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Introduction
Excessive or prolonged exposure to stress leads to emotional 

and cognitive changes, and is a common risk factor for psychiatric 
disorders, such as major depression. To understand the mechanism 
underlying neural changes associated with repeated stress, many 
studies using rodent models of repeated stress have been performed 
and found structural alterations induced by repeated stress in 
various brain areas, especially dendritic atrophy, a decrease in the 
volume of dendritic spines and synaptic loss in pyramidal neurons 
in the medial prefrontal cortex (mPFC) [1-4]. Previous findings have 
shown the functional importance of such structural remodeling of 
mPFC neurons. For example, dendritic atrophy in mPFC neurons 
correlates to stress-induced decline in mPFC function as measured 
by attentional set shifting [2], and rapid antidepressant actions of 
NMDA receptor antagonists in chronic mild stress are associated with 
the recovery from deficits in spine density and synaptic functions in 
the mPFC [5]. Further, GATA1, a transcription factor that induces the 
loss of spines and dendrites in primary neurons, functions in mPFC 
neurons to cause repeated stress-induced anhedonia, as measured by 
a reduction in sucrose consumption [6]. Stress-induced structural 
remodeling in the mPFC also appears to be clinically relevant. 
Thus, brain imaging and post-mortem brain studies have shown 
a reduction in the mPFC volume in depressive patients [7], and the 
deep brain stimulation targeting the white matter adjacent to this 
region ameliorates depressive symptoms in half of treatment-resistant 
patients [8]. However, the mechanism underlying structural and 
functional alterations in the mPFC in stress and depression remains 
elusive.

Several groups including ours have shown a role for dopamine 
and noradrenaline in the mPFC [9-12] and inflammation-related 
molecules, such as IL-1β [11,13,14] and prostaglandin (PG) E2 [9], in 

behavioral changes induced by repeated stress. It has been suggested 
that repeated stress activates microglia as a cellular source of 
inflammation-related molecules [9,11]. Since PGE2 mediates the effect 
of repeated stress in attenuating mPFC dopaminergic activity [9], it is 
suggested that microglia regulate mPFC functions indirectly through 
PGE2 and dopamine signaling. On the other hand, recent studies 
using in vivo brain imaging and electron microscopy, combined 
with mice deficient in microglial functions, have suggested a direct 
action of microglia on neurons for their functional and structural 
remodeling [15-19]. Since several groups including ours have reported 
that repeated stress induces microglial activation in various brain 
areas including the mPFC [9,11,20-22], it is speculated that stress-
activated microglia can directly affect functions of mPFC neurons. 
In this review, we will summarize these recent findings, and will 
hypothesize direct and indirect actions of microglia on mPFC neurons 
for emotional and cognitive changes induced by repeated stress.

A Role for Monoaminergic Signaling in the mPFC in 
Repeated Stress

Dopaminergic neurons in the midbrain project to multiple brain 
areas including the dorsal and ventral striatum and the prefrontal 
cortex, and each of these dopaminergic projections exerts a distinct 
function. It has been suggested that acute exposure to mild stressors, 
such as electric foot shock and social defeat, preferentially augments 
dopamine release in the mPFC, as measured by dopamine turnover, 
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a biochemical index for local dopamine release [23]. Recent studies 
showed that repeated social defeat stress in mice reduces dopaminergic 
response to stress in the mPFC [9] and the firing rate of dopamine 
neurons projecting to the mPFC [10]. Further, it was reported that 
pharmacological depletion and optogenetic inactivation of the 
dopaminergic pathway projecting to the mPFC facilitate the induction 
of social avoidance by repeated stress [9,10]. These results demonstrate 
that dopaminergic activity in the mPFC confers resilience to stress, 
and that repeated stress attenuates this dopaminergic activity, leading 
to social avoidance. Since it was reported that mice lacking either 
dopamine D1 or D2 receptor show the reduced number of basal 
dendrites in mPFC pyramidal neurons [24], it is plausible that the 
dopaminergic attenuation associated with repeated stress underlies 
structural remodeling of mPFC neurons, such as dendritic atrophy 
and synaptic loss.

Besides a role for dopamine, recent studies have also shown a role 
for noradrenaline in behavioral changes induced by repeated stress 
[11,12]. Thus, systemic administration with propranolol, a blocker for 
β-adrenergic receptors, reduces elevated anxiety induced by repeated 
social defeat stress, as measured by the light-dark box test [11]. 
Furthermore, local injection of a cocktail of α1, β1 and β2 adrenergic 
antagonists to the rat mPFC blocked chronic stress-induced decline 
in the performance of attentional set shifting, an mPFC-dependent 
cognitive task [12]. Therefore, noradrenaline and dopamine in the 
mPFC appear to play opposite roles in regulating stress susceptibility, 
though it is important to analyze and compare roles for these 
monoamines in the same behavioral platform in the future.

A Role for Microglia as a Source of Inflammation-
Related Molecules in Repeated Stress

Consistent with a role for microglia in repeated stress, repeated 
stress appears to activate microglia in multiple brain areas, as 
observed by an increase in Iba-1 immunoreactivity in microglia 
and its enhanced ramification after repeated stress [9,11,20-
22]. Interestingly, systemic administration with propranolol, an 
antagonist for β-adrenergic receptors, blocks microglial activation 
in several brain areas including the mPFC [11], suggesting a role for 
noradrenergic signaling in microglial activation upon stress. IL-1 
receptor signaling is also critical for microglial activation by repeated 
stress, since genetic deletion of IL-1 receptor type I abolish an increase 
in Iba-1 signals in microglia as well as behavioral changes induced 
by repeated stress [11]. Since IL-1β is produced in microglia and its 
mRNA level is increased after repeated stress, it is plausible that IL-1 
signaling constitutes a positive feedback loop for microglial activation 
by repeated stress.

Neurons for their Functional Plasticity?

A Role for Inflammation-related Molecules in the Brain 
in Repeated Stress

Clinical studies frequently reported an elevation in inflammation-
related molecules, such as cytokines and prostaglandin (PG) E2, in 
blood samples taken from depressive patients [25,26]. Recently, several 
groups have reported that add-on treatment with non-steroidal anti-
inflammatory drugs that inhibit PG synthesis augments a therapeutic 
effect of conventional antidepressants [27-29], suggesting a role for 
inflammation-related molecules in the pathogenesis of depression. In 
rodents, it has been shown that exposure to stress increases the level 
of inflammation-related molecules, such as IL-1β and prostaglandin 
E2 (PGE2), in the brain [30-32]. Later studies using genetically 
engineered mice have shown a critical role for these molecules in 
behavioral changes induced by repeated stress [9,11,13,14]. Thus, mice 
deficient in IL-1 receptor type I and EP1, a PGE receptor subtype, 
fail to show depression-like and anxiety-like behaviors after repeated 
stress. These inflammation-related molecules are thought to act 
inside the brain, since transgenic mice overexpressing IL-1 receptor 
antagonist selectively in the brain fail to show a reduction in sucrose 
consumption by chronic mild stress [13]. It was reported that IL-1 
signaling can directly suppress the proliferation of neural stem cells in 
vitro, and is critical for stress-induced reduction in adult neurogenesis 
in the hippocampus in vivo [13,14]. On the other hand, mice deficient 
in EP1 lack the attenuation of dopaminergic activity in the mPFC 
with repetition of stress [9], suggesting a role for PGE2-EP1 signaling 
in stress-induced attenuation of mPFC dopaminergic activity. 
Consistently, EP1 stimulation augments inhibitory synaptic inputs 
to dopamine neurons in acute midbrain slices [33]. Since blockade of 
dopamine receptor antagonists restores stress-induced social avoidance 
in these mice [9], PGE2-mediated attenuation of mPFC dopaminergic 
activity appears to be critical for induction of social avoidance 
by repeated stress. Combined with a role for IL-1 signaling in 

Do Stress-activated Microglia Directly Act on mPFC 

Several groups including ours have reported that repeated stress 
activates microglia in various brain areas including mPFC [9,11,20-22]. 
These findings have led us to speculate that stress-activated microglia 
might have a direct action on mPFC neurons for their functional 
plasticity. Indeed, recent studies using two-photon confocal imaging 
and electron microscopy suggest that microglia directly contact with 
synaptic structures and contribute to activity-dependent synaptic 
remodeling during and after development [15,19]. For example, in the 
visual cortex of juvenile mice, light deprivation increases the number 
and the area of microglial contacts with synaptic apparatuses, 
especially synaptic clefts [15]. About a half of dendritic spines shrink 
during microglial contacts, whereas most dendritic spines grow 
without microglial contacts. It was also reported that microglial 
processes contact synaptic apparatuses in adult visual cortices in an 
activity-dependent manner [19]. Interestingly, when cerebral ischemia 
was transiently induced by the occlusion of middle cerebral artery in 
the adult brain, some synapses in ischemic cortical areas disappeared 
after prolonged microglial contact [19]. These studies suggest a role 
for microglia in eliminating synaptic structures in both physiological 
and pathological conditions.

suppressing adult neurogenesis, inflammation-related molecules 
in the brain play multiple roles in behavioral changes induced by 
repeated stress.

As described above, inflammation-related molecules, such as 
PGE2 and IL-1β, are critical for behavioral changes induced by 
repeated stress in mice. Accumulating evidence indicates a role for 
microglia as a primary source of these molecules in repeated stress. 
For example, IL-1β mRNA was detected in CD11b-positive cells 
containing microglia, but not in other cells, isolated from the adult rat 
hippocampus [34]. It was reported that repeated social defeat stress 
in mice increases IL-1β mRNA in microglia [11]. PGE2 derived from 
microglia has also been implicated in behavioral changes induced by 
repeated stress, since genetic deletion or pharmacological inhibition of 
cyclooxygenase-1, an enzyme responsible for PGE2 synthesis enriched 
in microglia, abolishes social avoidance induced by repeated social 
defeat stress [9]. Therefore, it is suggested that microglia regulates 
mPFC functions indirectly through PGE2-EP1 signaling, which in 
turn attenuates mPFC dopaminergic activity.
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Several studies have implicated a role for the phagocytosis of 
neuronal components by microglia in structural remodeling of 
neurons. For example, light deprivation increases the inclusion of 
synaptic apparatuses in microglia in the juvenile visual cortex [15]. 
Microglia in the hippocampus contains presynaptic and postsynaptic 
structures during postnatal development [16]. A functional role for 
the phagocytosis of neuronal components by microglia has been most 
clearly shown in the dorsal lateral geniculate nucleus during postnatal 
development [17]. In this study, fragments of axons of retinal ganglion 
cells (RGC) were observed in lysosomes of microglia, suggesting that 
microglial cells engulf RGC axons to be eliminated. Notably, genetic 
deletion of complement protein C3 and its receptor CR3 abolishes the 
engulfment of RGC axons by microglia as well as the elimination of 
RGC axons during development.

As described in the Introduction, studies using rodent stress 
models have shown that repeated stress induces dendritic atrophy 
and synaptic loss of pyramidal neurons in the mPFC [1-4]. Since 
the removal of cells or cell components should be coupled to their 
clearance by phagocytosis for the tissue homeostasis in theory, 
microglia activated by repeated stress could contribute to the removal 
of dendrites and synapses in mPFC neurons. It was reported that 
chronic mild stress induces the expression of β1-integrin (CD29) in 
microglia [22]. Given a previous report that β1-integrin is involved 
in the phagocytosis of fibrillar β-amyloid by primary microglial cells 
[35], the phagocytic activity of microglial cells could be enhanced by 
repeated stress. However, whether stress-activated microglia engulf 
dendrites and synapses remains to be examined. As an alternative 
mechanism, activated microglia secrete many proteases, and some 
of these proteases, such as tissue plasminogen activator and matrix 
metalloproteases, have been implicated in synaptic and behavioral 
plasticity [36]. Interestingly, it was reported that mice lacking either 
tissue plasminogen activator or its substrate, plasminogen, do not 
show repeated restraint stress-induced decline in spatial learning, nor 
stress-induced loss of dendritic spines in the hippocampus [37]. These 
studies provide multiple testable hypotheses for future investigations 
about direct and indirect actions of microglia on mPFC functions in 
repeated stress.

Conclusions

Whereas a reduced volume of the mPFC in depressive patients 
suggests some structural remodeling of this brain structure, microglial 
activation has rarely been reported in the brains of depressive 
patients. Since IL-1β, a molecule primarily derived from microglia, is 
increased in the cerebrospinal fluid during acute depressive episodes 
[38], microglial activation might be associated with exacerbation of 
depressive symptoms. On the other hand, studies using brain imaging 
and post-mortem brains reported microglial activation in other types 

of psychiatric disorders, such as schizophrenia [39] and autism [40]. 
A question about whether such microglial activation underlies the 
pathogenesis of psychiatric disorders remains for future studies.
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