,

		  u = 1 and c0v = 1                                                     (20)
With u = 1, t becomes

	 2 1
0 1( ....................... )n

nt c c cξ ξ ξ += + + + 		   

Now from equation (94), have the follows,	

	       ( )
( )

9.5 8.5 8.5 8.5 9.5
0 1 0 0 1

2 2 2 1
0 1 0

, 2 8.5 ............

2 ............v v

Or c c c c c higher order terms of

C d d d higher order terms of

ξ ξ ξ

ξ ξ ξ+

 + + + 
 = + + 

 

Again equating the powers and coefficients has the follows, 

		  2 8.5v =   and 9.5 2
0 0c cd=   (21)

	  i.e, 4.25v =   and 
4.75
0

0 0.5

cd
C

=  

So, from equations (20) and (21) have the follows, 
4.75

0 0.5

1 1
4.25

d
C

 =  
 

	  

				     

0
11, 4.25,

4.25
u v c= = =

Therefore, in the first approximation have about ξ = 0, i.e., x = 1
0p dνξ≈ 	   

4.75
4.75

0.5

1 1
4.25 c

ξ =  
 

   
4.75 4.75

0.5

1 1 1 1
4.25 c x

   = −   
   

				                (22)

  

  0
1

4.25
ut cξ ξ≈= =

1 1 1 1
4.25

q
x

 = − ≈ 
 

These relations determine the values of the parameters at any point 
near the surface. With these values as the boundary values the envelope 
equations can easily be solved numerically by given of C. C is an un-
known constant whose value for a start of given mass depends on its 
luminosity and radius. As is evident form equation (29) C is very small. 
For solar type stars C is of the order of 10-6.This study shall treat C as a 
free parameter and consider of values of close to 10-6.

This study take a point x = 0.99 very near to the surface. Then from 
equation (22) the values of the parameters that point are found to be. 

	  9
0

3
0

0

3.5136 10 ,

2.3767 10 ,
1

p

t
q

−

−

= ×

= ×
=
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Taking these values as the boundary values have integrated the 
equations for the radiative envelop numerically inwards up to where

                                  1 2.5t dpn
p dt

+ = = 	  	  

Appropriate for convection, by the fourth order Runge-Kutta 

method for a number of trial values of C (C++ Program). Some of 
these calculations, namely for 61.20 10C −= ×  , 61.56 10C −= ×  , 79.46 10C −= ×  , 

72.50 10C −= × , 78.50 10C −= ×   etc. Together with the convective track, equa-
tion (10), are drawn in the (U–V) plane (Figure 1) at the junction be-
tween the convective core and the radiative envelope both (U,V) and 
their derivatives must be continuous. So the curve for the correct radia-
tive solution must touch the convective curve at the interface. Form 
Fig I it is found that this happens for 79.46 10C −= × . Therefore this is the 
correct value of C for our model star. For this value of C the matching 
point is at 0.168fx = . The radiative solution for the envelop 0.168 ≤ x < 
1 for 79.46 10C −= ×   is given in Table 1.

The complete solution

Form the Table 1 for matching point this study finds that 
57.506, 0.14665, 0.70834, 2.6253, 1.2323f f f f fp q t U V= = = = =  

Also 1fl = , at fx x=  , since all the energy is produced in the core.

With these values as this studies boundary conditions have to solve 
the core equations, namely equations (3), (4) and (5) inwards numeri-
cally. In order to do these studies need the correct value of D. This can 
be done by integrating the energy equation.

Total luminosity, 

2

0

4 ( )
rf

L r r drπ ρ ε= ∫
2 2 14

0

xf
D x p t dx= ∫ 

 2 2 14

0

1
xf

D x p t dx= =∫  

 

 
2 2 14

0

1,
xf

or x p t dx
D

= ∫
  				                

(23)

From polytropic variables have,
5

2

1
2 2

2

,

5
2

c c

c

c

p p t t

tx
p

θ θ

η

= =

 
=  
 

Using these in equation (24) gives, 

 2 2 14

0

1 xf

x p t dx
D

= ∫
  1

2 2 2
2 5 14 14 2

0

5
2

xf c c
c

c c

t tp t
p p

θ θ η
 

=  
 

∫     

15
0.5 17 2 19

0

5
2

nf

c cp t dη θ η =  
  ∫

				                
(24)

From equation (6) follows

 2 41 1(1 .........)
6 80

θ η η= − + −

Using θ(η) in the equation (24) gives,	  	

  15 19
0.5 17 2 2

0

1 5 1 11 4 ......
2 6 80

nf

c cp t d
D

η η η η   = − + +   
   ∫

                   
(25)

Since p and t are continuous at xf have, 

	

 

5
2

f c fp p θ=

 , f c fand t t θ=

 

0
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V

Convective Core  C=1.2E-6  

C=8.56E-7  
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Figure 1: The core solution and the envelope solutions with different val-
ues of C in the U-V plane.

x=r/R p t q=Mr/M Lnρ Lr/L
1.000  0.00E+00 0.00E+00  1.00E+00 1.00E+00
0.990 3.51E-09 2.38E-03 1.00E+00 -1.43E+01 1.00E+00
0.970 2.32E-07 6.46E-03 1.00E+00 -1.11E+01 1.00E+00
0.960 8.36E-07 8.70E-03 1.00E+00 -1.02E+01 1.00E+00
0.940 5.46E-06 1.35E-02 1.00E+00 -8.73E+00 1.00E+00
0.920 2.15E-05 1.86E-02 1.00E+00 -7.67E+00 1.00E+00
0.900 6.40E-05 2.40E-02 1.00E+00 -6.84E+00 1.00E+00
0.890 1.03E-04 2.68E-02 1.00E+00 -6.48E+00 1.00E+00
0.870 2.38E-04 3.27E-02 1.00E+00 -5.84E+00 1.00E+00
0.850 4.96E-04 3.88E-02 1.00E+00 -5.27E+00 1.00E+00
0.830 9.57E-04 4.53E-02 9.99E-01 -4.77E+00 1.00E+00
0.820 1.30E-03 4.87E-02 9.99E-01 -4.54E+00 1.00E+00

Table 1: Radiative structure of the model star M = 2.5, X = 0.90, Y = 0.09, Z = 
0.01(solar Unit).

x=r/R p t q=Mr/M Lnρ Lr/L
1.000 0.00E+00  0.00E+00  1.00E+00 1.00E+00
0.990 3.51E-09 2.38E-03 1.00E+00 -1.43E+01 1.00E+00
0.950 2.33E-06 1.11E-02 1.00E+00 -9.38E+00 1.00E+00
0.900 6.40E-05 2.40E-02 1.00E+00 -6.84E+00 1.00E+00
0.850 4.96E-04 3.88E-02 1.00E+00 -5.27E+00 1.00E+00
0.986 1.09E-08 3.17E-03 1.00E+00 -1.35E+01 1.00E+00
0.985 1.40E-08 3.36E-03 1.00E+00 -1.33E+01 1.00E+00
0.800 2.30E-03 5.56E-02 9.99E-01 -4.10E+00 1.00E+00
0.750 8.07E-03 7.48E-02 9.97E-01 -3.14E+00 1.00E+00
0.700 2.40E-02 9.66E-02 9.92E-01 -2.31E+00 1.00E+00
0.600 1.59E-01 1.51E-01 9.70E-01 -8.64E-01 1.00E+00
0.550 3.72E-01 1.85E-01 9.46E-01 -2.14E-01 1.00E+00
0.450 1.83E+00 2.71E-01 8.51E-01 9.95E-01 1.00E+00
0.400 3.86E+00 3.26E-01 7.71E-01 1.56E+00 1.00E+00
0.350 7.82E+00 3.91E-01 6.63E-01 2.08E+00 1.00E+00
0.250 2.71E+01 5.50E-01 3.77E-01 2.98E+00 1.00E+00

Table 2: The complete structure of the model star for M =2.5, X = 0.90,Y = 0.09, Z 
= 0.01 (Solar Unit).
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And also have, 

 233 ..........
10f fU η= − +

5 2 2

, 1 ..........
6 60

f f
fand V

η η 
= +  

 

  

Now from the value of Uf and Vf get the equations,

 1.20167fη =

And hence get from the above equations,

 0.78539fθ =

Therefore, 

 5
2

c ff p
p

θ=

 
5

2

57.506, 105.197235(0.78539) 2

f
c

f

p
or p

θ
= = =

And, f c ft t θ=  

0.70834, 0.9019
0.78539

f
c

f

t
or t

θ
= = =

 

Now using the value of ,c cp t   and fη  in the equation (25) and 
evaluating the integration using Simpson’s one third rules (Using C++ 
program) we have, D = 1.875173

Using this D in equation (5) have integrated the core equation again 
by the fourth order Runge-Kutta method from the interface downward 
up to x = 0.001. The envelope solution and the core solution together 
give the complete internal structure of star. This study are however yet 
to find the luminosity and the radius of the star.

From equation (29) gives, 
7.5

0.5
0

3 55

3

256

Rk LR
GC

acM
µ
π

 
 
 =

				                (26)

 Or,   
3 55

0.5
7.5

0

256

3

acMLR
Rk
G

π

µ

=
 
 
 

 

From equation (30) gives, 

   16
18

0

96 194 19

CN
GXX M
RD

LR

µε

π

 
 
 =

×

				               
(27)

 Or,  

16
18

0
19

964 10

CN
GXX M
RLR
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Eliminating L from equation (26) and equation (27) gives,
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Using all the values of the constants and parameters in equation 
(28), (Using C++ program for solving the value of Luminosity and Ra-
dius using the values of constants), this study have, 1.4999R RΘ=   and 

using this value of R in equation (27) (Using C++ program for solving 
the value of Luminosity and Radius using the values of constants) have 
the value of L, that is, 6.55L LΘ=  . From the matching point inward in-
tegration have done for the convective solution (Using C++ program 
for solving the value of D using the values of constants and boundary 
values) of the structure. 

Effect of variation of mass and chemical composition 

If the chemical compositions remain same then there is an effect of 
varying mass on the other physical quantities, luminosity L, effective 
temperature Teff, and radius R

These studies have 
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And 
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From equation (29) thus have logarithmic measures

		  logL + 0.5logR – 5.5logM + log(constant) = 0   (31)

And from equation (30) thus have logarithmic measures

		  logL + 19logR – 18logM + log(constant) = 0     (32)

Differentiating equation (31) gives

 0.5 5.5 0L R M
L R M
∂ ∂ ∂

+ − =   	                              (33)

Again differentiating equation (32

   19 18 0L R M
L R M
∂ ∂ ∂

+ − = 		                                                (34)

Eliminating  L
L
∂  from equations (33) and (34) gives 

  
0.676R M

R M
∂ ∂

=
                                                                              (35)

Again eliminating R
R
∂   from equations (33) and (34) gives 	

  5.162L M
L M
∂ ∂

= 					                 (36)

From black body relationship gives 
2 44 effL R Tπσ= 			     		                (37)

Where σ is Stefan-Boltzmann’s constant.

Logarithmic differentiation of equation (37) gives 

2 4 0eff
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TL R
L R T

∂∂ ∂
− − = 			                                 (38)

Substituting the value of  R
R
∂  and L

L
∂   from equations (35) and (36) 

into equation (37) gives	

	 0.952eff

eff

T M
T M
∂ ∂

= 	    			               (39)

From equations (35), (36), and (38) it is evident that as M increases 
R and Teff increase slightly, but the increase in L is quite sharp.

If mass is kept constant then there are some effect on the physical 
quantities, L, R, and Teff for the variation of κ0 , X and Z.

From the logarithmic differentiation of equation (29) gives 
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Again from the logarithmic differentiation of equation (30) gives 
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Eliminating L
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∂   from equations (40) and (41) gives		
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Again eliminating  R
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∂  from equations (40) and (41) gives 
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Substituting the value of  R
R
∂  and  L

L
∂  from equations (42) and (43) 

into equation (38) gives			
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But  depends on X. therefore the change in 0κ  is in effect due to the 
change in X. Equations (42), (43) and (44) indicate that any increase 
in X and Z slightly increases R but decrease L and Teff . This is expected 
because R and Teff vary inversely, the mass being constant.

Discussion
For an increase in M the position of the star in the HR diagram is 

slightly shifted to toward the upper end of the main sequence. If the 
mass is constant then a decrease in the hydrogen content of the star in-
creases luminosity and effective temperature. But as time goes on in the 
main sequence lifetime of a star its hydrogen content gradually dimin-
ishes giving rise to the helium content. That means, as a main sequence 
star ages its position in the HR diagram slowly moves along the main 
sequence toward the hot end. The position of a main sequence star in 
the HR diagram is thus determined mainly by its mass and chemical 
composition.

Conclusion 
This study determine the structure of a 2.5 solar mass in which the 

abundance of elements has taken as X = 0.90, Y = 0.09, Z = 0.01 and 
also assumed that the opacity is Kramer’s opacity i.e, due to electron 
scattering. This study solved the equation of structure numerically by 
the fourth order Runge-Kutta method in which the step length has 
been taken as h = 0.001. To determine the structure this study followed 
a simple fitting method devised by Cowling (1930). It is found that the 
mass and chemical compositions are prescribed then the distribution 
of the thermodynamic variables inside the star as well as its total lumi-
nosity, radius and effective temperature can be uniquely determined. It 
is interesting to observe that this study results obtained by simple fit-
ting method do not vary significantly from the recent calculation of W. 
Brunish (e.g., Bohm-Vitense) by rigorous treatment of the problem. If 
the mass varies keeping the composition fixed, then all variables L, Teff 
and R are found to vary.
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