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A Real-Time Framework to Monitor the Heart Rate Based 
on Photoplethysmography (PPG) Sensors at All Possible 
Conditions

Abstract
Heart Rate (HR) is one of the vital parameters in health care monitoring. Many methods are being proposed to estimate the HR in different cases, which are 
not compatible with real-time applications. The main objective of this work is to develop a framework for determining HR under all possible conditions using the 
PPG signal. The proposed work is the combination of time domain, frequency domain, and tracking using accelerometer data. This real-time framework is being 
developed and tested in real-time with cortex M4 board using the Keil µ vision 4 IDE. This framework detects HR under rest and motion conditions with minimum 
hardware resources and the accuracy of the HR in real time environment is 98.6 %. The Mean Absolute Percentage Error (MAPE) is 1.67 %, the Mean Absolute 
Error (MAE) is 1.18 BPM and the Reference Closeness Factor (RCF) is 0.987. The hardware implementation of the algorithm requires total of 47KB memory which 
runs at a speed of 5.7 MIPS.
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Introduction
Over the recent years, there is significant growth in every field with the 
advancement of growing technology. When it comes to the field of healthcare, 
wearable devices are gaining its attention from people for monitoring health 
conditions. HR monitoring is one of the most significant physiological 
parameters used in a clinical environment by doctors to provide diagnosis 
reports about a patient’s health condition. Observing the HR is not only 
important for patients but also beneficial for athletes and fitness geeks. HR 
is also very crucial for sports and physical exercisers to control the training 
load and to ensure the athletes are training at the right intensity. This makes 
it helpful for knowing a person's physical activity levels and also to estimate 
the energy expenditure during daily activities. Traditional HR measurements 
rely on Electrocardiogram (ECG) signal, but a major problem in recording 
the ECG signal is that, it requires several sensors which need to be placed 
at different parts of the subject's skin, which are inconvenient and creates 
discomfort for users. On the other hand, HR measuring using PPG signal 
is very simple and also it is having the advantages of non-invasive, low-
cost, and portable in nature. PPG is an optical non-invasive measurement 
to detect changes in blood flow. A Pulse Oxi-metry device is typically used 
to acquire the PPG signal which consists of a photodiode (PD) and two light 
sources.

However, PPG signal can be easily affected by motion artefact (MA) 
noise during physical exercise or a slight movement from the subject and 
it is quite difficult to calculate accurate HR from MA-contaminated signal. 
Motion artefacts are the distortions caused in the signal due to slight finger 
movement, hand movement, body movement, or by doing any regular 
activities. Numerous signal processing algorithms have been proposed to 
remove the motion artefacts from raw PPG signal. But, each method is having 
its own advantages as well as disadvantages. PPG signals can be acquired 

from the wrist, earlobe and fingertip. However, PPG signal recording from 
the wrist enormously encourages the configuration of wearable gadgets and 
expands user experience. Thus, assessing HR from wrist-type and finger-
type PPG sensors are turned into a mainstream highlight in smart-watch 
type and mobile gadgets. In this regard, developing high performance HR 
observation and analysis algorithms for wrist-sort PPG and finger-type 
PPG sensor is of great value. Our proposed framework focuses on HR 
measurement utilizing wrist-type and finger-type PPG signals when the 
subject performs mild, medium, and heavy physical exercises as well as at 
rest conditions. There are two types of HR measurements that are focused in 
this paper, the first one is the resting HR and the second one is the working 
HR. The resting HR is the Heart Rate that is being taken while the subject is 
at rest condition with no motion. The working HR is the Heart Rate while the 
subject is doing exercise and in motion. In resting HR measurement, either 
time domain or frequency domain analysis can be used based on the signal 
quality. The frequency domain analysis can also be used to estimate the HR 
correctly if the signal is corrupted by any slight motions. But for medium and 
heavy motions, the tracking method is used to estimate the working HR. So, 
based on the signal quality and motion level, the appropriate algorithm is 
selected and used to estimate the correct HR.

Literature survey
A lot of methods have been suggested in literature to measure the HR 
using time and frequency domain methods. In the time domain, HR can 
be measured using different methods. They are Local maxima and minima 
proposed by Islam, et al. [1], Andrienko,  et al. [2]. First derivative with an 
adaptive threshold scheme presented by Zong, et al. [3], Elgendi, et al. [4], 
Elgendi et al. [5], Elgendi and Norton, et al. [6]. Slope Sum function with 
an Adaptive threshold presented by Zong, et al. [3]. Event-Related Moving 
Averages with Dynamic Threshold proposed by Elgendi and Jonkman, et al. 
[7]. These methods are mainly developed to detect the peaks and onsets 
from a PPG signal. HR can be estimated based on the peak detection of 
the signal. More accurate peak detection helps to estimate more accurate 
HR calculation. Local maxima and minima method works on the filtered 
signal directly rather than the derivative, so slight signal variations from 
PPG signal would affect the performance. Adaptive threshold method has 
dynamic threshold scheme incorporated but the input samples are windowed 
for 8 sec, which is ultimately detecting peaks after 8 sec. Due to this, the 
time duration for giving the HR also be significantly high in this method. 
Since the PPG signal has time varying characteristics, it is difficult to detect 
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the accurate peaks and the false peak detection results in incorrect HR 
estimation. 

Frequency domain algorithms are also developed to find the HR which 
works in both motion as well as rest condition scenarios. Conventional 
filtering methods proposed by Ram, et al. [8] with a fixed cut-off frequency 
for reducing motion artefacts effectively. But, filtering method with a fixed cut 
off frequency is incapable to eliminate motion artefacts effectively. Because 
the frequency of motion arti facts often overlaps with that of the PPG 
signal, and this results in some amount of motion noise still present in the 
filtered PPG signal. Moving average filter proposed by Lee, et al. [9] could 
effectively eliminate sporadically occurring low level noise, but it is not able 
to deal with strong or suddenly occurring artefacts. Independent Component 
Analysis (ICA) method proposed by Ram, et al. [10], Kim et al. [11] to 
separate the artefacts from the distorted signals. This approach separates 
the artefact’s to some extent, and it is not removing at all possible conditions 
and motion artefacts removal is also not a satisfactory one. Singular 
Vector Decomposition (SVD) [12] algorithm was reported to overcome 
the problem of complete removal of artefacts from the corrupted signal at 
all possible conditions. But these approaches were unable to recover the 
original signal when the artefacts are strong. Empirical Wavelet transform 
(EWT) [13,14], Empirical Mode Decomposition (EMD) [15] and Spectrum 
Subtraction [16]. These approaches are complex to be implemented in real 
time, which consumes enormous hardware resources. Recently, Zhang, et 
al. [17] proposed a framework namely 'TROIKA' to remove the extremely 
strong motion artefacts caused by subject's movement. This method is 
based on signal decomposition for de-noising, sparse signal reconstruction 
for high resolution spectrum estimation, and spectral peak tracking with 
verification. The average absolute error rate for beats per minute (BPM) is 
little considerably high in TROKIA method. In order to reduce the error rate 
TROKIA method is further enhanced called JOSS (Joint Sparse Spectrum 
Reconstruction) for HR monitoring during physical activities and it is proposed 
by Zhang, et al. [18]. Even though these two methods are finding better 
removal of the noise content from the signal, the average error rate was 
significantly reduced in JOSS over TROKIA. The main drawback of these two 
methods is that they are computationally expensive because M-FOCUSS 
algorithm is employed to compute the spectrum which may induce drains in 
the battery system. Moreover, the results of these two methods have shown 
that some of the initial dataset samples are excluded to process into the 
algorithm. The SPECTRAP method proposed by Zhang, et al. [19], involves 
a post-processing scheme and the dataset is accessed based on the cross-
correlation threshold value. In COMB method Zhang, et al. [20], author 
combining empirical mode decomposition and spectrum subtraction method, 
which results in some of the noise-related IMFs are removed directly from 
the PPG components? Noise removal of such a method involves manual 
intervention for selecting the time windows to be de-noised as well as IMFs 
to be discarded. Different adaptive filtering algorithms are used to reduce 
the effects of motion artefact, when subjects are exercising [21]. The major 
concern in adaptive filter is to choose proper reference signal for better 
removal of artefacts from the signal. A two-stage normalized least mean 
square proposed by Yousefi, et al. [22], which provides a high accuracy for 
HR estimation. Here, the reference signal is obtained by subtracting the two 
channels of the PPG sensor. In this paper, the two adaptive filtering system 
model is proposed and comparing the performance of each model with 
respect to signal-to-noise ratio. 

Materials and Methods
A real-time framework to estimate the HR based on rest and working HR 
algorithm approach of PPG signals is depicted in Figure 1. There are three 
major parts of the algorithm presented in this paper for designing a real-time 
framework. The first part is to design an algorithm for resting HR, which is 
a combination of time and frequency domain approach to identify the HR 
under resting condition [23]. The second part is to design an algorithm based 
on the frequency domain approach to detect the working HR in the slight 
motion conditions. The third part is to design a robust algorithm to track the 

working HR based on time domain approach at medium and heavy motion 
conditions. The HR selection module selects an HR value from the first and 
second parts of the framework based on the signal quality metrics. The 
tracking HR is selected based on the SNR metrics and the final accurate HR 
is decided based on the motion index threshold value. Motion detection block 
is used to estimate the motion signal level present in the raw PPG signal. 
The motion tracking method is implemented in the working HR module which 
can be largely divided into 3 modules. 

i.	 Adaptive Noise Cancellation (ANC).

ii.	 State Variable Filter (SVF).

iii.	 Peak tracking and verification.

ANC method is performed by adaptive filters based on different types of 
motion artifacts. State variable filter adaptively varies the cutoff frequency 
and filters the motion artifact removed signal into low, high, and band pass 
signals for peak tracking. The peak tracking method is useful to track HR 
from low pass and high pass filtered signal amplitudes. The final step is 
peak verification which is based on the current frequency compared with 
previous frequencies. The elaborate details about the proposed algorithm 
are explained below in the following sections. The peak tracking method is 
useful to track HR from low pass and high pass filtered signal amplitudes. 
The final step is peak verification which is based on the current frequency 
compared with previous frequencies. The elaborate details about the 
proposed algorithm are explained below in the following sections.

Time domain framework for resting HR estimation: The general 
framework for resting HR module using time domain method is depicted 
in Figure 2. The time domain method contains the blocks such as spike 
removal, smoothing, delineation, outlier’s removal, and HR estimation. 
The windowed PPG samples are given to the pre-processing stage of the 
algorithm to remove the sudden spikes from the signal and smoothing is 

 
 HR at rest using either time or frequency domain.

 HR at medium and heavy motions.
Figure 1: Proposed Method Block diagram.
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done using moving average filters. The smoothing process is required to 
get the robust impulsive signal, which can be obtained by subtracting the 
delayed version of the smoothed PPG signal from the original PPG signal. 
This is useful to get more visible peaks and onsets easier. The impulsive 
signal is differentiated in the delineator block which is easier to identify peaks 
and onsets from the signal. In the HR estimation block, valid peaks and 
onsets are identified to estimate the peak to peak and onset to onset interval 
correctly.

In the above Figure 2.1 is Delineator Output a) smoothed impulsive signal 
b) Differential signal c) onsets and peaks. Finally, the HR output is calculated 
by averaging the valid peaks and onsets pairs which are given in the below 
Equation,

( ) ( )L
peak onset

rest _ TD
j 1

HR j  HR j1HR  
L 2=

 + 
=   

 
∑ 		                (1)

Where HRrest_TD is the final resting HR in time domain analysis method.

HR peak - Valid peaks in HR signal.

HR onset -Valid onsets in HR signal.

L- Total no of samples. 

Frequency domain framework for resting HR estimation: The general 
framework for resting HR module using frequency domain method is depicted 
in Figure 3. The frequency domain method contains the blocks such as 
sampling rate reduction module, smoothing filter, normalization, Fourier 
transforms, and HR estimation.

The first stage of the frequency domain algorithm is sampling rate reduction. 
Here the down sampler is used to reduce the input signal sampling rate to 
10Hz since the useful information present in the PPG signal lies in between 
the frequency band of 0.5Hz to 4Hz. This sampling rate reduction is mainly 
performed to achieve a high resolution on HR estimation. The down sampling 
factor is chosen based on the original sampling frequency (Figure 3.1). 

The output signal of the down sampler is smoothed using a ‘lowess’ smoothing 
filter to remove the noises. The impulsive signal is generated by subtracting the 
smoothed ‘lowess’ filter output from the original PPG signal. The amplitude of 
the impulsive signal is normalized using Hilbert transform and the normalized 
output is in discrete time domain format (Figure 3.2). 

In order to convert the time domain signal into a frequency domain signal, 
a 512-point Fast Fourier Transformation block is used. The most dominant 
frequency component fmax is computed using Peak detection algorithm. HR can 
be estimated based on the new sampling frequency ‘Fsnew’, ‘fmax’ and FFT points 
‘N’ which is given below,

_ * * 60snew
rest FD max

FHR f
N

= 				                  (2)

Where HRrest_FD is the final resting HR value in frequency domain analysis 
method.

fmax = dominant frequency component.

Fsnew = new sampling frequency. 

Combined approach of frequency and time domain method: In the 
combined approach, the Reliability Factor (RF) is calculated based on 
equation.3 for time domain method and SNR is calculated in equation (4) for 
frequency domain to estimate HR. Reliability factor can be calculated based 
on the valid peaks and onsets from the total number of available peaks and 
onsets, if this factor satisfies the threshold then resting HR value is displayed 

Figure 2:  Block diagram for resting HR module using Time-domain method.

 
Figure 2.1: Output of Delineator.

Figure 3: Block diagram for resting HR module using Frequency-domain 
method.

  
Figure 3.1:  a) Input PPG Signal b) Decimated PPG Signal.

Figure 3.2: a) Smoothed Filter Output b) Impulsive PPG Signal.
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in the current window otherwise it rejects the current window and moves into 
the next window datasets. The SNR is calculated by using the signal power 
(Ps) and the noise power (Pn) from the FFT output signal. Estimated SNR is 
compared with the SNR threshold value to display the correct HR output. More 
details about the time and frequency domain can be elaborated in our previous 
publication [8]. 

Valid Peaks and Onsets RF 
Total No.of Peaks and Onsets

= 			                 (3)

 SNR 10*log(Ps / Pn)= 				                 (4)

Tracking Algorithm for Working

Heart Rate Measurement 
The block diagram for the tracking framework is shown in Figure 4. Here it 
uses a raw PPG signal and a simultaneous tri-axial acceleration signal to 
estimate the HR. As a pre-processing step, the input PPG and accelerometer 
data are band pass filtered with a cut-off frequency of 0.5 - 4Hz. The filtered 
PPG is given as primary input and the filtered accelerometer data is given 
as reference input to the adaptive filter. Hence motion signal present in the 
primary input is cancelled at the adaptive filter output. The motion arti facts 
removed adaptive filter output is given as input to the three state-variable 
filters. The state variable filter filters the signal with varying cut-off frequencies 
that are obtained using the frequency tracker block. The output of the last state 
variable filter is fed back to the frequency tracker and the new cut-off frequency 
is obtained with the help of motion index and the root mean square value of the 
low pass and high pass filter outputs of the state variable filter. The verification 
of the calculated frequency is done in the verification module. Finally, the SNR 
is calculated based on the band pass outputs of the state variable filters and 
the tracking HR is estimated using the frequency tracker output. The following 
sections will explain each stage involved in the tracking HR framework.

Pre-processing
The raw input PPG signal and the raw accelerometer data are given to the 
first stage of the tracking HR algorithm. Here both the signals are band-pass 

filtered by using infinite impulse response filtering method with a lower cut-off 
frequency of 0.5 Hz and higher cut-off frequency of 4 Hz with an order of 4, 
because HR frequency lies in the range of [0.5 - 4] Hz band. After filtering, 
almost all the environmental noise and motion arti fact outside the frequency 
band are removed. 

Adaptive filtering system
An Adaptive filter is the most popular technique for the removal of motion arti 
facts with low computational complexity and simpler to design the algorithm. 
It can adjust its filter coefficients dynamically based on the predetermined 
initial conditions. The two most popular algorithms are Least Mean Square 
(LMS) and Recursive Least Square (RLS) and they are utilized to design the 
adaptive filtering systems. These two algorithms are greatly influenced in arti 
fact removal and it removes the motion arti fact based on two parameters. 
The first parameter is the length of the filter and another one is the forgetting 
factor. Based on the adjustments of these two parameters, arti fact removal 
can be greatly increased and LMS is potentially simple to implement, but 
the convergence rate is slow when compared to the RLS filtering method. 
Therefore, these two methods are analyzed and implemented to provide a 
more robust solution in our proposed work. Commonly the adaptive systems 
require reference signals to remove the arti facts where the PPG signal is 
heavily contaminated with the motion. The general concept behind the system 
is that the reference input is adaptively filtered and subtracted from the primary 
signal to get the desired output. In our proposed method, the reference signal 
is an accelerometer signal which is usually corrupted due to the subject’s 
movement of hands or during exercise at any instant of time. The primary 
signal comprising of the desired signal which is arti fact free component is 
added with the corrupted signal due to the motion. The motion noise is always 
not correlated with the signal and it varies depending upon the subject's skin 
colour, sensor positioning, and environmental conditions. The performance 
of the systems depends on the correlation between the reference signal and 
motion arti fact components contaminated into the primary signal. In order to 
compare the performance and to provide a better filtering system model, a 
two-filtering model namely single-stage and cascaded adaptive systems are 
designed. Based on the system model usage, a reference signal is created. For 
single-stage filter, one reference input is used whereas, for cascaded filtering 
model, instead of employing one reference signal, a tri-axial accelerometer 
signal used as a reference input to the filter.

Single-Stage Adaptive Filter System Model: Single-stage adaptive filter is 
a conventional filtering technique to remove the arti facts from the signal. The 
combined accelerometer signal is considered as a single reference source of 
input in single-stage adaptive filter instead of using the accelerometer signals 
separately like cascaded filters (Figure 5). The single-stage adaptive filter is 
similar to general noise-cancellation techniques and the reference signal is 
created with the use of three channel accelerometer signals. 

The primary input, reference input and error signals are represented by dn(n), 
accn(n) and en( n) respectively. wn (n) is a weight update equation based on the 
order of the filter. The number of filter coefficients are updated instantaneously 
based on the type of the signal. The working formulas used for designing nth 

stage LMS filters are expressed as,

( ) ( ) ( ) ( )n n n n W n 1 w n µ  e n acc n+ = + × × 		                (5)

 
Figure 4: Block diagram for tracking HR framework. Figure 5: Block diagram of Single (nth) stage system model.
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( ) ( ) ( )n n ny  n w n 1  acc n= + × 			                (6)

( ) ( ) ( )n n n e n d n y n= − 				                 (7)

The Normalized LMS algorithm is the modified form of standard LMS 
algorithm. In this type, the reference input is normalized, and weight update 
can be expressed as,

( ) ( ) ( ) ( )
( )

n n
n n 2

n

µ  e n acc n
W n 1 W n  

acc n

× ×
+ = + 		                (8)

  is the single stage motion artifact filtered signal.

Algorithm for Recursive Least Square (RLS) filters as follows:

The RLS adaptive filter implementation is as follows

Initialize, the weight vector W and inverse correlation matrix P as
HW (0)  0 and P (0)   I= = δ

 Where, δ is the regularization parameter & I is the Identity matrix.

Compute, For each instance of time n = 1, 2, 3 ··· N

( ) ( ) ( )n n n y n w n 1  acc n= + × 			                   (9)

Where wn(n+1) Is the previous weight vector &  accn(n) is reference acceleration 
signal.

i.	 The error signal is computed by the following equation

( ) ( ) ( )n n ne n d n y n= − 				               (10)

Where, en (n) is the system output signal & yn (n) is the adaptive filtered output 
signal.

( ) ( ) ( )n n n z n p n 1  acc n= − × 			               (11)

Where, zn (n) is the signal used for calculating the Kalman gain vector kn( n).

( ) ( ) ( )n n n q n acc n  z n= × 				               (12)

( ) ( )n
n

1 v n
   q n

=
λ +

				                 (13)

Where qn (n) & vn (n) intermediate signals & lambda are in the exponential 
weighting factor.

ii.	 The Kalman gain vector kn(n) can be calculated from intermediate 
signals are,

( ) ( ) ( )n n n k n v n  z n= × 				                  (14)

iii.	 The weight vector Equation for updating filter coefficients are 

( ) ( ) ( ) ( )n n n nW n 1 W n e n K n+ = + × 			                 (15)

iv.	 The inverse correlation matrix is updated for each iteration which is 
given by,

( ) ( ) ( ) ( ) ( )n n n n n
1 P n 1  p n  k n  p n  acc n+ =  − × ×  λ

                          (16)

For reference signal, the three axis captured accelerometer data are squared 
individually and added together to form a signal, which is used as a reference 
in single stage filter.

( ) 2 2 2
n x y zacc n a a a= + + 				                 (17)

Where, ax is the accelerometer data in x-axis, ay is the accelerometer data in 
y-axis and az is the accelerometer data in z-axis.

Cascaded Adaptive Filter System Model: In this section, three stage 
cascaded adaptive filter design model is used to remove the arti facts from 
the corrupted PPG signal. The pre-processed PPG signal along with the 
accelerometer motion data for three different directions are used for the 
adaptive filter inputs. In the Figure. 5, the three channel accelerometer data 
from each channel is used separately as a reference for each adaptive filter 

blocks. The reference x-channel input ( ), which is passed into the first 
stage of the filter blocks. Similarly,  and  are the reference for second 
and third stage input for y-channel and z-channel respectively. Since these 
filters are connected in cascaded structure there is a possibility of removing 
motion artifact higher than compared to single stage filters. From the designed 
cascaded filter model, it is confirmed that three-stage adaptive filters removed 
the motion arti facts noise comparatively higher than single stage filtering 
scheme.

In this case, components of motion artifact present in the PPG signal is 
removed successively with the reference of x, y, and z directions. Instead of 
using single stage filter design, the cascaded filter performance is better in-
terms of noise removal from the signal. In the cascaded noise canceller blocks, 
at the first stage, the input signal to the adaptive filter block is pre-processed 
PPG signal and reference is the x-channel accelerometer signal represented 
by mx (n). The output of first stage is used as the input signal of the second one 
represented by e1 (n) with the y-channel accelerometer signal my (n) being the 
reference signal. Similarly, for the third stage block the input signal is the output 
of the second noise canceller represented by e2 (n) and the reference signal is 
the z-channel accelerometer signal mz (n) (Figure 6).

The output represented by y3 (n) of the final stage is the motion artifact reduced 
output of the cascaded noise canceller. It is expected that the three stages 
sequentially remove the motion arti facts corresponding to x, y, and z-channel. 
The motion arti facts signals presented in the PPG signal represented in terms 
of a weighted linear combination of three channel accelerometer data, namely 
mx (n), my (n), mz (n) in three channel dimensions of movement along x, y and 
z-axis respectively can be written as in Equation (18),

( ) ( ) ( ) ( )x x y y z zm n  a m n  a m n  a m n= + + 		             (18)

Here ax, ay, az are weighting parameters and their values depend on relative 
strength of movement in a particular direction. In the single stage and cascaded 
filtering systems, three different filters LMS, Normalized LMS and RLS were 
used separately to test the performance of the system model. Hence, these 
system models have shown the noise performance depending upon the types 
of filters used in the design. It is observed that RLS filtering has outperformed 
than other two filters in both the system design and cascaded model has 
significantly high removal of motion arti facts compared to single stage system 
model.

State variable filter:
State variable filter adaptively varies the frequency of the signal for peak 
tracking and verification. The adaptive filtered signal is passed to the state 
variable filter which gives the low, high, and band pass filter outputs. The digital 
state variable filter is a popular synthesizer filter. The state variable filter has 
several advantages over biquad filter. Low pass, high pass and band pass 
are available simultaneously. In Figure 7, the adaptive filter output is sent as 
input to the state variable filter. The state variable filter output is fed back to the 
frequency tracker block to estimate the new cut-off frequency for the variable 

y2(
n) 

+ 
-     accy  e2(n) 

∑ 
Adap�ve 
Algorithm 

+ 
- 

    
accx  

d(n)  

e1(n) 

y1(n
) 

∑ 
Adap�ve 
Algorithm 

+ 
- e3(n) 

y3(
n) 

∑ Adap�ve 
Algorithm 

    
accz  

Figure 6: Block diagram of Cascaded Filtering system model.
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filter. 

Frequency and Q factor are independent and are calculated by the following 
Equations.

The frequency control coefficient, f, is given by,

C

s

F f
F

= 					      	             (19)

Where Fs are the sampling rate and Fc is the filters cutoff frequency. The 
damping factor (q) is given by

1  q
Q

= 						                  (20)

Where Q ranges from 0.5 to infinity.

The resulting frequency component is sent to the peak tracking module where 
the output is given as feedback to the state variable filter to get the required 
frequency component for determining the HR.

Peak Tracking and Verification:

From the state variable filter the varying frequency output is passed into 
this module. Peaks in the signal are estimated based on the frequency. The 
frequencies are tracked, and the cut-off frequency will be varied in real time. 
Frequency is estimated using the following equation,

( ) * A
new old

A

LF F f MI f
H

 
= +  

 
			               (21)

Where, LA -Amplitude of Low pass filter output, HA- Amplitude of High pass filter 
output, MI - Motion Index

Experimental Results
It is needed to evaluate the estimated HR output to see the effectiveness and 
the performance of an algorithm at rest and motion conditions. Continuous 
HR testing is performed for real time validation of the proposed method. In 
continuous HR testing, the HR output is measured at regular intervals for a 
limited period of time. For offline validation of HR, the PPG and accelerometer 

data are collected from different subjects (60 male and 40 female) of different 
age group (age 21 – 50 years) with different skin tones (dark and fair skin). 
Also, the participants are asked to give random motions like typing, ball tapping 
and writing etc. Data collection protocol is given in the following Table 1.

Data Collection:
The dataset for the validation of the algorithm is recorded using a single 
channel PPG sensor and a tri-axial accelerometer from different subjects with 
different skin tones of various age groups and they are sampled at 100 Hz. 
The test cases mentioned in table 1 is considered as a motion arti facts source 
for our proposed method for heart rate estimation at different scenarios. The 
factors that are used to identify the performance of the algorithm are as follows,

Pass percentage: The difference between the HR estimated from the proposed 
method and the reference device are compared with a certain deviation range 
to decide the accuracy of our proposed HR algorithm. A sample pseudo code 
is given below.

If (abs (HREst - HRRef)) < = deviation range

Status = PASS;

else

Status = FAIL;

The deviation region is set to a static value of 5 BPM in our proposed algorithm.

MAPE and MAE: Mean Absolute Percentage Error (MAPE) and Mean Absolute 
Error (MAE) are the two main deciding factors to evaluate the performance of 
our proposed algorithm.

The Mean Absolute Percentage Error (MAPE) provides the percentage of 
accuracy of the algorithm, and it is given by the Equation (22),

( ) ( )
( )

nW
Ref Est

i 1n Ref

HR i  HR i1MAPE
W HR i=

− 
=  
 

∑ 		             (22)

The Mean Absolute Error (MAE) is used to measure the closeness of the 
estimated HR to the reference HR. It is given by the following Equation (23),

( ) ( )
nW

Ref Est
i 1n

1MAE  HR i  HR i
W =

 
= − 
 

∑ 		                (23)

Where,

HRRef – HR from the reference device, HREst – HR from the proposed algorithm, 
Wn – Total number of windows.

Reference Closeness Factor (RCF): The Reference Closeness Factor is a 
prominent factor which gives the closeness of the algorithm HR with respect 
to reference HR in the range from 0 to 1. It is given by the following equation.

 Figure 7: State variable filter.

Test case Protocol	 Duration
Mild Typing 5 minutes rest +5 minutes motion 10 Minutes

Writing 5 minutes rest + 5 minutes motion 10 Minutes
Sit and stand,
Shoe lace tying,
Slow walking,
Random hand, movements,
Watch removal and wearing

1-minute rest 
+ 3 minutes motion + 1-minute rest

5 Minutes

Medium Ball Tapping 5 minutes rest
+5 minutes motion

10 Minutes

Little fast hand movement,
Normal walk,
Tapping (musical),
Tread Mill walk (3km)

1-minute rest 
+ 3 minutes motion
+ 1 minute rest

5 Minutes

Heavy Tread Mill walking (5 – 10 Km) 1-minute rest + 3 minutes motion + 1 minute rest 5 Minutes

Table 1: Protocol and data base of tracking data collection.
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Comparison of Test Results
The proposed method is compared to the stand-alone Single Vector 
Decomposition (SVD) and Independent Component Analysis (ICA) algorithm 
and the results are given in Table 2. Continuous testing is conducted when the 
subject is at rest condition and doing mild, medium, and heavy motion. The 
comparison is made between the proposed method, SVD and ICA method. 
The proposed method achieves a pass percentage of 98.6% in continuous 
testing.

 The tracking algorithm for estimating HR gives much better performance with 
a reduced error rate i.e. MAE of 1.18 BPM and MAPE of 1.67% in On-demand 
testing and it is even very low in continuous testing compared to the stand-
alone methods, which can also be seen in the Table 2.

The proposed method gives the first heart rate output at 6.06 seconds average 
which is faster than other algorithms. In continuous testing, the response time 
is not applicable because HR monitoring is a continuous process.

The proposed method is implemented in C and ported to the cortex M4 platform 
for validation, since wearable devices are using ARM processors mostly. 
The main reason for proposing this method is for the accuracy of heart rate 
output compared to the other available methods, which is the primary factor 
in measuring the heart rate in real time applications. The hardware resources 
required for the proposed model is given below in the following Table 3.

Real Time Applications
The proposed framework is initially implemented and validated in MATLAB 
using offline PPG data. The estimated output is compared with the reference 
HR available in the database and based on the pass percentage, the algorithm 
is fine-tuned. Once the performance of the algorithm is validated fully, then 
the real time implementation is preceded. For real time implementation, the 
MATLAB algorithm is converted into C code and it is built for ARM cortex M4 
processor using IAR embedded workbench. The resultant binary is flashed into 
the M4 evaluation board. A sample android application is developed to display 
the HR results estimated from the M4 board. The application and Cortex M4 
board are communicated through Bluetooth to display the HR in android 
application GUI (Figure 8).

Conclusion
A general framework for calculating the HR at all possible conditions is 
proposed in this paper. Since HR is a vital parameter in health care devices, 
this proposed framework can be used to calculate HR when the subject is at 
rest or regular activities based on the combination of time domain, frequency 
domain, and tracking using accelerometer data. From the experiments 
conducted, it is proved that the proposed framework is giving better results 
when compared with the HR estimated from the other methods. The accuracy 
of the proposed framework in real time environment is 98.6 % achieved and 
the MAPE is 1.67 %, MAE is 1.18 BPM and the RCF is 0.987. The hardware 
implementation of the algorithm requires total of 47KB memory which runs at 
a speed of 5.7 MIPS.
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