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Abstract

In this paper we generalize the commutative generalized Massey products to the noncom-
mutative deformation theory given by O. A. Laudal. We give an example illustrating the
generalized Burnside theorem, one of the starting points in this noncommutative algebraic
geometry.
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1 Introduction

In [2], O. A. Laudal defines a noncommutative algebraic geometry based on noncommutative
deformation theory, see also [1].

One of the main ingredients in this theory is the following:

Theorem 1.1 (the generalized Burnside theorem). Let A be a finite dimensional k-algebra,
k an algebraically closed field. Consider the family V = {Vi}r

i=1 of simple A-modules and let
H = (Hij) be the formal noncommutative moduli of V, then A ∼= O(V) = (Hij⊗k Homk(Vi,Vj)).

2 Affine deformations

Definition 2.1. An r-pointed artinian k-algebra is a k-algebra S together with morphisms
kr ι→ S

ρ→ kr such that ρ ◦ ι = Id and such that (ker(ρ))n = 0 for some n > 0. ker(ρ) is called
the radical of S and denoted rad(S).

Let ei ∈ kr, 1 ≤ i ≤ r be the idempotents. If Sij = eiSej it follows that every r-pointed
k-algebra can be written as the matrix algebra S ∼= (Sij).

Let V = {V1, . . . , Vr} be a family of right A-modules. Let S = (Sij) ∈ ar be an r-pointed
artinian k-algebra.

Definition 2.2. The deformation functor DefV : ar → sets is defined by

DefV (S) = {S ⊗k A-modules MS |ki ⊗S MS
∼= Vi and MS

∼=k (Sij ⊗k Vj) = S ⊗k V }/ ∼=

Definition 2.3. A morphism π : R→ S between to r-pointed artinian k-algebras is called small
if kerπ · rad(R) = rad(R) · ker(π) = 0.

Let MS ∈ DefV (S). Then MS
∼=k (Sij ⊗k Vj) and as such it has an obvious structure as

left S = (Sij)-module. The (right) A-module structure is determined by the k-algebra homo-
morphism A

σ→ EndS(MS) ⇔ A
σ→ (Sij ⊗k Homk(Vi, Vj)) which is completely determined by

the morphisms σij(a) : Vi → Sij ⊗k Vj . Let MS be the deformation of V to S given by the
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k-algebra homomorphism σS : A → EndS(Sij ⊗ Vj) inducing as above Vi

σS
ij(a)→ Sij ⊗k Vj . Let

(Rij) = R
π→ S = (Sij) be a small morphism. We may lift σij(a) in the diagram

Vi

σR
ij(a)

//

=

²²

Rij ⊗k Vj

²²
Vi

σS
ij(a)

// Sij ⊗k Vj

by composing with a section of the right hand vertical map, adding any k-linear morphism
θij : A→ Homk(Vi, Iij ⊗k Vj). Choosing the k-linear lifting σR this way, there is a k-linear map
A → EndR(Rij ⊗k Vj). For this to be an A-module structure commuting with R, we need the
conditions; for every a, b ∈ A, σR(ab) = σR(a)σR(b). Because this holds for S, we get an element

ψR(a, b) = σR(ab)− σR(a)σR(b) ∈ Iij ⊗k Homk(Vi, Vj)

Because π is a small morphism, we have I2 = 0 and thus a · ψR(b, c) = σR(a)ψR(b, c) and
ψR(a, b) · c = ψR(a, b)σ(c) implying that ψR is a Hochschild 2-cocycle whose class o(π,MS) ∈
Iij ⊗k Ext2A(Vi, Vj) is called the obstruction for lifting MS to R.

Theorem 2.1. o(π,MS) = 0 if and only if there exists a lifting MR ∈ DefV (R) of MS. The set
of isomorphism classes of such liftings is a torsor under (Iij ⊗k Ext1A(Vi, Vj)).

Proof. If 0 = o(π,MS), then ψ = dφ, and σ′ = σ + φ is the desired lifting.

3 Generalized Massey Products

Consider the r-pointed matrix k-algebra E = kr{εij} where all products εijεjk = 0 for all
1 ≤ i, j, k ≤ r, i.e. E ∼= k{tij}/m2 where m is the two-sided ideal generated by {tij}. For any
covariant functor F : ar → sets F (E) is a k-vector space which is called the tangent space of
F . The procategory âr is the category of all k-algebras with morphisms kr ι→ R

ρ→ kr such that
R/ rad(R)n ∈ ar, for all n ≥ 1, F̂ (R) = lim←

n

F (R/(rad(R))n).

Definition 3.1. A procouple (Ĥ, ξ̂) for F , Ĥ ∈ âr, ξ̂ ∈ F̂ (Ĥ), is called a prorepresentable hull,
or formal moduli for F , if the induced map hĤ := Mor(Ĥ,−) → F is smooth, and the tangent
map tĤ = Mor(Ĥ, E) → F (E) is a bijection.

Definition 3.2 (Non-commutative generalized Massey products). Let DefV : âr → sets be
the deformation functor of the family {Vi}r

i=1. Then we have an isomorphism as k-vector
spaces, DefV (E) ∼= (E1

ij), where E1
ij = Ext1A(Vi, Vj). Let epij = dimk Extp

A(Vi, Vj). Let S2 =
kr{tij(lij)}/m2. A sequence of elements α = (αij(lij)) ∈ (E1

ij), 1 ≤ lij ≤ e1ij defines a defor-
mation M2(α) ∈ Def(S2). Let B′2 be the set of all monomials of degree 2 in the tij(lij) and
consider

π′2 : R3 = kr{tij(lij)}/m3 → kr{tij(lij)}/m2 = S2

Then we have that

o(M2(α), π′2) =
∑

t∈B′2

< α; t > ⊗t ∈ (Ext2A(Vi, Vj)⊗k Iij)
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M2(α) is then called a defining system for the second order Massey products < α; t >, t ∈ B′2.
Choose bases {yij(mij)}e2

ij

mij=1 for the dual spaces Ext2A(Vi, Vj)∗. Then

o(M2(α), π′2) =
∑

t∈B′2

< α; t > ⊗t =
∑

t∈B′2

y∗ij(mij)⊗ yij(mij)(< α; t >)t

Put

f2
ij(mij) =

∑

t∈B′2

yij(mij)(< α; t >)t

Put S3 = R3/(f2
ij) and let π2 be the induced morphism. Choose a monomial basis B2 ⊆ B′2 for

kerπ2 and put B̄2 = B̄1 ∪ B2 where B̄1 is the set of all monomials of degree less than or equal
to 1. Then o(M2(α), S3) = 0.

Assume that SN−1 has been constructed such that M2(α) can be lifted to MN−1(α) ∈
DefV (SN−1). Also assume that monomial bases BN−2, B̄N−2 have been constructed. Put

RN = kr{t}/mN +m(fN−1
ij (mij))

π′N→ SN−1

Write

kerπ′N = (fN−1
ij (mij))/m(fN−1

ij (mij))⊕ IN

with

IN = mN−1/(mN +mN−1 ∩ (fN−1
ij (mij))

and pick a monomial basis B′N−1 for IN , where we may assume that for t ∈ B′N−1, t = u · s
or t = s · u for some u ∈ BN−2. Put B̄′N−1 = B̄N−2 ∪ B′N−1. Then for every monomial u with
degree less than N we have a unique relation in RN

u =
∑

t∈B̄′N−1

β′t,ut+
∑

i,j,mij

β′uf
N−1
ij (mij)

and we have that

o(MN−1(α), π′N ) =
∑

i,j,mij

yij(mij)∗ ⊗ fN−1
ij (mij) +

∑

i,j,mij

yij(mij)∗ ⊗ (
∑

t∈B′N−1

ci,j,mij ,t ⊗ t)

We call MN−1(α) a defining system for the Massey products

< α; t >=
∑

i,j,mij

ci,j,mij ,tyij(mij)∗ ∈ Ext2A(Vi, Vj), t ∈ B′N−1

To continue, we put

fN
ij (mij) = fN−1

ij (mij) +
∑

t∈B′N−1

yij(mij)(< α; t >)t

and SN = RN/(fN
ij (mij)), πN : SN → SN−1 is the natural morphism. We choose a monomial

basis BN−1 ⊆ B′N−1 for kerπN and we put B̄N−1 = BN−1∪B̄N−2, and we continue by induction.
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Theorem 3.1. The functor DefV has a prorepresenting Hull Ĥ in âr, uniquely determined by
a set of matric Massey products

D(i, i1, i2, . . . , in−1, j) → Ext2A(Vi, Vj)

where D(i, i1, i2, . . . , in−1, j) are the defining systems.

Proof. It follows from Laudal’s classical article [3], and it is possible to generalize from
Schlessinger [4], that Ĥ ∼= kr{{t}}/(fij(mij)), where

fij(mij) =
∞∑

l=0

∑

t∈BN+l

yij(mij) < x∗; t > t

and x∗ is a basis for (Ext1A(Vi, Vj))∗, see [1] or [5].

4 Example

Consider the 2-pointed k-algebra

A =
(
k[t11] < t12 > /(t11 − 1)t12

0 k

)

This k-algebra has geometric points, i.e simple A-modules, given by the line and the point
respectively

V1(a) =
(
k(a) 0

0 0

)
, V2 =

(
0 0
0 k

)

We are going to compute the local formal moduli ĤV , V = {V1(a), V2} of the modules V1(a), V2

for a fixed a, following the algorithm given in [2]. We start by computing the tangent spaces:
In general we have

Ext1A(Vi, Vj) = HH1(A,Homk(Vi, Vj)) = Derk(A,Homk(Vi, Vj))/Ad

where the bi-module structure on Homk(Vi, Vj) is given by aφ(vi) = φ(avi), φ · a(vi) = φ(vi)a.
Notice that by Ad we mean the trivial derivations adα, α ∈ Homk(Vi, Vj).

Any derivation δ is determined on a generator set. In this particular example, we choose as
generators

e1 =
(

1 0
0 0

)
, e2 =

(
0 0
0 1

)
, (t11 − a) =

(
(t11 − a) 0

0 0

)
, t12 =

(
0 t12

0 0

)

(1,1): Ext1A(V1(a), V1(a)):

δ(e1) = δ(e21) = e1δ(e1) + δ(e1)e1 = 2δ(e1) ⇒ δ(e1) = δ(e2) = 0
δ(t11 − a) = α

δ(t12) = δ(t12e2) = δ(t12)e2 + t12δ(e2) = 0
adβ(t11 − a) = (t11 − a)β − β(t11 − a) = 0

As basis for Ext1A(V1(a), V1(a)) we choose the one element set {φ11 = (t11 − a)∨}.
(1,2): Ext1A(V1(a), V2):

δ(e1) = α, δ(e2) = −α
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δ(t11 − a) = δ((t11 − a)e1) = δ(t11 − a)e1 + (t11 − a)δ(e1) = 0
(a− 1)δ(t12) = δ(t11t12 − t12) = 0
adα(t11 − a) = 0, adα(e1) = e1α− αe1 = α, adα(e2) = e2α− αe2 = −α

Thus if a = 1 we choose as basis the one point set {φ12 = t∨12}. If a 6= 1, then Ext1A(V1(a), V2) = 0.

(1,i): Ext1A(V2, Vi) = 0 (i = 1, 2) which is trivial.

For the rest we put a = 1, that is V1 = V1(1) and compute Ĥ{V1,V2}. Let

S =
(
k[u11] < u12 >

0 k

)

Then the infinitesimal liftings are given by

φ2 =
(

1⊗ ·a+ u11 ⊗ (t11 − 1)∨ u12 ⊗ t∨12

0 1⊗ ·a
)

: A→ (Homk(Vi, S2,ij ⊗ Vj))

Now S2 = S/ rad2 and the obstruction for lifting to R3 = S/ rad3 is

o =
(
u2

11 ⊗ (t11 − 1)∨(t11 − 1)∨ u11u12 ⊗ (t11 − 1)∨t∨12

0 0

)

In general, v∨w∨ = (v ⊗ w)∨ = −d((vw)∨), so

(t11 − 1)∨(t11 − 1)∨ = −d((t11 − 1)2)∨)

But (t11 − 1)t12 = 0 in A, thus o =
(

0 u11u12⊗o12
0 0

)
with o12 6= 0. Put S3 = S/(rad3 +u11u12).

Then we can lift the A-module structure to S3 by

φ3 =
(

1⊗ ·a+ u11 ⊗ (t11 − 1)∨ + u2
11 ⊗ ((t11 − 1)2)∨ u12 ⊗ t∨12

0 0

)

We see that this φ3 can be lifted to φn on Sn = S3/ radn, n ≥ 3, giving the result

Ĥ = lim← Sn =
(
k[[u11]] < u12 > /u11u12

0 k

)
∼= lim← A/ radn

In general terms this says that A is a scheme for its 1-dimensional simple modules.
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