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Introduction
In today’s scenario fingerprints are playing vital role in different 

applications like identifying culprit in criminal cases, attendance in 
corporate sectors, identity of nationality etc. [1]. If the sex of culprit is 
identified with certainty it can lead investigation to a right direction. 
Due to its unique property of absolute identity it can also be used to 
identify the gender [2]. Fingerprints have various physical properties 
like ridge, ridge ending, ridge density, ridge areas, minutiae etc. (Figure 1).

Ridge: It is a curved line in a finger image [3].

Ridge ending: where the ridge line ends [4].

Minutiae: Ridge endings and bifurcation are known as minutiae [5].

Epidermal ridge: Ridges of the epidermis of the palms and soles, 
where the sweat pores open.it is also called skin ridge [6].

Fingerprint ridge density: It has been reported that females have a 
significantly higher ridge density than males. The higher ridge density 
in female is due to the level of ridge thickness and it is suggested that 
females tend to have finer epidermal ridges details [7].

Fingerprint fundamentals

Fingerprints can be categorized into-Latent, Patent and plastic 
impressions [8]. Latent impressions are ridge impressions formed on 

an object when finger is covered with foreign residue such as grease or 
oil [7]. Patent fingerprints are fingerprint impression formed due to 
residue left on finger. Plastic fingerprints are visible impression left on 
clay, wax [9].

Gender classification process

Gender classification process involves 5 steps namely: data 
collection, data preprocessing, Extraction of features, Feature matching, 
and Classification [10,11]. In data collection step, gathering and 
measuring of data is done which is used to evaluate the outcomes. After 
data collection, data preprocessing is done [12]. Data preprocessing 
changes the data into a format, which can be easily processed [13]. 
The result of data preprocessing is the final training set. Next step is 
extraction of features, it minimizes the amount of resources needed to 
delineate a large set of data [14]. In Feature matching, features from 
different set are matched and then classified as male or female (Figure 2).

General method for gender classification

Features should be easily computed, robust, insensitive to various 
distortions and variations in the images, and rotationally invariant 
[15]. Based on the type of features used, previous studies can be broadly 
classified into two categories (Figure 3):

• Appearance feature-based (global)

• Geometrical feature-based (local).

Methodologies
Naïve Bayes Classifiers are a type of probabilistic classifiers based 
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Abstract
Fingerprint is a unique biometric feature of individual. It is also known that fingerprints have differences in male and 

female with respect to ridge line details. Some studies in machine learning investigate a relationship between fingerprint 
and gender. In these studies by analyzing the fingerprint we get important information such as age and gender of a 
person. Statistical studies have been made in different geographical areas to identify the relationship between fingerprint 
and gender. This paper illustrates gender classification based on fingerprints through various machine learning techniques 
like naïve Bayes method, Decision Tree and Support Vector Machine algorithms, KNN, PCA, Wilcoxon-Mann-Whitney 
Test, Friedman Test. This study introduces the concept of epidermal ridge, minutiae, ridge areas, ridge density etc., and 
compare above stated machine learning techniques, their limitations and strengths based on experimental results for 
gender classification based on fingerprints. This study can be useful for legislative cases and for researchers to devise 
new machine learning techniques with improved results.

Figure 1: Fingerprint image.
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on applying Bayes theorem with strong independence assumptions 
between the features. Using Bayes theorem, the conditional probability 
can be written as [16,17].
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Let us consider a general probability distribution of two variables, 
p(x1,x2). Using Bayes rule, we can write [18].

p(x1,x2)=p(x1|x2)*p(x2)

Similarly, considering another class variable, y, using Bayes rule, 
we can write [19,20].

p(x1,x2|y)=p(x1|x2,y)*p(x2|y)

In the above expression, no assumption has been done. Further it 
can be written as [21]:

p(x1|x2,y)=p(x1|y)

Generalized formula for a set of variables x1, x2……, xn, conditional 
on another variable y can be written as [22]:
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KNN (k-nearest neighbor’s algorithm) is a trained learning 

algorithm used for age identification from fingerprints. This algorithm 
is a trained learning algorithm and the aim is to make a classification 
using existing data, when a new data is received [23,24].
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Figure 2: Block-diagram of gender classification process [2].
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Figure 3: Flowchart for gender classification [7].
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Support Vector Machine (SVM) is a machine learning classifier 
used to analyze data for classification and regression analysis. SVM can 
also perform non-linear classification using kernel trick [25,26].

Review of Literature
According to Ceyhan and Sagiroglu [1], gender can be efficiently 

classified by using various methods. Input fingerprint image is taken 
in form of feature vector and then different classifiers like Naïve Bayes, 
Knn, Decision Tree and Support Vector Machine are applied on feature 
set. System includes 300 males and 300 females. The database is divided 
into two parts as 66% for the training set and 34% for the testing set. 
Success of the gender classification by using the different classifiers is 
as given below:

1. Naïve Bayes gave overall success of 95.3%.

2. KNN gave overall success of 94.0%.

3. Decision Tree gave overall success of 94.3%.

4. SVM gave overall success of 93.8%.

These fairly high success rate shows that there is a distinguishing 
feature between fingerprint and gender. The proposed methods can be 
used to reduce the suspect list in criminal cases.

Thaiyalnayaki et al. [3] has proposed a technique for fingerprint 
based gender classification using texture analysis technique, which 
uses Discrete Wavelet Transform (DWT) for extracting feature 
from the fingerprints. Canberra distance metric is used for similarity 
comparison between the texture classes. System runs in calculating 
Standard Deviation, Kurtosis and Skewness of the wavelet transform 
of the image. The training set includes 30 images. Overall performance 
is upto 95%.

Gornale et al. [4] has proposed a technique for fingerprint based 
gender classification using combined features like FFT, Eccentricity 
and Major Axis Length. System includes left thumb impression of 450 
males and 550 females. The success rate for male is 80% and for female 
it is 78%.

Gnanasivam and Mutthan [6] have proposed a technique for 
fingerprint based gender classification using Discrete Wavelet 
Transform (DWT) and Singular Value Decomposition (SVD). System 
includes fingerprints of 1980 males and 1590 females. KNN is used as 
an classifier. The overall success rate for male fingerprints is 91.67% 
and for female fingerprints it is 84.69%. Spatial Parameters can be used 
to increase the performance of the method.

Arun and Sarath [8] have proposed a technique for fingerprint 
based gender classification using SVM classifier. The Database consists 
of 150 male and 125 female images. For each image ratio of ridge 
thickness to valley thickness is calculated and is known as RTVTR.

Kaur and Mazumdar [9] have proposed a technique for fingerprint 
based gender classification using Frequency domain analysis, which 
uses Fast Fourier Transform (FFT), discrete cosine Transform (DCT), 
and Power Spectral Density (PSD). The overall success for male is 80% 
and for female it is 90%.

Comparison of Ridge Density
The value of these probabilities within a forensic context requires 

consideration in relation to Bayes’ theorem which links the likelihood 
ratio and prior odds to yield the overall posterior odds [21,22]. The 
probabilities estimated here refer to the likelihood ratio and not directly 

to the posterior odds. The likelihood ratio considers the probability of the 
evidence given the prosecutor’s and defences hypotheses, respectively. 
Ridge density in two areas of the footprint was studied for the first 
time in Cape Colored and white Afrikaans individuals. Although these 
two ethnic groups share some ancestry, significant differences in ridge 
density were observed between the groups in the heel areas of the feet. 
Although the likelihood ratio estimated in this study cannot be used 
directly since not all ethnic groups in South Africa were considered, it 
nevertheless provides a framework of methodology for analysis, as well 
as acknowledges the limitations of dealing with such data in Table 1.

Conclusion
From the paper being studied, it can be concluded the ridge density 

of women is more as compared to men. Different machine learning 
classifiers are applied out of which naïve Bayes shows the most accurate 
result with an accuracy of 95.3%. 
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