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Introduction
Neurorehabilitation is a complicated medical process; its goal is to 

help patients to recover from injuries or abnormalities in the Central 
Nervous System [CNS], and to compensate for functional deficits if 
possible. Neurorehabilitation offers a series of therapies, including 
physical, occupational, speech, psychological therapies and so on with a 
focus on improving the patients’ health. The field of neurorehabilitation 
is relatively new, and some cutting edge therapies, including 
neuromodulation, that may be potentially beneficial topatients 
withCNS injuries or other disorders, are currently being investigated. 
The brain operates through signal processing within neural networks 
[1,2]. The advances in the understanding of brain circuitry, together 
with the development of neurostimulation technologies have prompted 
us to explore the potential of electrical stimulation of the nervous 
system to promote functional recovery in patients with CNS disorders 
through activation of neuronal structures and alteration or inhibition of 
pathological pattern of neuronal activity. Over the past several decades, 
electrical neurostimulation of deep cerebral structures hasbeen proven 
a clinically effective therapy in the treatment of movement disorders 
with a remarkable safety profile [3,4]. Neurostimulation approach in 
patients with movement disorders has shed light on the possibility 
of correcting abnormal networks. The neurostimulation technology 
has been also applied to psychiatric disorders and chronic pain. The 
objective of this review is to explore the use of neurostimulation 
in treatment of stroke, traumatic brain injury, spinal cord injury 
and epilepsy. A thorough search of the literature was conducted in 
preparation of this review.

Neuromodulation for Brain Injury Caused By Stroke 
And Trauma

The incidence rate of Traumatic Brain Injury [TBI] is 558 per 
100,000 people [5], and that of stroke is 67-70 per 100,000 [6]. Brain 
injury caused bytrauma and stroke remains a significant public health 
problem with devastating consequences, and is a leading cause of 
disability and death in the world. New therapeutic strategies are needed 
for treatment of neurological functional deficits followingtraumatic or 
ischemic brain injury. Neuromodulation approach has been employed 
to treat stroke and TBI in animal models [7-11] and clinical studies 
[12-14], with preliminary data showing that neurostimulation may 
lead to functional improvement in the setting of brain injuries. A few 
animal studies in non-human primates have observed thatcortical 
stimulationenhances functional recovery and cortical plasticity after 
neural injury induced by stroke [7-9]. Cortical stimulation during 
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rehabilitation constantly improves motor function in ratsfollowing 
motor cortex injury [10-11].

Motor Cortex Stimulation 
A small randomized clinical trial [n=24] found that Motor Cortex 

Stimulation [MCS] lead to motor and functional improvements 
[difference of Fugl-Meyer motor scores in estimated means = 3.8, p = 
.042] in stroke patients, and the effect was maintained during 6-month 
follow-up period [12]. In a multicenter safety and efficacy study, 
MCSresulted in improvementsin upper-extremity function during 3 
weeks or 6 weeks [13, 14] of the rehabilitation. MCS for 3 weeks during 
stroke rehabilitation also led to improvement inpincer movement of the 
previously paretic hand in a hemi-paretic stroke patient [13]. Moreover, 
MCS resulted in 40%–50% improvement of pain caused by brain injury 
in approximately 50% of patients [15]. Table 1 shows clinical data of 
different studies. However, the limitations of these studies on MCS include 
small sample size and short follow up. Overall, the long-term effect of 
MCS is uncertain, as no study has explored that.The mechanismsby 
which such improvements occur are not clear.The improvements may 
be a result of increased dendritic plasticity and decreased astrogliosis 
in the perilesional cortex and the contralesional anterior horn of the 
cervical spinal cord as shown by an immunohistochemical study[16].
Another study indicated motor cortex stimulation after pyramidotomy 
could increase the length of axons from theprimary motor cortex to 
the spinal cord, as well as to the red nucleus and cuneate nucleus [17]. 
Increased axonal outgrowthwith stimulation may be due to a release of 
neurotrophins, such as brain-derived neurotrophic factor, and increased 
motor activityof the subjects [7].

Deep Brain Stimulation
DBS has been explored on patients with Persistent Vegetative State 

[PVS] or minimally conscious state [MinCS] following traumatic brain 
injury.In the late 1960-s, Hassler et al described the concept of using 
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DBS to treat disorder of consciousness [18], and then in early 1990-
s, two groups used this technique in a larger series of patients with 
vegetative state [19,20].In one case-series study, DBS of the midbrain 
reticular formation or central thalamus was conducted in patients with 
MinCS 4- 8 months post-injury. They received continuous stimulation 
for 10 years. Eight of the 21 patients emerged from a vegetative state 
and were able to follow verbal instructions [21-23]. A case study 

observed improvements in the level of arousal, limb movement 
and verbalization after DBS to the central thalamus [24]. However, 
one has to be cautious to differentiate the effectiveness of DBS from 
spontaneous recovery following injury [25]. Sen et al also pointed out 
that differentiating between the PVS and MinCS may be important in 
determining the possible benefit of DBS therapy since either state may 
result from a traumatic brain injury and both have profound functional 

Clinical data of different 
studies 

Type of 
Neurostimulation Authors Ref # Types of 

Study
Sample 

Size
Study 

Population Groups Outcome Measures Results and 
Outcome Data Follow up

Mortor Cortex 
Stimulation

Huang 
et al 12 Small phase 

II pilot study 24 Ischemic 
stroke patients

Stimulation with 
rehabilatation vs 

rehabilation alone

Upper extremity Fugl-
Meyer score

Improvement in 
upper extremity 

motor control in the 
investigational group

6 months

Mortor Cortex 
Stimulation Brown et al 13

Nonblinded 
trial and 

safety study
10 Ischemic 

stroke patients

Stimulation with 
rehabilatation vs 

rehabilation alone

Upper extremity Fugl-
Meyer score

signoficant 
improvement in 
upper extremity 
motor control in 
stimulation plus 

rehabilitation

12 weeks

Mortor Cortex 
Stimulation Levy et al 14

Safety and 
efficacy 
study

24 Ischemic 
stroke patients

Stimulation with 
rehabilatation vs 

rehabilation alone

Upper extremity Fugl-
Meyer score, Arm motor 

ability test

67%, Improvement 
in upper extremity 

motor control.
4 weeks

Deep Brain 
Stimulation

Hassler 
et al 18 Case report 1

Post-traumatic 
apallic 

syndrome 
N/A Behavioural and EEG 

measurement
Behavioural and 

EEG arousal. N/A

Deep Brain 
Stimulation

Cohadon 
et al 19 Clinical study 25

Post-traumatic 
vegetative 

state

DBS treated group 
only

Changes in clinical 
feathres and overall 

behaviour

Recovery of 
some degree of 

consciousness in 13 
cases.

1 to 12 years

Deep Brain 
Stimulation

Katayama 
et al 20 Case series 8 Patients in 

PVS
DBS treated group 

only Pain-related P250

The Pain-related 
P250 transiently 
increased in 4 

patients.

> 6 months

Deep Brain 
Stimulation

Yamamoto 
et al 21 Case series 21 Patients in 

PVS
DBS treated group 

only

Neurological and 
electophysiological 

evaluation

Eight patients 
emerged from PVS. > 10 years

Deep Brain 
Stimulation

Yamamoto 
et al 22 Case series 26 Patients in 

PVS or MCS 
DBS treated group 

only

Neurological and 
electophysiological 

evaluation

Eight patients 
emerged from PVS, 

and 4 from the 
bedridden state.

> 10 years

Deep Brain 
Stimulation

Yamamoto 
et al 23 Case series 107 Patients in 

PVS

21 DBS treated 
vs 86 non-treated 

group 

Auditory brainstem 
response, somatosensory 
evoked potential and pain-

related P250

Eight DBS-treated 
patients emerged 

from PVS and obey 
verbal commands; 

No patients with DBS 
recovered.

> 10 years

Deep Brain 
Stimulation Schiff et al 24 Case report 1 Patients in 

MCS
DBS treated group 

only
Qualitative changes in 

behaviour

behavioural 
improvements 

(command following, 
verbalization 

and inconsistent 
communication)

6 months

Spinal Cord 
Stimulatuin Hosobuchi 40 Case series 10

Stroke and 
carotid 

stenosis

5 cervical SCS vs 5 
thoracic SCS Cerebral blood flow

Cervical SCS 
significantly 

increased CBF, 
thoracic SCS had no 

effect on CBF

N/A

Spinal Cord 
Stimulatuin

Yamamoto 
et al 43 Case series 10 Patients in 

MCS
SCS treated group 

only
electrophysiological 

evaluations and SPECT

Seven patients 
recovered from 
MCS following 

SCS; Cervical SCS 
increased CBF by 

22.2%

> 1 year

Spinal Cord 
Stimulatuin

Kanno 
et al 44

Prospective 
uncontrolled 

study
214 Patients in 

PVS
SCS treated group 

only

Efficacy scale, detecting 
signs of awareness of 

self and surrounding and 
SPECT

Excellent and 
positive results were 
obtained in 54% of 

patients

3.5 months

Table 1: Clinical data of different studies. PVS, persistent vegetative state; MCS, minimally conscious state; DBS, deep brain stimulation; SCS, spinal cord stimulation; 
CBF, cerebral blood flow.
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consequences [26]. It is not clear if PVS and MinCS respond differently 
to DBS. It is possible that patients with MinCS would respond better as 
areas of essential cortical functioning were relatively preserved [24,26].

Furthermore, in one case report and one small case series study, 
DBS in the Ventralis Intermedius[VIM] nucleus of the thalamus, 
Ventralis Oral is Anterior and Posterior [VOA/VOP] and Globus 
Pallidus internus [GPi] has been used to treat posttraumatic tremor 
with good response [27,28]. A few small case series studies suggest 
that DBS of the Ventro Postero Lateral nucleus of the thalamus [VPL] 
and GPi can reduce symptoms of posttraumatic dystonia, which results 
in overall symptomatic improvement [29-31]. In addition, DBS of 
Subgenual Cingulate Cortex [SCC] is currently under investigation for 
the treatment of depression, a common neuropsychological disorder 
following TBI [7].

Spinal Cord Stimulation 
Multiple animal studieshave shown augmentation of Cerebral Blood 

Flow [CBF] with Cervical Spinal Cord Stimulation[SCS][32-39]. The 
effect of SCS on increase in CBF in human brain was first reported in 
1985 [40]. An interesting concept of “redistribution of CBF” rather than 
an absolute change in CBF during SCS was introduced in 1995 [41,42]. 
Further case series studies have shown cervical SCS could increase CBF, 
and improve upper-extremity motor function and communication skills 
in patients with MinCS resulted from TBI and stroke [7,43]. A single-
group study reported improvements in awareness in 54% [109/201] of 
people with stroke or TBI after cervical SCS [44]. The treatment effect 
may be achieved by enhancing cerebral hemodynamics via autonomic 
nervous system and the release of hormonal factors [45]. Moreover, 
based on the thorough literature review, it has been proposed that 
SCS targeting the lower cervical segments may prevent Subarachnoid 
Hemorrhage [SAH]-related delayed vasospasm [46-48]. Furthermore, 
once the vasospasm is present,patients may still receive additional 
benefit and possibly improve clinical outcome by CBF augmentation 
and treatment of thevasospasm through stimulation of the cervical 
spinal cord.

Transcranial Magnetic Stimulation And Transcranial 
Direct-Current Stimulation

Transcranial Magnetic Stimulation [TMS] and transcranial Direct-
Current Stimulation [tDCS] are two non-invasive neuromodulatory 
therapies, which can modulate neuroplasticity and cortical 
hyperexcitability[49-51].Their therapeutic value is unclear. Some 
studies, including randomized double-blind studyand sham stimulation-
controlled trial, have assessed their effects on motor function in people 
with stroke and TBI. The findings have been inconsistent [51-54]. 

Neuromodulation for Spinal Cord Injury
Traumatic Spinal Cord Injury[SCI] is estimated to affect 

approximately 300,000 individuals in the United States, and more 
than 2.5 million worldwide [55], with estimated cost over $9 billion 
annually in the United States alone [56]. SCI often leads to serious neu
rological sequelae and medical complications. Therefore, more efforts 
in medical practice development are needed to improve the quality of 
life of patients with SCI.It has been reported that SCS in lumbosacral 
segments helped restore voluntary control of locomotion in paralyzed 
rats after SCI[57].A study using closed-loop neuromodulation to treat 
rats with complete SCI found that it improved the locomotion and 
enabled animals to perform more than 1,000 successive steps without 
failure and to climb staircases of various heights and lengths with 

precision and fluidity [58]. Another similar study on rats, however, 
found no treatment effect [59]. A case study reported that SCS enabled 
a paraplegic man [C7-T1 subluxation] to produce some leg movements 
and to stand during stimulation [60]. The author pointed out that even 
after a severe low cervical SCI, the neural networks remaining within 
the lumbosacral segments can be reactivated into functional states so 
that they can recognize specific details of ensembles of sensory input 
delivered by SCS to the extent that it [SCS] may serve as the source of 
neural control [60]. While this suggests that SCS can activate spared 
neural circuits and promote plasticity, there is no evidence that it would 
lead to functional gains and physical improvements after SCS.

Neuromodulation for Epilepsy
Epilepsy affects 1% of population in the world, and 30-40% of cases 

are medically refractory [61-65]. Management of patients who have 
recurrent seizures and did not respond to medication or surgery is 
challenging. A number of double-blind randomized controlled trials 
have confirmed the therapeutic effects of Vagus Nerve Stimulation 
[VNS] for epilepsy [66-69]. A recent European long-term study 
[n=347] showed a 50% reduction in seizure frequency for up to 43.8% 
of patients[66]. Greater treatment effect has been observed with higher 
VNS settings [66]. A review study also found DBS effective in reducing 
seizure frequency [70]. The target areas of DBS for treatment of epilepsy 
include Anterior Nucleus [AN] of thalamus [71-73], centro median 
nucleus [CM] of thalamus [74, 75], Sub Thalamic Nucleus [STN][76,77], 
Caudate Nucleus[75], cerebellum [78]and hippocampus [79]. Closed 
loop brain stimulation has recently been used for treatment of epilepsy. 
One type of this stimulation is a Responsive Neurostimulation System 
[RNS][Responsive Neurostimulation System, Neuropace, Mountain 
view, CA] that delivers stimuli only when abnormal electrocortico 
graphic activity of a seizure is detected [80]. Another type is a recording 
pulse generator unit [Medtronic, Minneapolis, MN][81] that deliver 
bidirectional stimulation. The RNS is approved by FDA for clinical 
use in the USA [82, 83], and the DBS – by the regulatory agencies in 
Canada, Europe, Australia, and elsewhere [61]. However,DBS is still in 
its early stage as a therapy for epilepsy.

Discussion 
Overall, advances in neuromodulation may offer new therapeutic 

interventions for patients with stroke, traumatic brain injury, spinal 
cord injury and epilepsy by counteract the abnormal network in the 
brain. The emerging neuromodulation therapy for patients with these 
conditions is still facing great challenges. Since most of the existing 
findings are based on animal studies, preliminary data, case reports 
andpoor-controlled studies, and short follow up, further investigations 
including research and clinical trials are necessary to increase the 
applications of neurostimulation in the field of neurorehabilitation.
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