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Abstract

In this paper we generalize the commutative generalized Massey products to the noncom-
mutative deformation theory given by O. A. Laudal. We give an example illustrating the
generalized Burnside theorem, one of the starting points in this noncommutative algebraic
geometry.
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1 Introduction

In 2], O. A. Laudal defines a noncommutative algebraic geometry based on noncommutative
deformation theory, see also [1].
One of the main ingredients in this theory is the following:

Theorem 1.1 (the generalized Burnside theorem). Let A be a finite dimensional k-algebra,
k an algebraically closed field. Consider the family V = {Vi}i_; of simple A-modules and let
H = (Hjj;) be the formal noncommutative moduli of V, then A = O(V) = (Hy ®x Homy (Vi, Vj)).

2 Affine deformations

Definition 2.1. An r-pointed artinian k-algebra is a k-algebra S together with morphisms
k" 5 S 2 k" such that p ot = Id and such that (ker(p))” = 0 for some n > 0. ker(p) is called
the radical of S and denoted rad(sS).

Let e; € k", 1 < ¢ < r be the idempotents. If S;; = e;Se; it follows that every r-pointed
k-algebra can be written as the matrix algebra S =2 (.5;;).

Let V.= {Vi,...,V,.} be a family of right A-modules. Let S = (S;;) € a, be an r-pointed
artinian k-algebra.

Definition 2.2. The deformation functor Defy : a, — sets is defined by
Defy (S) = {S @i A-modules Mglk; @5 Mg = V; and Mg =, (S;; @, V) =S @ V}/ =

Definition 2.3. A morphism 7 : R — S between to r-pointed artinian k-algebras is called small
if ker 7 - rad(R) = rad(R) - ker(mw) = 0.

Let Mg € Defy(S). Then Mg =%, (S;; ®k V;) and as such it has an obvious structure as
left S = (Si;)-module. The (right) A-module structure is determined by the k-algebra homo-
morphism A % Endg(Ms) < A % (Sij ®r Homy(V;,V;)) which is completely determined by
the morphisms o;j(a) : V; — S;; ® Vj. Let Mg be the deformation of V' to S given by the
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of. (a)

k-algebra homomorphism ¢ : A — Endg(S;; ® V;) inducing as above V; = S;; ® Vj. Let
(Rij) = R S = (S;;) be a small morphism. We may lift ¢;;(a) in the diagram

5

o (a
V; —> }fij Ok Vj

l crisj (a) i

Vi —= Sij Qk Vj

by composing with a section of the right hand vertical map, adding any k-linear morphism
0;; : A — Homy(V;, I;; ® Vj). Choosing the k-linear lifting o™ this way, there is a k-linear map
A — Endg(R;j ® V;). For this to be an A-module structure commuting with R, we need the
conditions; for every a,b € A, 0% (ab) = 0%(a)o(b). Because this holds for S, we get an element

Y (a,b) = o (ab) — o (a)o T (b) € I;; @ Homyg(Vi, V})

Because 7 is a small morphism, we have I? = 0 and thus a - ¥®(b,c) = of(a)¥®(b,c) and
YF(a,b) - ¢ = pF(a,b)o(c) implying that ¢ is a Hochschild 2-cocycle whose class o(m, Mg) €
I;; @k Ext? (V;i, V) is called the obstruction for lifting Mg to R.

Theorem 2.1. o(w, Mg) = 0 if and only if there exists a lifting Mp € Defy (R) of Mg. The set
of isomorphism classes of such liftings is a torsor under (I;; @y Exty (Vi, V).

Proof. If 0 = o(m, Mg), then 1) = d¢, and ¢’ = o + ¢ is the desired lifting. ]

3 Generalized Massey Products

Consider the r-pointed matrix k-algebra E = k"{g;;} where all products ijcjr = 0 for all
1 <i,jk <r ie E=k{t;}/m?where m is the two-sided ideal generated by {t;;}. For any
covariant functor F' : a, — sets F(F) is a k-vector space which is called the tangent space of

F. The procategory a, is the category of all k-algebras with morphisms £" “ R 2 k" such that
R/rad(R)" € a,, for all n > 1, F(R) = imF (R/(rad(R))").

Definition 3.1. A procouple (f[,f) for F, H € a,, e F(f]), is called a prorepresentable hull,

A~

or formal moduli for F', if the induced map hy := Mor(H,—) — F is smooth, and the tangent
map ty = Mor(H, E) — F(E) is a bijection.

Definition 3.2 (Non-commutative generalized Massey products). Let Defy : a, — sets be
the deformation functor of the family {V;}/_;. Then we have an isomorphism as k-vector
spaces, Defy (E) = (El-lj), where El-lj = Ext4(V;,V;). Let efj = dimy Ext’) (V;, V). Let Sy =
k™{ti;(li;)}/m>. A sequence of elements o = (;j(li;)) € (Ezlj), 1<l < eilj defines a defor-
mation Ms(a) € Def(S;). Let Bj be the set of all monomials of degree 2 in the ¢;;(l;;) and
consider

Ry = k" {tij(Lij)}/m* — K" {t;; (1)} /m® = S
Then we have that

o(Ma(a),mh) = Y <a;t> et e (Bxt}(Vi,Vj) @ 1)
teB,
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Ms(c) is then called a defining system for the second order Massey products < a;t >, t € Bj.
2
Choose bases {y;;(mi;)}.7 _, for the dual spaces Ext%(V;, V;)*. Then

m;;=1
o(Ma(a),m) = Y <at>@t= Y yi(mij) @ yij(mi)(< st >)t
teB) teB)
Put
Fmig) = vig(mig) (< as £ >)t

teB)

Put S5 = R3/( 12]) and let w9 be the induced morphism. Choose a monomial basis By C B, for
ker m and put By = B; U By where B; is the set of all monomials of degree less than or equal
to 1. Then o(Ma(a), S3) = 0.

Assume that Sy_; has been constructed such that Msy(a) can be lifted to My_1(a) €
Defy (Sy_1). Also assume that monomial bases By _2, By_2 have been constructed. Put

Ry = K {t}/m" + m(FY (i) ™ Sy

Write

ker iy = (£ (mag)) /(£ (mig)) @ In
with

In =™/ (N +m™N 0 (Y ()

and pick a monomial basis Bj,_; for Iy, where we may assume that for t € By, t =u-s

ort = s-u for some u € By_g. Put Byy_, = By_s U B, _,. Then for every monomial u with
degree less than N we have a unique relation in Ry

u= Y Blt+ > Bufl M miy)

EEBgvil Z7.]9mlj
and we have that

o(My—1(a), ) = Y wij(mij)* @ [ mi) + > wig(mig) @ (Y Cigumyp ©1)

,0,mij ,0,Mj teBN_,
We call My_1(a) a defining system for the Massey products

<apt >= Z Ci7j7mij7§yij(mij)* € EXti(‘/’i7 Vi), te B?\ffl

1,7,My 5

To continue, we put

S mig) = 17 mag) + > wig(my) (< ast >)i

and Sy = RN/(fZJ]V(mi]-)), N : Sy — Sn—1 is the natural morphism. We choose a monomial
basis By_1 C Bf\fq for ker 7y and we put By_1 = By_1UBpy_2, and we continue by induction.
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Theorem 3.1. The functor Defy has a prorepresenting Hull H in a,, uniquely determined by
a set of matric Massey products

D(ivilai% s 7in*17j) - EXti(‘/Za VYJ)
where D(i,i1,12,...,in—1,]) are the defining systems.

Proof. It follows frO{n Laudal’s classical article [3], and it is possible to generalize from
Schlessinger [4], that H = kE"{{t}}/(fi;(mi;)), where

fimi) =7 > gij(miy) <a*5t>

I=0teBNy;

|+

and z* is a basis for (ExtY(V;, V;))*, see [1] or [5]. O

4 Example

Consider the 2-pointed k-algebra

A (k‘[gn] <tz > /(]:11 - 1)7512)

This k-algebra has geometric points, i.e simple A-modules, given by the line and the point
respectively

= (" ). w=() })

We are going to compute the local formal moduli Hy, V = {Vi(a), Va} of the modules Vi (a), Va
for a fixed a, following the algorithm given in [2]. We start by computing the tangent spaces:
In general we have

Ext!(Vi,V;) = HH' (A, Homy(V;, V;)) = Dery (A, Hom (V;, V;))/ Ad
A J J J

where the bi-module structure on Homy(V;, V;) is given by a¢(v;) = ¢(avy), ¢ - a(v;) = ¢(vi)a.
Notice that by Ad we mean the trivial derivations ad,, o € Homy(V;, Vj).

Any derivation 0 is determined on a generator set. In this particular example, we choose as
generators

(O ) (7 ) ()

(1,1): Exth(Vl(a),Vl(a)):
d(er) = 5(6%) =e1d(e1) +d(e1)er =20(e1) = d(er) =0d(e2) =0
(5(t11 — a) =«
5(t12) = 5(t1262) = (5(?512)62 + t12(5(€2) =0
adg(tll — a) = (tn — a)ﬂ — ﬁ(tll — a) =0
As basis for Ext! (Vi (a), Vi(a)) we choose the one element set {¢1; = (t;1 — a)¥'}.
(1,2): Exth(Vi(a), V3):

der1) =, d(e2) =—a
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d(t11 —a) = 6((t11 — a)er) = 6(t11 —a)er + (t11 —a)d(e1) =0
(a—1)d(t12) = d(tirtie —t12) =0
ada(tin —a) =0, ady(er) =eja—aer =, ady(e2) = e2a0 —aey = —«
Thus if a = 1 we choose as basis the one point set {¢12 = 5 }. If a # 1, then Ext}, (Vi(a), V2) = 0.
(1,i): ExtY(V,V;) =0 (i = 1,2) which is trivial.
For the rest we put a = 1, that is V; = V4(1) and compute fI{Vh%}. Let

. k[un] < Uuig >
s=( )

Then the infinitesimal liftings are given by

b = (1 ®-a+u @ (b1 —1)Y w2 @ty

0 1®-a > : A — (Homyg(V;, S2,45 ® Vj))

Now Sy = S/rad? and the obstruction for lifting to Rz = S/ rad?® is

0= <U%1 & (tll - 1)V(t11 — 1)\/ U11UI2 @ (tu — 1)Vt\1/2>
= 0 0

In general, vVw" = (v @ w)Y = —d((vw)"), so

(tin — 1Y (t1n — 1)Y = —=d((t11 — 1))
But (t;; — 1)t12 = 0 in A, thus 0 = (8 “11“102®012) with 012 # 0. Put S5 = S/(rad3 +uiiui2).
Then we can lift the A-module structure to Ss by

3 = (1 ®-atun @ (tn— 1Y +ufy @ (= 1)%)" up @ th)
0 0

We see that this ¢3 can be lifted to ¢, on S, = S3/rad", n > 3, giving the result

I = lim$,, = (k?[[léu]] < ui2 >k/u11u12> >~ limA/ rad”

In general terms this says that A is a scheme for its 1-dimensional simple modules.
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