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Abstract
Cancer has a long-time history in our human health experience. Practically, one-fifth of the disease was caused by virus infection. Thus, it is important for us 
to understand the virus-cancer infection mechanism. Statistically, we may perform the necessary causality regression analysis in such situation to build up the 
corresponding model just like my previous case in influenza-weather infection. In the present research, I will interact the systems of differential equations (Lorenz 
System) with my HKLam theory and figure out the recursive result that we may get. Then we may go ahead for the corresponding policy generated from the dynamic 
programming that can solve the Markov Decision Process. In addition, we may apply the HKLam theory to the chaotic time series and compare the model with 
machine learning one for a better selection while otherwise failure is explained. Finally, I will also discuss a novel mathematical method in determining the saddle 
point in Lorenz attractor together with the gradient descent. The aim is to find the equilibrium for the Lorenz attractor with given initial conditions. It is hope that the 
mathematics-statistics interaction together with the causal regression (Artificial Intelligence) model may finally help us fight against those diseases like virus-infected 
cancer or others.
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Introduction

Cancer has been a serious disease in our medical history and human is 
now trying to conquer it. Indeed, the most advanced and recent research show 
that different virus plays a significant role in the formation of various cancer dis-
eases. In the following content, I shall outline the feasible causal (regression) 
analysis (or the artificial intelligence modelling) for the cancer formation un-
der the corresponding virus attack. According to Joyce, et al., [1], alcohol can 
induce Hepatitis C Virus (HCV)-hepatocellular carcinoma (HCC) that causes 
the DNA methylation of repetitive elements. These elements may include long 
interspersed nuclear element-1 (LINE-1) and all elements (Alu). Joyce’s re-
search team further concludes that HCV inflection has a strong highly connec-
tion with the loss of DNA methylation in the specific REs. This event is then 
implicating molecular mechanisms in the liver cancer development. 

Literature Review

If one is investigating the DNA methylation in a deeper aspect, Cho et 
al., [2] find that tobacco smoking may change the transcription and methyla-
tion states of extracellular matrix organization-related genes. I want to remark 
here that, tuberculosis (TB) virus may increase the risk of the lung cancer that 
is highly related to the smoking. In such case, DNA methylation patterns will 
be changed and hence altered the transcription states of genes. To be more 
precise, proteins will bind to methylated DNA. These DNA will then form com-
plexes with the proteins that formulated during the process of deacetylated 
of histones. Therefore, when DNA is undergone the process of methylation, 
the nearby histones will also deacetylated. The outcome is the compounded 
inhibitory effects on transcription. Similarly, demethylated DNA will not cause 
the attachment of deacetylated enzymes to the histones and hence this event 
will allow DNA to keep their status to be acetylated and more mobile, thus 
promoting transcription to be happened.

Next, when the transcription that indirectly caused by virus happens, lipi-
domics among cells may occur [3]. As a return, this event could obviously lead 
to the problem of lipid metabolism and hence cause the metabolic health issue. 
Snaebjornsson et al., [4] even told us that by altering lipid metabolism, one 
may even develop a possible therapeutic window for cancer treatment. Thus, 
with reference to my paper in causal (regression) analysis as shown in [5], 
one may deduce the following causality domino effects for the possible cancer 
formation mechanism:

Virus infection → DNA methylation → transcription occurs → lipidomics 
→ metabolic problem  cancer formation

Then with the suitable bio-informatics cancer data, one may follow the 
procedure as stated in my previous mentioned paper to establish the wanted 
Hayes Process model [6] (or the A.I. model) for such type of virus leading 
cancer formation mechanism. To go in depth, one may further perform the 
heterogeneous analysis together with the spatial one for the cancer formation 
mechanism etc. Indeed, it is no doubt that other disease infection mechanism 
like the COVID-19 can also be modeled by the same or similar methods if we 
can find out the infection details inside our body cells from experiments etc. 

Results 

The butterfly effects in our world’s climate and public 
health

In the traditional chaos theory, the butterfly effect [7] always refers to the 
sensitive dependence on initial conditions. That is the small change in one 
state of the initial conditions of a deterministic nonlinear system will produce a 
large difference in the later state. Historically, the term came from the mathe-
matician and meteorologist Edward Lorenz. He discovered that the time of for-
mation together with the path taken of a tomada could be influenced by some 
minor perturbations. One of the cases is a distant butterfly flapping its wings 
several weeks earlier. Similarly, Lorenz also noted that when he tried to round 
the initial condition data value of his weather model, the result would not be 
the same as the unrounded weather model. Hence, he concluded that a small 
change in the initial conditions had created a significantly different outcome. 
Hence the Butterfly Effects occur in the most case of weather (or climate) pre-
diction from the so-called Lorenz system which is a set of system equations 
[7]. It can be interacted with my HKLam Theory that will be shown later in this 
research paper. Other than weathering model, one may also construct the cor-
responding SIR Mathematical (or the compartmental) model in epidemiology 
where S is the stock of susceptible population, I is the stock of infected, R is 
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the stock of removed population. According to Stephen et al., [8] in the case 
of Hepatitis B virus infection, we may employ the following phenomenological 
model (for another interaction with my HKLam Theory) as shown below: 

  x'(t)=λ-dx – βνx  equation (A)

  y’(t)=βνx – ay  equation (B)

  ν’(t)=ky – μν  equation (C)

where x, y and ν are numbers of uninfected liver cells, infected cells and 
free virions, respectively; 

λ represents the (constant) rate where the uninfected liver cells produced, 
dx means the linear term of maintaining tissue homeostasis in the face of he-
patocyte turnover. During infection, healthy liver cells are assumed to become 
infected at a rate βνx, where β is the mass action rate constant describing the 
infection process. Infected liver cells are killed by immune cells at rate ay and 
produce free virons at rate ky, where k is the so-called ‘burst’ constant. Free 
virons are cleared by lymphatic and other mechanisms at rate μν, where μ is 
a constant. In the present paper, I will just focus in the interaction between 
HKLam Theory and the Lorenz system only.

What is "chaos"?

From the process of creating heaven and earth in the Bible, we know:

"The ground is empty and chaotic, the abyss above is dark, and the spirit 
of God is running on the water."

Additionally, we can take a review from the Kellert’s book [9]:

Qualitative definition

What Stephen Kellert (Stephen Kellert) did define chaos theory is "a quali-
tative study of unstable non-periodic behaviour in deterministic nonlinear dy-
namic systems". This chaos definition may conform it to belong to just an attri-
bute of nonlinear dynamical systems (although in some part of his book, Kellert 
mentioned quite ambiguous about chaos in a mathematical model quantita-
tively or even a real-world system). In other words, chaos can be defined to be 
an attribute in terms of mathematical models. According to Kellert's definition, 
there are two key characteristics and they are instability and aperiodicity [10]. 
Unstable system usually refers to the SDIC or the Sensitive Dependence on 
Initial Conditions. Non-periodic behaviour implies that the system variables will 
not repeat any value once more. Thus, in a nonlinear dynamic system, chaos 
can be viewed both as an unstable and non-periodic behaviour.

Quantitative definition

Suppose X (0) and y (0) are the two initial conditions for two individual 
different trajectories [11]. Then, we define the weakly sensitive dependencies 
(WSD)-as a system that characterizes by J(x(t)),

 When ∃ ε>0, it has the properties of low sensitivity to former described 
initial conditions, such that

∃ ε>0, ∀x(0), ∀δ>0, ∃t>0, ∃y(0), with the following inequalities hold:

∣x(0)−y(0)∣<δ and ∣J(x(t))−J(y( t))∣>ε.

The basic idea is that:

No matter the propagator how close x(0) is approaching to y(0); the trajec-
tory starting from y(0) will still be separated from x(0) by a  “ν” distant. On the 
contrary, WSD does not abstractly specify the divergence rate (that may be 
compared with the linear divergence). Or one may need to specify the number 
of points around x(0) that will finally produce different trajectories a set of arbi-
trary measures, such as zero.

However, chaos is usually characterized with the sensitive dependence:

∃λsuch that for almost all points x(0),

∀δ>0∃t>0 such that for almost all points y(0)in a small neighbourhood (δ)
around x(0), 

we always have: 

 ∣x(0)−y(0)∣<δand∣J(x(t))−J(y(t))∣≈∣J(x(0))−J(y(0))∣eλt,

where the “almost all” caveat means all points in state space with the 
exception that it is not true for a set of measure zero. Here, λ is considered as 
the largest global Lyapunov exponent and is taken to be the average rate of 
divergence of neighbouring trajectories. In addition, λ issues a forth from some 
small neighbourhood which is centered around x(0). Exponential growth is im-
plied if λ>0(converged when λ<0). In general, the growth cannot go continu-
ously until infinity. If the system is bounded in space together with momentum, 
limits exist and this can help us determine how far the nearby trajectories will 
diverge from one another [11].

Lorenz attractor

The Lorenz system is indeed consisting a set of system differential equa-
tions which is first under the investigation of Edward Lorenz. When one is 
applying certain parameters and initial values, the chaotic solutions will then 
appear. Or in particular speaking, the Lorenz attractor is actually a set of cha-
otic answers to the prescribed Lorenz system. In our usual meaning, the “but-
terfly effect” may stem from our real-world implications of the Lorenz attractor. 
In other words, for any physical system, without the perfect knowledge of the 
initial conditions (such as the situation of minuscule disturbance to the air as 
the result of a butterfly flapping its wings), our intention does to predict its 
future course will face a failure. This event shows that physical systems may 
be actually deterministic and is in fact still be inherently unpredictable when 
the quantum effects are ignored. The shape of the Lorenz attractor has been 
shown as Figure 1, when plotted graphically by the software R, can be seen to 
resemble like a butterfly.

When we are talking about the aperiodic properties of the Lorenz Attractor, 
we may refer it as the chaotic time series. According to Kose et al [12], we can 
forecast the series through Vortex Optimization Algorithm. In such case, the 
chaotic time series will be divided into the training stage and the testing one 
in the prediction process. This event is just like the business machine learning 
process in the study of influenza-weather prediction, Lam, 2020 [13]. That is 
we may modify the techniques in Lam, [13] for the business software R to the 
present prediction in chaotic time series. In reality, the programming code will 
be left to those professional R programmers as this event is out of the scope 
the present paper. This author will only pinpoint the similar idea that lies be-
hind. To go a further step, one may employ the likelihood and Bayesian predic-
tion for the chaotic system. This author wants to note that my HKLam theory 
does create a bridge (a linear transformation) for the connection between the 
Chaos non-linear part and the regression (or the approximation) for the linear 
part. The theory can thus be applied in the prediction (from the approximated 
model) of the chaotic system or the chaotic time series. In practice, there is a 
simple method to detect chaos in nature that is developed by Toker et al., [14]. 
We may establish the approximated model via HKLam theory and perform the 
necessary prediction when the system is chaotic with reference to the afore-
mentioned methods described in the former part of this section.

Practically, we may have the following algorithm in establishing the best model 
for a chosen chaotic time series prediction:

1. Use a periodic chaos packages to determine whether chaotic time series 

 

Figure 1. Lorenz Attractor that appears in form of chaos about the world 
climate-plotted from R-studio software.
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exists;

2. Transform the chaotic time series into Markov Chain matrix through the 
stochastic process and apply HKLam theory to obtain the wanted regres-
sion approximation model (RAM) for prediction;

3. From the Chaotic time series to establish the machine learning model 
(MLM) by training and testing for another prediction;

4. Compare both of the models-(RAM and MLM), select the best model and 
explain for the failure;

5. Both of the above prediction methods constitute a kind of philosophy.

Once if we extend the above algorithm for various different sets of strange 
attractor parameters, we may find a series of model for the other types of at-
tractor. Practically, these different set of parameters may be obtained by the 
numerical analysis method such as the secant one if we have the elementary 
seed attractor parameters. Indeed, the most common seeded attractor’s pa-
rameters will be used as an example in the later section of this paper.

Interaction between Lorenz system and HKLam theory

In fact, the Lorenz differential system (or other differential equation models 
like the SERI) can be expressed in terms of a matrix. In addition, it is feasible 
that these matrices are capable of written by HKLam’s (Net-Seizing) theorem. 
The following is one of the examples:
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Substitute 
2
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 in equation (3) back into equation (1) and continues this 

(in fact which is initially an infinite and) recursive process (such that this is a 

kind of mathematical formalism) until the linear transformation 2

L
T
 
 
 
 
   is found in 

the pre-calculated optimal approximation for a given set of values (ϭ1, ƥ1, β1) 
in the Lorenz attractor. In this case, we have got the wanted real values of the 

linear transformation 
2

L
T
 
 
 
 
 

 at that a particular given set of valued point; say (ϭ1, 

ƥ1, β1). Conversely, if there are sufficiently large amount of 
2

L
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s, we can es-

timate back the corresponding true values of (ϭ2, ƥ2, β2) and get the optimal 
values in the Lorenz attractor. Hence, in terms of weather management, we 
can determine the consequence risks behind. Thus, we may associate with 
the most feasible warnings and give in advance by applying some suitable 
decision theories. In such case, we are actually using the HKLam Theory to 
net-seize those changes in our earth-weathering butterfly effect (or the Lorenz 
attractor). Similar cases happen in other differential equation models such as 
in the viruses mutation in micro-biology (cancer research) together with the 
spread of other viruses (influenza and COVID-19 for example) in our public 
health.

Take for some case studies, let’s consider a set of values for (ϭ=10, ƥ, 
β=8/3, z=1, x=1) and interact with one of the regression model equation in Lam 
March, 2020 [15], we may get:
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=(4.3685.53+26.71*wind-2.185 wet

test-2054.05 * temperature equation(1’)

Approximate the matrix by a linear regression, we also have:
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Thus, by equating the above two equations, we get:
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Continue the above process for the second time, we get:
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if we assume (A*B)-1=B-1* A-1 and the communicative, distributive properties 
of matrix multiplication.

If furthermore, the Lorenz matrix can be QR decomposed, then we may 
have:
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0 1 8 / 3

p
− 

 − + − 
 
 

=B2 [(QR)-1]-1

Obviously, the above sample Lorenz matrix (with assumed parameters) 
shows that we can always express it as the formative and recursive format by 
the linear regression approximation. 

In general, the formative recursion computing can be solved by 5 steps 
process:

Find out the simplest possible input;

Play and visualize around with examples;

Relates hard cases to simpler cases;

Generalize the pattern;

Write computer code by combining recursive pattern with the base case;

Practically, for the computer recursive problem like the one as Lorenz-
HKLam interaction above, we may solve it through the 5 steps process. More-
over, for the computer halting problem, may we hope to solve it by installing a 
backup system which can monitor all of the recursive process? The backup will 
automatically solve the problem by the above 5 steps before any restarting of 
the major system. Hence, the recursive halting one is now completely settled 
down. In fact, the five steps can be extended into our dynamic programming 
which may include reductions of the (recursive) problem, shortest path finding 
etc. Every details of the dynamic programming can be found elsewhere in the 
web and the major concerns of this paper are the computational method about 
the interaction between differential systems and regression approximation (or 
HKLam Theory).

Lorenz system and fast saddle point finding approxima-
tion algorithm 

Furthermore, from the Lorenz system, we know:

= (y-x)------------------------------------(1)

= x-y-xz---------------------------------(2)

=xy – z-----------------------------------(3)

Suppose that we want to get the best-fit regression line to predict the value 
of ui, vj, wk based on the given input value xi, yj, zk with respect to the domino 
regression function hθ(xi), gθ(yj), fθ(zk) then according to gradient descent in 
linear regression (with the cost functions), we have:
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If we compare the system {(1), (2), (3)} and {(1)*, (2)*, (3)*}, we get: 
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Now, it is clear that ϭ, ƥ and β can be expressed as the linear regressions 
of functions hθ(xi), gθ(yj), fθ(zk) and x, y, z etc. Moreover, one can collect all 
of the inflection points of the Bayesian Optimization functions (in one set say 
A) together with the true functions (in another set, say B). Instead of a slow 
point-wisely gradient descent algorithm, we may first select one of the inflec-
tion points in set A. Next, we join the maxima or minima to the part of the ap-
proximated function (in quadratic appearance). Then we introduce algorithmic 
and dialectic mathematics proof, which can accelerate the convergent rate in 
a faster way (as opposed to the aforementioned gradient descent) and find the 
corrected optimal (or the intersection) point. Hence, when my HKLam theory 
is interacting with the Lorenz system, the above is the best method to find the 
wanted optimized point (or the saddle) for them. This is how we can compute 
the equilibrium from the interaction between the system and theory. Therefore, 

by controlling different values of ϭ, ƥ and β, we may get different linear regres-
sion functions correspondingly. In addition, we may shift from one saddle point 

Figure 2. Using the Bayesian optimization function to approximate the model 
of the true function.

 

Figure 3. Steps in finding the true local minima and the intersection (optimal) 
point (of the HKLam Theory and Lorenz system) between the Bayesian Optimi-
zation function and the model of the true function. In fact, the present method 
(modified from fixed-point algorithm)’s convergent rate is clearly much faster 
than the point-wise Gradient Descent Algorithm.
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to another until we find the best optimized one (Figures 2 and 3).

The following is the corresponding R programming code for a comparison 
between fixed-point algorithm and the gradient descent algorithm through the 
polynomial regression:

Library (tidy verse) 

Library (caret) 

theme_set (theme_classic())

data ("XXXXXX", package="MASS") 

set.seed (123) 

training.samples<-XXXXXX$medv%>% 

  createDataPartition (p=0.8, list=FALSE) 

train.data<-XXXXXX [training.samples, ] 

test.data<-XXXXXX [-training.samples, ] 

model<-lm (medv~ (lstat, 5, raw=TRUE), data=train.data) 

predictions<-model %>% predict (test.data)

data.frame (RMSE=RMSE (predictions, test.data$medv), 

R2=R2 (predictions, test.data$medv))     

Ggplot (train.data, aes (lstat, medv) )+geom_point()+stat_smooth 
(method=lm, formula=y~poly(x, 5, raw=TRUE))

#Fixed-point Algorithm#

f<-function(x)

{fit=lm(medv poly(lstat, 5, raw=TRUE), data=train.data)}

x=0

x=f(x)

temp=0

err=1

temploop<-readline(prompt=“Enter the number of iteration:”)

n=temploop

for (i in 1:temploop)

if (err>0.00001){

temp=x

x=f (x)

print (i)

print (“th Iteration:    ”)

print (x)

err=(x-temp)/x

if (err<0) err=0-err

i=I+1

print(i)

print(x)

According to Mustapha [16], we may find the corresponding gradient-
descent algorithm and the Steepest Descent one will be find in Carathéodory 
[17]. Then we may proceed to the bayesian distributed stochastic descent.

Bayesian Distributed Stochastic Gradient Descent

For the further advance in the saddle point finding, may we apply the co-
vector concept in the gradient descent algorithm? The following is part of the 
segment code of the gradient descent in R [18]:

W<-c(0.1, 0.2); b<-0.3; learn<-0.1

x<-matrix(c(0, 0, 1, 1, 0, 1, 0, 1), now=4)

Y<-c(0, 1, 1, 1)

F<-function(w, x, b) w%*% t(x)+b

Step<-function(x) ifelse(x<0, 0, 1)

For (I in 1:10) {

F1<-f(w, x, b)

w<-w-c(sum(learn * 2 * (pmax(0, F1)-y) * step(F1) * x[,1]),

sum(learn * 2 * (pmax(0, F1)-y) * step(F1) * x[,2]))

b<-b-sum(learn * 2 * (pmax(0, F1)-y) * step(F1))

…

(f(w, x, b)>0.5)=as.logical(y)

… 

Indeed, the exact R programming implementation is out of the scope of the 
present paper since this author is NOT a professional programmer.

If we consider those convectors as a network of graph, then the problem 
of finding the saddle point or the equilibrium in the Lorenz attractor is imme-
diately reduced into a shortest path problem. In such a way, we are indeed 
transforming the problem into a mathematical graph shortest path searching 
one. The problem can be solved this by the Dijkstra’s Algorithm. Lastly, from 
the equilibrium saddle point, we may substitute back the local minimum to the 
approximation polynomial and the process continues recursively in a formative 
way but we may still solve the problem by dynamic programming algorithm 
such as those of the divide and conquer one etc.

In a brief, we may build various models from different set of parameters as 
the one mentioned in the previous section about the time series representation 
of the attractor. Then we may have a collection of different saddle points or the 
equilibrium according to the new fixed point method applied in this section for 
these models. Next, by comparing these equilibrium values, we can find the 
ultimate or the true value of the saddle (or the equilibrium) point for the inves-
tigated and continually varying strange attractor (in terms of different types 
of attractor) like the weathering such that one can obtain the most stabilized 
equilibrium. Certainly, all of the above algorithm may require a professional 
programmer to implement while this author is NOT. For our daily usage, we 
may also apply the above similar principles during the case in some types of 
vaccine production such as that cancer virus that will be evolved to become 
less toxic. In particular, for the case of COVID-19 virus, we may estimate the 
number of mutation cycles according to the general principles of strange at-
tractor equilibrium finding method such that the virus becomes less harmful. In 
practice, Konishi [19] has just discovered that the mutation among minks can 
lead to some more human-friendly subtype COVID-19 virus and thus may be 
used for our future vaccine like the smallpox. This author wants to remark that 
there are reports about the co-infection of both COVID-19 and Epstein-Barr 
viruses in patients while the later may be responsible for the cause of several 
cancers. Thus, this author believes that the causality regression model method 
may help us have a fully understanding for the correlated infection mechanism 
between these two viruses. Hence this may help us develop the best fitted 
EBV-caused cancers drugs or vaccine.

Discussion

One of the most important applications of the so-called “Gradient-De-
scent” is their usage in daily life for finding the singularity such as the nature 
one-black-hole. In fact, from the Levent et al. [20-27], they have discovered 
that the Hessian of the loss function in deep learning is indeed degenerating. 
Practically, we may be able to look beyond the basins if we can further explore 
the energy landscape of the loss functions. This event may reduce our problem 
into singularity and minimal surface. Indeed, the black-hole can be viewed as 
the Gabriel’s Trumpet. It may be well quantized according to one of my paper. 
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Another thing to do is to find the low energy paths between solutions. Then one 
may know which kind of flatness in such landscapes. Indeed, by understand-
ing these energy paths, one may further compute and predict the black-hole 
evaporation phenomenon. 

Furthermore, when one is trying to handle the recursive or the Markov 
(chained or intuitionism) Decision Process, one may settle down the issue by a 
dynamic programming. Indeed, the Markov Decision Process is useful for the 
study of optimization problem through a suitable dynamic programming algo-
rithm (or it can solve the MDP with finite states and action spaces). Moreover, 
from the MDP, we may construct a framework to solve most of the reinforce-
ment learning problem which is one of the branches in machine learning. I re-
mark that in practice, the goal of a MDP is to find a good “policy” for a decision 
maker [21, 28-30]. One may usually refer dynamic programming (DP) as a col-
lection of algorithms using to compute optimal policies when there is a perfect 
model of the environment as a Markov decision process (MDP) [22, 31-34]. 

Conclusion and Applications

All in all, we may interact the chaos or the Lorenz system by my HKLam 
theory. Then we may form the wanted recursive or the Markov Decision Pro-
cess and solve this model by dynamic programming in order to generate a 
suitable policy when making a decision. At the same time, we may also find 
the saddle point (or the equilibrium of the Lorenz attractor) when we are per-
forming the regression approximation to Lorenz system by gradient descend-
ing. Or the interaction (regression approximation) between the Lorenz system 
and HKLam theory can even be extended into various fields (like the subject 
philosophy), Markov Chain Model in geography suggested by a Russian math-
ematician Markov, for example. This author believes that there are still plenty 
of rooms existing in the matters of interacting (approximating) the Lorenz (or 
similar differential systems) from my HKLam theory especially in some other 
scientific area for those researchers to have their future investigations.
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