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Introduction
Optical coherence tomography (OCT) is a micron scale ranging 

technology based on low coherence interferometry (LCI) that has 
found an important role in medical diagnostics. As OCT passes two 
decades of existence, the number of proven and potential applications 
continues to grow. But as expected, major advances in classical OCT 
technology seem to be slowing down. However, as in other fields of 
optics (and physics in general), utilizing the principles of quantum 
mechanics has the potential of producing paradigm-shifting advances in 
the technology. Almost all OCT theoretical work to date is classical, but 
a need exists for the advancement of OCT quantum mechanisms. This 
paper is the initial of a series on the quantum field analysis of OCT. It 
initially focuses on demonstrating some of the limitations of the classical 
treatment of OCT by examining first order correlations, primarily at 
the single photon limit, and closely related vacuum fluctuations. In this 
initial paper, concepts of treating the electromagnetic field (EM) field 
as a ‘sea’ of harmonic oscillators is reviewed (full quantization rather 
than semi-classical), as well as describing the basic mathematical tools 
for field quantization that includes annihilation/creation (and the 
related electric field operators) and density operators. Then first order 
correlations with OCT are modeled using single photon interferences 
dependent on indistinguishable paths. Classical linear interferometry 
results are yielded by the appropriate superposition of large numbers 
of single photon interferences. The paper concludes with a practical 
application. Here quantum noise sources are explored in OCT, 
primarily from vacuum fluctuation and photon count errors (PCE), 
which can be treated in the same context of first order correlations. 
These areas will be developed to advance OCT and identify areas where 
future work is needed. This includes accounting for polychromatic 
light resulting in more complex photon pressure effects, the fact back 
reflections are coming simultaneously from different depths, the 
differences in mass between the reference and sample arm (resulting 

in higher position probability uncertainty), and the target may behave 
at times like subsystems rather than a single unit. Second (and higher) 
order coherence, entanglement, and position probability amplitude 
uncertainty, among other topics, will be dealt with primarily in part 
II in the context of photon interactions. These areas are the focus of 
our group. However, to discuss these topics, the foundations in this 
paper are needed. By developing a quantum field approach to OCT, 
initially focused on single photon wave packet interferences, we build a 
foundation for future OCT advances.

Optical coherence tomography (OCT) is a micron scale ranging 
technology based on low coherence interferometry (LCI) that has 
found an important role in medical diagnostics. It is FDA approved 
and a clinical diagnostic in ophthalmology and cardiology. And as 
OCT has passed its 20th year of existence, the number of potential 
applications continues to grow, with many new applications in 
clinical trials [1,2]. At the same time, paradigm shifts in classical 
OCT technology seem to be slowing down. However, as in other 
fields of optics (and physics in general), quantum mechanics has the 
prospect of producing paradigm-shifting advances in the technology. 
Unfortunately, quantum mechanics is often viewed primarily relevant 
to the microscopic world, so less effort goes into this area. A surprising 
point of view coming from the optics field where solid-state quantum 
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Abstract
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, 

with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are 
likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on 
the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically 
first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. 
Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author 
feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part 
II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed 
(with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability 
amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for 
studying second order correlations in part II.
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mechanics is so readily employed, for example, in optical sources and 
detection devices (i.e., light-matter interactions). Example areas, as 
will be demonstrated, where understanding the quantum mechanics 
of first order correlations can offer OCT advances including reducing 
quantum noise and understanding position probability amplitude 
uncertainty. But higher order correlations and interactions we 
believe offer even greater potential such as tissue characterization (ex: 
distinguishing lipid from non-lipid plaque) through the quantum 
properties of second order correlations, combined with varying 
position probability amplitude spreading, an area we have previously 
published [3-7]. The current article introduces a quantum field 
approach to OCT primarily by examining first order correlations and 
the ability to improve diagnostics. First order correlations are treated in 
terms of single photon interferences through indistinguishable paths, 
with the field (and vacuum) being modelled by quantum harmonic 
oscillators. In part II, second order correlations, entanglement, and 
related phenomenon (particularly position probability uncertainty) 
will be examined build from the theoretical framework of part I [6-8].

The paper begins by giving the classical analysis of OCT and then 
introducing concepts needed for analysis relevant to quantum field 
theory. Then the quantum field approach to OCT is built initially 
on a quantized electromagnetic field (EM), the quantum harmonic 
oscillator, and single photon interferences. Then classical and 
quantum mechanical OCT are compared quantitatively through the 
autocorrelation function. Finally, how this becomes practical (for first 
order correlations) is demonstrated with quantum noise reduction 
and position probability amplitude uncertainty. Quantum field theory 
of this type has its foundations in the work of pioneers such as Dirac, 
Feynman, Caves, Loudon, Glauber, Ben-Aryeh, Teich, Mandel, and 
Saleh (among others). We utilize this work from other fields to build 
on the quantum field analysis of OCT.

Optical Coherence Tomography
General description

The classical principles behind OCT are described in detail 
elsewhere and so will only be discussed here superficially [9]. We begin 
with the initial discussions of the classical theory of interference and 
then compare it to the quantum theory through the autocorrelation 
function. This will begin illustrating the limitations of classical 
descriptions of OCT.

With respect to OCT, in the ‘classical embodiment’, low coherent 
light from a source is directed at a beam splitter. Half the light is 
directed at a reference arm (which contains a distal mirror) and half 
at the sample arm (Figure 1). The optical path length in the reference 
arm is being changed continuously. Light reflects at the distal end of 
both arms. When light recombines at the beam splitter, interference 
occurs when the delay in both arms is within the coherence length. 
This is the classical explanation but would not account for, for example, 
single photon interference (which is the basis of all first order linear 
interferometry) as we will see in the next section.

OCT theory: Monochromatic Michelson interferometry

OCT systems are generally based on Michelson interferometry. 
So we will discuss classical interferometry and OCT for a Michelson 
interferometer. We will start initially using monochromatic light 
and then polychromatic Gaussian light. The reason for including the 
monochromatic classical derivation is that when we develop quantum 
first order correlations through single photon interference, we will 

start with monochromatic light. Comparisons will be made between 
quantum and classical mechanics.

In a Michelson’s interferometer, light from the source, expressed in 
terms of the electric field Eso, is directed at the beam splitter. The beam 
splitter ‘divides the light’ (this is a classical description) into Er and Es, 
where r is the reference arm and s is the sample arm respectively (directed 
at perfect mirrors). These two complex monochromatic plane waves 
have the same frequency, wavenumber, and phase (we are ignoring 
the phase shifts from the splitter) as they are split. We will ignore any 
losses occurring within the interferometer itself from scattering or 
absorption. We will also assume reflectivity off both mirrors is 100%. 
After reflecting off the two mirrors, the light recombines at the beam 
splitter, so that the electric field at the detector is ED=1/2 r+1/√2Es. We 
will be examining what happens with monochromatic light when the 
two arms have different path lengths before combining at the beam 
splitter. Since k =ω/c, we will represent these waves as

( )/
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1( )
2

ri x c
r SE x E e ω=

( ) /
0

1( )
2

si x c
S SE x E e ω= 				                   (1)

The only difference between the two waves is the distance they have 
travelled. So ED equals:

( )/( )/
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2 2 2 2
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D r s S SE x E x E x a E e E e ω +ω= + + = +       (2)

Now what is generally measured at the detector is irradiance and 
not the electric field, which is the time average of the square of the 
electric field. This is represented by I=εv‹EE* ›T. The T stands for time 
average. This translates to (ignoring the constants εv):

* * * * *1 1 1 1( )
2 2 2 2D D D r r S S r S S rT T T T

I x E E E E E E E E E E∞ = + + +     (3)

Er* and Es* are the complex conjugates of the electric field in the 
reference and sample arm respectively. This becomes:
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D D D r S S s s ST T
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In the right side of eqn. (4), the first two items represent the DC 
irradiance from simple and reference arms (which do not carry ranging 
information) respectively as

Figure 1: A Michelson interferometer is shown which is the base embodiment 
of OCT.
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Ir(x)∝ 〈ErEr*〉T				                   (5a)

Ir(x)∝ 〈EsEs*〉T				                 (5b)

We want eqn. (4) to be in form:

( / /
0 0

1 1 1( ) ( ) ( ) Re( )
2 2 2

r Si x c x C
D r S S SI x I x I x E E e ω −ω∗= + +  	                 (6)

To achieve this, we will use an identity:

cos or 2cos
2

i i
i ie e e eθ θ = 

θ θ
θ − θ+

= +  		                (7)

Eqn. 4 now has in form:

ID(x) =1/2Ir(x)+1/2Is(x)+1/4‹ErEs*›TcosΘ 		               (8)

As a reminder, Erand Es are complex qualities. The terms Ir(x) and 
Is(x) are DC terms of regular rapidly oscillating electrical fields from 
the source, but the third term is the interference term. When Θ is 0 
or a multiple of ±2π, the cosines value is maximum at 1. The value 
of the interference term is then 1/4‹ErEs*›T. This is total constructive 
interference and the waves are said to be in phase (ignoring polarization 
effects). When the value of Θ is a multiple of ±π, the value of the cosine 
is –1 and ID(x) is at a minimum. This situation is called total destructive 
interference. From eqns. (5a) and (5b), it is known that Ir(x)=Is(x)=
1/2‹EsoEso*›T=1/2Iso(when reflectivity is equal in both arms). Eqn. 7 
becomes:

ID=1/2 Iso+1/2 IsocosΘ=1/2Iso(1+cos Θ)		               (9)

When Θ equals is zero, the intensity at the detector becomes 
Iso. When Θ is ±!, the intensity in the detector arm is zero and by 
conservation of energy, all the intensity is in the source arm. This 
derivation implies that interference is occurring between both arms 
of the interferometer. Essentially the same results will be seen with 
large photon numbers via a quantum field approach, but substantially 
different results occur at low photon numbers. The concept that ‘light 
from both arms interferes’ does not hold when derived from quantum 
mechanics as will be seen.

Basic Concepts of the Quantized Optical Field
General quantum mechanical principles

In the OCT community, the quantum field approach to EM 
fields is not commonly addressed. So in the next several sections, the 
mathematical principles will be provided from quantum field theory 
needed for a full quantization approach to OCT. For those with a 
command of quantum field theory, this section may be rudimentary. 
It should be noted that in optics, a full quantization approach is not 
always necessary and can be reasonably approximated by treating 
the system semi-classically. In the semi-classical approach, matter is 
described quantum mechanically (ex: quantized photon absorption 
of the detector) but the EM is treated classically plus the addition of 
vacuum fluctuations [10-12]. But many phenomena relevant to our 
discussion of advancing OCT including vacuum fluctuations in a 
beam splitter, two photon interferometry, and entanglement cannot 
be reasonably described semi-classically [13,14]. These require full or 
second order field quantization (i.e. the field needs to be quantized). 
When second order quantization is usually utilized, with origins in the 
work of Dirac, again the field is approximated as a bath of quantized 
harmonic oscillators. The vacuum represents the lowest energy level 
of the oscillators (which is non-zero) [15]. Then energy added to the 
system occurs in increments of EM quanta or photons (hω). This is 
among the concepts discussed.

We will be using quantum formalism throughout the text. In 
this quantum formalism, real values of observables (energy, position, 
momentum...) are represented by Hermititian operators (^ carrot 
signifies operators) and the initial/final states within kets/bras (|> or 
<|), respectively. Wave functions are used to represent the state itself in 
most elementary quantum texts. A wave function or wave function is 
probability amplitude in quantum mechanics describing the quantum 
state of a particle (or system of few particles). It is almost always a pure 
state. But wave functions have substantial limitations for use in this 
paper (though they will be used in several incidences for convention), 
such as not easily representing mixtures, particularly when coherences 
are involved. So in the majority of these text density operators, 
symbolized by ρ, are used for state representation. Many texts treat 
quantum density operators as analogous to classical statistical matrices, 
which is an inappropriate interpretation [16,17]. The density operator 
is an operator acting on Hilbert space whose representation includes 
non-classical coherences. But it does not represent a priore distribution 
itself. But the trace of the density operator can produce observable 
averages (such as particle or energy distributions).

The quantized harmonic oscillator

Quantized harmonic oscillators will represent the field. Here, 
first we must establish what base states we are going to work in. 
There are various base states for quantizing the EM field, such as 
with position/momentum or Glauber’s coherent states. But a number 
state representation (Fock state) is a particularly useful basis as will 
be evident momentarily [6,7,16,17]. Here, the quantum harmonic 
oscillators that make up the field go up and down levels by the value 
of photons. These are formally added or subtracted using annihilation 
and creation operators (that will be shown to typically have a linear 
relationship with the electric field operators). Therefore, state change is 
performed by very simple algebra making this basis advantageous. This 
is as opposed to working with, for example, position and momentum 
operators found in introductory quantum mechanics texts that are 
challenging to work with.

As stated, the field (which can be just the vacuum or the vacuum 
occupied by photons) will be described in terms of a bath of quantized 
harmonic oscillators. As has been previously performed, second 
quantization will be derived beginning from the Hamiltonian operator 
of a classical harmonic oscillator and then extending this as being 
analogous in form to Schrödinger’s time independent equation (STIE). 
We are pursuing the Hamiltonian to generate the quantized energy 
levels of the vacuum/field and express it in terms of the creation 
operators. There are more extensive derivations then the Hamiltonian 
using a Lagrangian and Maxwell's equations that would provide even 
further insight (and will be the source of discussion in future work), but 
derivations of this type can be found elsewhere and the Hamiltonian is 
sufficient for purposes here [18].

The classical Hamiltonian operator (one of several equivalent 
forms) for a classical, non-quantized harmonic oscillator is given by 
the kinetic and potential energy (here one dimension):

2 2ˆ 1ˆ ˆ
2 2
pH m x
m

= + ω  				                   (10)

where again the carrot means that this is in operator format. The first 
term containing momentum is the kinetic energy term and the second 
the potential energy. To put it in the form of STIE, momentum will 

be represented in its quantum mechanical equivalent p̂ i
x

∂
= −

∂
 . The 

equation then becomes STIE (one dimension):
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The equation is time independent with respect to observables (a 
constant of energy). So the classical Hamiltonian is analogous to STIE. 
The first term on the left of the equal sign (last equation) is the quantum 
analogy of the classical harmonic oscillator of momentum or mass 
times acceleration. The second term on the left of the equal sign is the 
potential; the equivalent of the spring constant times the displacement. 
The potential is represented by mass times the angular momentum 
squared (ω2) times the displacement operator squared. We will focus 
on the quantized energy solutions (and not the spatial solutions).

Three points about this derivation that is not representative 
of the remainder of the paper. First, the wave function is used here 
rather than a density operator staying consistent with convention for 
STIE presentation. But through the majority of the paper the density 
operator will be used to represent the state rather than the wave 
function, which accounts for complex mixed states. Second, we were 
working in the basis states of position and momentum, which we 
stated is challenging to use with a quantized optical field. This again 
is convention, only for the purpose for comparison with the common 
form of the classic harmonic oscillator, and we will be using Fock states 
through the majority of the paper. Third, we used the differential form 
but predominately we will be using Heisenberg’s matrix approach 
through the rest of the paper.

The position probability solutions for a quantum harmonic 
oscillator are not the point of interest in this paper. Instead, the energy 
states are the focus because this is what the field will be quantified in 
terms of.

The lowest energy state of the harmonic oscillator, from eqn. 11, is 
the vacuum that has non-zero energy (due to the uncertainty principle), 
where the energy of each angular frequency of the vacuum is given by:

1
2k kE = ω  					                   (12)

and the expectation value of the vacuum is given by the sum over 
frequencies (where k values included are controlled primarily by the 
volume):

1
2 k

k
E E= ∑ 					                  (13)

It will be discussed below that the frequencies allowed will largely 
be a function of the volume. The addition of photons (the EM field) to 
this vacuum will be dealt with in the next sections. Both the quantized 
vacuum and photons will be important in understanding the quantum 
properties for advancing OCT application.

Fock states and the quantum harmonic oscillator

We need base states for our quantum harmonic oscillator. As 
stated, position and momentum are difficult base states to work in. The 
coherent states representation made famous by Glauber would be an 
improvement and is used by many authors, but it involves operators 
that are not Hermititian and a coherent state basis that is not orthogonal 
[16,17]. A vastly simpler approach is the use of quantum number states 
(n) or Fock numbers. The number states can be viewed as equally 
spaced energy levels of the harmonic oscillator. The sequential energy 
levels of the oscillator are separated by the energy of a photon (hω).

Using the concept that the state energy increases in increments 
of photons, with definite photon number n (monochromatic 
representation), is given by:

1( )
2k kn n iE n= ω +  				                  (14)

This is the energy solution to Schrödinger’s equation (eqn. 11) 
for a monochromatic quantum harmonic oscillator. Expressed in the 
operator form for obtaining real values of states, the numerical values 
are replaced by Ê  and n̂ , described in more detail below. We will be 
using these operators throughout the remainder of the paper to generate 
observables. Here n is the photon number for a monochromatic state 
of a definite number of photons. The value of n is zero for the vacuum 
state at a given wavenumber and n is positive in the presence of an EM 
field.

But as with other observables in quantum mechanics, the number 
state can be in a superposition, so we cannot simply represent the 
number state by a specific number of photons but rather need a state 
vector n , and a number operator n̂ . The eigenvalues (n) are then 
given by:

ˆ i in n n n= 					                 (15)

Here in is the eigenstate that yields an eigenvalue n. Superposition 
of these eigenstates can occur analogous to, for example, spin states 
where the corresponding eigenstates are the Pauli spin states and 
operators are the Pauli spin operators. The number operator is also 
often referred to as the ladder operator (the energy levels are equally 
spaced like a ladder in this single oscillator example), separated by the 
value of a photon.

The derivation can be found in most elementary quantum texts but 
the number operator can be expressed in terms of the annihilation and 
creation operators (which we will use extensively):

ˆ ˆ ˆn a a+=  					                    (16)

These operators work on number states such to increase or decrease 
the energy and as well as photon numbers (monochromatic).

1

1

ˆ

ˆ 1

i i

i i

a n n n

a n n n

−

+
−

=

= +
 				               (17)

The first is the annihilation operator while the second is the creation 
operator. We are working in the basis of photon number so a number 
state (at a given wavenumber) can be built up from the vacuum using 
the creation operator:

1 ( ) 0
!

nn a
n

+=  				                  (18)

It should be clear that we could build any photon number (at a given 
frequency) up in this manner and that different numbers for different 
frequencies. But using the annihilation operator on the vacuum has no 
physical significance.

0 0 0a a+= =  				                  (19)

It should also be noted we could always convert this to the position-
momentum operator basis if necessary, where transforms exist between 
the two:

ˆ ˆ ˆ
2

ˆ ˆ ˆ
2

m ia x p
m

m ia x p
m

ω = + ω 

ω = − ω 





				                 (20)
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But it can be seen that, in the momentum-position basis, but it is no 
longer a simple matter of photon addition or subtraction.

The objective now is to express the quantum harmonic oscillator 
Hamiltonian in terms of the Fock states. So n̂ , â, and â+ will play an 
important role in our derivation of the field in terms of the quantum 
harmonic oscillator. The Hamiltonian for a single frequency, in terms 
of Fock states rather than position-momentum, is given by:

1 1ˆ ˆ ˆ ˆ
2 2

H n a a n n n+   = ω + = ω +   
   

   		               (21)

If n is a given number of photons of the same frequency, the 
Hamiltonian gives the energy operator. When looking at the harmonic 
oscillators containing frequencies over a finite range, the Hamiltonian 
becomes:

{ } { }
1

1ˆ
2k k kH n n n  = ω +  

  
∑  			              (22)

So the Hamiltonian is defined from the sum of the number states 

at each wavenumber. This gives a description of the state of the field 
in terms of harmonic oscillators and the quantized photon occupation 
at each frequency, the quantized EM field. This section quantizes the 
vacuum and EM field using modeling with the quantum harmonic 
oscillator. We will extend this concept later to represent the low 
coherence EM used in OCT, where we will be primarily focused on the 
state in terms of a photon numbers and the energy given by the electric 
field operators.

In much of the text, monochromatic single photons will be used, 
particularly with single photon interference. Larger number of photons 
will be used when we introduce coherence functions (both quantum 
and classical). The monochromatic single photon wave packet (ignoring 
polarization) is defined here:

ˆ1 ( ) 0a+
ω ≡ ω 					                  (23)

The 1 represents a single photon state. Obviously, the notion of a 
localized monochromatic wave packet has no classical analogy. This is 
because classically, a monochromatic wave would be infinite in extent 
rather than a packet.

Qualitative analysis of indistinguishable paths

The classical description of OCT or LCI is expressed in terms of 
superposition of wave fronts. But this does not explain, for example, 
single photon (or particle) interference or account for vacuum 
fluctuations, the latter being an important noise source. Vacuum 
fluctuations were accounted for in part in the description of the field as 
quantum harmonic oscillations in the previous section. In describing 
quantum OCT, we need to derive interference in terms of single 
photon events (because single photon interference is occurring) rather 
than superposition of wavefronts. Interferometry can be performed 
one photon at a time, which is not accounted for by the wave front 
superposition description. Critical to this analysis will be the 
fundamental relationship of path indistinguishability and interference, 
which will be dealt with here qualitatively and quantitatively in 
subsequent sections [19,20].

It will also be demonstrated that for first order coherence, 
interference is generated when single particles/photons have 
indistinguishable potential paths. Path indistinguishability is at 
the heart of all linear interferometers. The importance of path 
indistinguishability will first be illustrated qualitatively with a Young’s 

interferometer, as most are familiar with this experimental set-up from 
introductory physics courses (Figure 2). The same analysis holds with 
a Michelson interferometer (OCT) as will be seen, but the Young’s 
interferometer used initially simplifies the initial derivation (including 
eliminating issues associated with the beam splitters discussed below). 
We will then take the results and apply them to OCT.

The Young’s interferometer has a barrier of two slits that limits the 
action to two indistinguishable paths. We are ignoring the path integral 
of all potential paths that is not needed to demonstrate the principles 
[21]. In this Young's experiment, the source will be a neutron beam 
(rather than photons) entering the interferometer one at a time [22]. 
Neutrons are used instead of photons because it is easier demonstrating 
the influence of environmental interactions using collisions of particle 
with mass. We will not initially use massless photons as they are less 
susceptible to these environmental interactions. We could use photons 
but the design would need to be more elaborate. These environmental 
interactions will be used to demonstrate the relationship between 
path indistinguishability/distinguishability and interference. Also, 
the use of particles generally considered ‘solid’ further emphasizes the 
interference observed should not be considered the superposition of 
classical waves as described in the previous classical OCT section.

So in the classical description of Young’s experiment (Figure 2), if 
one or the other slit is blocked, the neutrons are registered on the screen 
with no interference pattern (NI). If both slits are opened, it is easy 
to appreciate if we were dealing with classical waves passing through 
the apparatus, an interference pattern will develop on the screen 
(I). If macroscopic billiard balls were passed through the setup, no 
interference (NI) is expected. But when a high intensity neutron beam is 
sent through; an interference pattern arises even though we view these 
as ‘solid’ particles. The concept of neutron interference is inconsistent 
with the classical concepts of particles, which don’t interfere. But 
even when only one neutron is coming from the source at a time, 
an interference pattern still develops on the detection screen, which 
is predicted naturally from quantum mechanics but is unexplainable 
by classical mechanics (which would predict the NI pattern). This is 
because quantum mechanics is predicting the interference of potentials 
(each indistinguishable path is a potential) and not intensity or classical 
‘solid particle’ propagation. But again in interferometry, all first order 
coherence is interference of single particles (including photons and 
neutrons) along indistinguishable paths (potentials). Paraphrasing 
Dirac, a photon can only interfere with itself. So two ‘beams’ do not 
actually interfere as in the classical description of OCT, which we will 

Figure 2: Illustration of Young’s interferometry. In the figure, I represents 
interference, NI no interference, and E environmental interactions. A, B, and C 
are described in the text.
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demonstrate quantitatively. Rather, although a more abstract concept, 
we can say the indistinguishable paths the particle has available can 
interfere (broadly, the path or field integral).

To illustrate the counter-intuitive relationship of indistinguishable 
paths and coherence, this Young’s experiment will be examined with 
both environmental interactions (decoherence) and by moving the 
position of the detection screen (relative to the interactions). Later this 
principle of path indistinguishability (rather than combining beams) 
will be extrapolated to the interferogram of quantum OCT. In this 
description and Figure 2, the E term will represent the environmental 
interactions/entanglements in the interferometer, such as collisions 
with a perpendicular electron beam. If we initially ignore the E terms 
(environmental interactions/entanglements), the pattern on the 
screen demonstrates interference that, as well will see, comes from 
the off-diagonal terms in the density operator. Now, if E1 and E2 are 
substantially different, such as when collisions with particles occur of 
significantly different momentum, the third and fourth terms disappear 
and the paths become distinguishable. The neutrons would then have 
different momentums depending on the path. Interference is lost in 
this simple example of environmentally induced decoherence (which 
occurs now that the paths are distinguishability based on momentum 
at the screen) [23-25]. The amount of difference between the E terms 
(environmental entanglement terms) affects the degree to which 
coherence (and interference) is lost (fringe visibility on the screen). If E1 
and E2 are similar such as near identical particle collisions, the paths are 
still indistinguishable even though environment interactions occurred 
(paths indistinguishable at the screen/detection), and the interference 
pattern is maintained. Therefore, environmental entanglements do not 
necessarily lead to loss of interference if they are compensated for before 
measurement. Examples of this are the well-known quantum eraser 
and delayed choice experiments [26,27]. So path indistinguishability 
results in interference at the point of measurement and will still occur 
with environmental interactions as long as they occur in such a way 
that it cannot be determined which path the neutron took (a core but 
often unappreciated quantum mechanics principle).

So in this simple example examining path indistinguishability, again 
the interactions with E represents decoherence (which can be reversible 
or irreversible) while the interaction with the screen represents 
measurement (irreversible) as discussed in Appendix A. Furthermore, 
the counter-intuitive and critical nature of indistinguishability can be 
illustrated if the screen is placed at A, B, or C with identical E1 and E2. 
If the screen is placed in either the A or C positions, an interference 
pattern will result but when in position B, interference is lost. This is 
because the paths are distinguishable at B as neutrons in each path 
have different momentum due to different environmental interactions. 
Even more poignant, if the screen is moved from B to C during the 
experiment, the interference pattern is recovered and decoherence 
reversed (paths go from distinguishable to indistinguishable). So 
interactions do not necessarily lead to loss of interference if they 
are compensated for before measurement is made. This recovered 
interference is also essentially the same phenomena behind the well-
established quantum erasers and delayed choice experiments [26,27]. 
In addition, this reversibility of decoherence is used in the fields of 
quantum computers and information systems to preserve information, 
and may have a role in OCT [28]. The key aspect is that coherence is 
lost when the two paths are distinguishable at measurement.

Single photon interference along indistinguishable paths, the 
basis of OCT

In a previous section, we represented the EM field (including 

the vacuum) in terms of quantum harmonic oscillators. We also 
qualitatively demonstrated single photon interference and path 
indistinguishability, including their role in first order correlations. In 
this section, we formally demonstrate why indistinguishable paths, 
particularly in linear interferometers such as those used with OCT 
and low coherence interferometry (LCI), are required for interference. 
We will be using single photons entering an interferometer one 
at a time for the initial analysis. So it will also be emphasized that 
most of the ranging achieved with OCT is predominately the linear 
superposition of large numbers of these single photon interferences 
(along indistinguishable paths). Again we are emphasizing that it is 
indistinguishable paths of a single photon and not ‘recombining high 
intensity beams’ that results in the interference with OCT. A single 
photon can only interfere with itself. In a subsequent section, through 
this analysis of single photon interference and the quantum harmonic 
oscillator, we will show a direct correspondence between the quantum 
and classical first order coherence function at high photon numbers. 
But before we make the comparisons with the correlation functions, 
we will examine single photon interference in the form of the classical 
OCT intensity interference equations above (1, 63-64).

In much of the text (and this section), monochromatic photons will 
be used to illustrative principles without loss of generality. Reviewing 
them again, the monochromatic single photon wavepacket (ignoring 
polarization) is define here:

ˆ1 ( ) 0a+
ω ≡ ω  				                (24)

The 1 represents a single photon state. This has no classical analogy. 
Obviously, the notion of a localized monochromatic wave packet has 
no classical analogy. This is because classically, a monochromatic wave 
would be infinite in extent rather than a packet. It should be noted that 
an equivalent representation of the single photon, which also has no 
classical analogy, is the superposition of weighted Fock states. Since 
they are equivalent, the interested reader can find this representation 
elsewhere (eqn. (8)).

But it will be demonstrated in subsequent sections that the ease of 
transition to the higher intensity sources of LCI and OCT (from single 
photon events) is straightforward. All linear first order coherence is a 
sum of single photon events (where you are simply summing the single 
photon events of different angular frequencies and amplitudes). This 
will be significantly more complex with second order coherence (ex: 
entanglement) where the bi-photon (dealt with in part II) can have 
very different behavior from a photon. Here a bi-photon is a photon 
pair (behaving as a single particle) that can only interfere with itself. 
While a first order coherent phenomenon almost always is the same for 
quantum and classical mechanics at high intensity, this is not true for 
second order correlations as will be discussed in section II.

This following section on single photon interference is partly 
based on extrapolating to OCT the pioneering work of Mandel for two 
sources [21,29]. From a quantum mechanical level, a beam splitter is 
not splitting intensities (as you cannot split a single photon). So we 
need to discuss some of the quantum physics of a beam splitter. When 
discussing quantum noise later in the text, events at the beam splitter 
become important, much of which involves single photon interferences.

We limit ourselves to the simplest case of interference of two single-
mode fields entering a beam splitter, as illustrated in Figure 3, and being 
recombined after reflection in the arms of the OCT interferometer. 
The field is reduced such that a single photon enters one port of the 
beam splitter from the source and the other port vacuum fluctuations 
are entering (vacuum fluctuations from the source port can be ignored 
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for reasons to be discussed). We will treat the vacuum fluctuations 
as homogeneous until the quantum noise section. The vacuum will 
therefore be labeled the 0 state out of convention but we already noted 
this represents nonzero energy.

In Figure 3, the ‘a’ path is from the source and the ‘b’ path is the 
vacuum (later we will be using a second source to reduce vacuum 
fluctuation, a technique known as squeezing) [30,31]. The two potential 
photon paths after the beam splitter are 1 and 2. The quantum state 
after the beam splitter (again the entire state we start out with is a wave 
function with just a one photon state) is represented by:

( )
1 2 1 2

2 2

1 0 0 1

1

β

β

ψ = α +

α + =
 			                 (25)

This is a single photon in a coherent superposition state between 
the two arms of the interferometer, with a probability of measurement 
α 2 in arm one or in the other arm β2. But the two possibilities are 
intrinsically indistinguishable. With respect to this analysis several 
points should be made:

1.	 We will deal with phase changes from the beam splitter in later 
sections. Reflection and transmission have different phases.

2.	 A topic that we will be addressing later in detail is the influence 
of vacuum fluctuations through the detector port (b in Figure 
2). But for analysis here, we will consider them insignificant. For 
first order correlations we will see these vacuum fluctuations 
primarily representing a noise source that operates through 
photon pressure at the ends of the interferometer (here the 
mirrors). However, they are not critical to the discussion of 
indistinguishable paths/coherence relationships at the beam 
splitter for first order correlations (though they will be for 
second order correlations).

To reiterate a point, with OCT first order coherence, photons are 
entering through one port of the interferometer from the source and 
vacuum fluctuations are entering through the other detector port. We 
want to find the density operator for the one photon system in eqn. (25) 
which is given by the general equation:

ρ̂ = ψ ψ 					                 (26)

The statistical information that describes the state of the quantized 
EM field is implicitly contained in its density operator. It should be 

stated that, unlike most operators, the density operator (ρ) may or may 
not have a carrot above it but it is always an operator. It is an operator 
in Hilbert space as described above. For indistinguishable paths, the 
density operator takes the expanded form:

2 2 *
1 2 1 1 2 1 1 2 1

ˆ 1 0 0 1 0 1 1 0 1 0 1 0 . .Q h cρ β αβ= α + + +   (27)

Where h.c. is the Hermititian conjugate. A critical point is that even 
though there is only one photon, the last two terms are a superposition 
between paths that interfere (interference is occurring). Quantum 
mechanics predicts interference in this situation even with only one 
photon. The two occupation states are interference terms as they are 
not factorizable into independent components (3rd and 4th terms on the 
left of the equal sign). These interferences terms are the off diagonal 
elements of the matrix and are coherences. Classically their value 
would be zero but in quantum mechanics, the off diagonal terms have 
finite values.

On the other hand, when the paths are distinguishable the cross 
terms (α β* and β α*) go to zero. In principle, there exists, when the cross 
terms go to zero, an experimental set-up that allows determination of 
which arm the photon transversed. An example would be if the photon 
was frequency shift in one path or the other. Then the classical density 
operator has the diagonal form with off diagonal terms equal to zero 
(both alternatives are real and distinguishable):

2 2

1 2 1 1 2 1 2
ˆ 1 0 0 1 0 1 1 0cρ β= α +  		                 (28)

This results in an incoherent classical mixture of states. In eqn. 
28, off diagonal terms or coherence are lost because the last two 
coefficients go to zero so in principle, which path the photon took can 
be determined. In other words, the photon is in state one or two and 
not a superposition.

So these general results (with different constants) of eqns. 27 and 28 
can be applied to either a Michelson’s Interferometer (with OCT) or a 
Young’s Interferometer. So taking the Young’s interferometer, eqn. 27 
states that an interference pattern will occur on the screen, even though 
the photons are coming one at a time, when it cannot be determined 
which path they came from. But if we can determine the path, eqn. 28, 
such as with a slight frequency shift in one arm, the interference pattern 
is lost.

Now consider an arbitrary one-photon state within the given 
Hilbert space with the normalization terms expressed with density 
operators:

11 22 121 2 1 1 2 1 1 2 1
ˆ 1 0 0 1 0 1 1 0 ( 1 0 1 0 . .h cρ ρ ρ ρ= + + +   (29)

Again, the advantages of density operators over wave functions are 
that they can be extended to mixed states. Then we are going to divide 
eqn. (29) into probability of 27 or 28, the probabilities of quantum 
versus classical.

ˆ ˆ ˆ

1
Q Q

Q C

P Pc c
P P

ρ ρρ = +

+ =

By equating matrix elements on both sides of this equation, we find 
that

2
11

2
22

*
12 QP

ρ

ρ β

ρ β

= α

=

= α

					                 (30)

from which it follows that through 20, 21, and 22,

Figure 3: Illustration of the quantum beam splitter described in the text. One 
(1) is the source port and 2 is the detector/vacuum fluctuation ports.
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αβ∗=(ρ11ρ22)
1/ 2exp(iargρ12 )

PQ=[ρ12/(ρ11ρ22)
1/2]exp(−iargρ12)

=ρ12/(ρ11ρ22)
1/2					                         (31)

It can be seen that indistinguishability is directly related to the cross 
density operators (coherence terms). When the ρ12 (and it’s complex 
conjugate) goes to zero, so does theindistinguishability (quantum) 
and vice versa. PQ is a measure of the degree to which the paths are 
intrinsically indistinguishable in the general quantum state ρ.

OCT Correlation Functions (Classical and Quantum 
Mechanical)

In the previous paragraphs we introduced the quantum field 
approach to the EM signal and single photon interferences in particular. 
In this section we will develop both classical and quantum OCT theory 
in terms of the coherence functions. We will then compare both 
coherence functions derivations, which allows classical and quantum 
mechanical polychromatic comparisons between the approaches.

OCT classical correlation functions

OCT uses a Michelson interferometer where we will refer to the 
arms as reference (r) or sample (s) instead of 1 or 2. In the discussions 
that follow, it is assumed that all quantities are stationary. Stationary 
means that the time average is independent of the time of origin chosen 
(we are dealing with high intensities and not individual photons). The 
intensity of interference at the detector in a Michelson interferometer 
from a monochromatic source is given by (derived above, eqn. (1), and 
elsewhere) [1]:

ID=1/2 Iso+1/2 IsocosΘ=1/2Iso(1+cosΘ) 		             (32)

For the classical description we are describing interference in terms 
of intensity (or at times the electric fields), Iso is the intensity of the 
source. When Θ (which can represent a time or distance mismatch) is 
equal to zero, the intensity at the detector (ID) becomes Iso. When Θ is 
±!, the intensity at the detector is zero.

Next we examine eqn. 32 with a polychromatic source (without the 
distribution defined). So we are now going to modify eqn. 32 so that it 
contains an infinite number of wavelengths separated from each other 
by an infinitely small amount (1):

ID= (1/2)∫0
∞Iso(k)(1 +cos )dk		                               (33)

Since ω and k are proportional to one another, we can switch 
between them in the derivation as needed. Using a cosine identity 
and letting Θ equal to kx where x is the path length difference in the 
interferometer arms, eqn. (33) can be re-written as:

0 00 0

0 0

1 ( ) ( )( )
2

1 1 ( )
2 4

ikx ikx
D S S

ikx
S S

I I k dk I k e e dk

I I k e dk

∞ ∞ −

∞

−∞

= + +

= +

∫ ∫

∫
		               (34)

Here Iso(k) is the sources power at a given value of k and total power 

Iso equals∫0∞I(k)so. Ignoring the first term after the equal sign, which is 
the DC signal, the autocorrelation function is given by:

G(1)
rs=∫Iso(k)eikxdk			                               (35)

The superscript 1 represents the first order coherence. This gets to 
the heart of how OCT and LCI function. OCT measures the classical 

autocorrelation function and uses it to represent backreflection. The 
backreflection data is then plotted in two dimensions in a manner 
analogous to ultrasound.

For OCT the source ideally is Gaussian that leads to a Gaussian 
autocorrelation function (optimal for plotting backreflection data). The 
classical autocorrelation function (in terms of the time delay) can also 
be represented more conveniently with respect to mismatch than the 
integral by:

G(1)
rs=‹Er(t) Es* (t+τ) ›T	  		    	                    (36)

Here τ is the time delay between the two interferometer arms, the 
Es are the complex random electric fields, and Τ is the time average. 
It can be normalized (so it is no longer a function of intensity) to the 
complex degree of coherence (classical) is:

g(1)
rs(τ)=G(1)

rs/IrIs			                	                    (37)

Eqn. 34 can now be written more generally in terms of a correlation 
function:

ID=(1/2)Ir+(1/2)Is+Re g(1)(τ)rs √IrIs                                                                                      (38)

This is a normalized function so that the real part of it has values 
from 0 to 1.

The values of the degree of coherence are classified as follows:

g(1)
rs= 1 	 coherent limit

g(1)
rs= 0	 incoherent limit

0< g(1)
rs< 1 	 partial coherence.

Before discussing the form of the coherence function for a Gaussian 
source power spectrum (the ideal OCT source), the concepts of a 
coherence time and length are addressed. These are critical to ranging 
with OCT and are dependent on the power spectrum of the source.

More detailed derivation of the classical coherence time can be 
found elsewhere [1]. Defining the width of a function is somewhat 
arbitrary (you have to define it), so we will use the power equivalent 
width:

21/ 2 ( )ct g d
∞−

−∞
≡ π τ τ∫  				                 (39) 

The coherence time can be described approximately as the time 
over which the EM field is relative constant and therefore can interfere 
with itself. The EM is relatively constant with respect to the amplitude 
and phase of the various frequencies. So, using classical language, if 
light down both arms of a Michelson interferometer travels the same 
transit time (within the coherence time), on recombination at the beam 
splitter interference occurs. However, if the relative delay (τ) between 
arms is greater than coherence time, no interference occurs. This 
allows ranging to be performed. The distance light travels during the 
coherence time is referred to as the coherence length (lc) and is found 
by multiplying the coherence time by the speed of light. So if in an 
OCT system light from the reference and sample arm travel the same 
distance to within the coherence length, interference will occur. We 
have seen from quantum mechanics, the more precise definition is that 
if the paths available to a photon are indistinguishable, including path 
length, single photon interference occurs. The intensity of interference 
is used to represent back reflection intensity and the two-dimension 
back reflection profile is used to give structural detail (analogous to 
ultrasound).

For monochromatic light, the coherence length is infinite. As 
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described elsewhere, when the source spectrum is Gaussian, optimal 
ranging is achieved. When the source spectrum (S) has the form of a 
Gaussian function, it can be written as:

2
1/ 2 0

0 2 2

2 ( )( ) ( ) exp[ ]
2

S A
ω ω

ω − ωω − ω
σ

π
= −

σ
 		                 (40)

From 35 and 37, we can obtain the normalized correlation function 
for a Gaussian source spectrum (derived in detail elsewhere):

( ) ( ) ( )2 2
0exp / 2 expg iτ σ τ ω τ= −  			                 (41)

Or in terms of the coherence time (τC):

( ) ( )2
0 /1 2( ) e ci

g
πω τ τ τ− −

τ =  				                (42)

We will see that quantum mechanics generates the same results 
for the coherence function. But unlike the classical explanation of 
interfering intensities, quantum mechanics also effectively explains 
phenomena like single photon interference. But, in part II, we will 
see where the behavior of second order correlations at large photon 
numbers can deviate from classical predictions. These second order 
phenomena offer the potential to expand the diagnostic potential of 
OCT.

OCT quantum correlation functions

In the previous section, we demonstrated the classical correlation 
function used with OCT ranging. This classical function does not 
account for quantum effects such as single photon interference (which 
is actually the basis of all first order correlations), demonstrating that 
it is a limited description. In this section, we will develop a correlation 
function that is quantum mechanical in origin, yet still incorporates 
the features of classical mechanics. The quantum correlation function 
can be expressed with the use of electric field operators, Fock states, 
and density operators (rather than the intensity form of the previous 
sections). It will use the quantum harmonic oscillator model. Though 
we will begin with single photons we will progress to large photon 
numbers in a Gaussian frequency distribution.

We will start with the electric field operators. Ê+(r) can be viewed 
as analogous to the analytical electric field in classical mechanics. 
Incorporating all constants into a constant K, the Ê+(r) at a position r 
in either arm of the beam splitter can be expressed as:

( )ˆ ˆ( ) 1,2j jE r Ka  j =+ =  				                   (43)

This is an extension of eqn. (21). The value of K is defined below but 
the focus is (of eqn. (43)) the linear relationship between the operators. 
The operator Ê- (rj), the complex conjugate of Ê+(r), is proportion to the 
creation operator â+

j (photon emission) so that the total electric field 
operator is given by:

( ) ( )ˆ ˆ ˆ( ) ( ) ( )E r,t E r,t E r,t+ −= + 			                  (44)

In a more complete description below, the electric field operator 
works on the density operator to yield the ensemble average of the field. 
Photon correlations are measured during detection, where a photon 
is lost from the field. In other words we are interested in the OCT 
field at the detector. So the derivation is primarily in terms of the Ê+ 
operator (and therefore proportional to the annihilation operator) on 
the field as photons are being destroyed at the detector. The initial state 
before absorption is i (not to be confused with the imaginary number 
i) while the final state is f. We will replace these with wave functions 
(for pure states) and density operators (pure states and mixtures) 
shortly. Therefore, the transition rate of an absorbing detector atom 
(an intensity) is given as per Glauber by [16,17,32]:

( )
2

1( ) ( )u r,t f E r,t i+=  			                (45)

The quantity is squared because u(r,t) is a photon counting rate 
(absorption rate for a given final state) or the expectation value of the 
operator. It is obviously proportional to the intensity measured at large 
photon numbers. So again, we are deriving a correlation functions 
in quantum mechanical formalism using field operators to yield the 
detected fields. Since the distribution of final states in eqn. (45) can 
almost never be measured, we can express the detection rate in terms 
of the field operators and initial states only:

( )

( ) ( )

( ) ( )

2

1( ) ( )

( ) ( )

( ) ( )

f

f

u r,t f E r,t i

i E r,t f f E r,t i

i E r,t E r,t i

+

− +

− +

=

=

=

∑

∑ 		                (46)

The summation is for all possible f for each given i. The utility of 
the equation can be further extended to include the probability of all 
possible initial states such that:

( ) ( )
1( ) ( ) ( )I

i
u r,t P i E r,t E r,t i− += ∑ 		                (47)

Using the initial (i) and final states (f) are convenient for expressing 
the theory but now we want to express states in terms of the density 
operator. We will use the convention of a wave function to represent a 
pure state and the density operator is the sum of the pure states (where 
the sum can be just one pure state so a pure density operator).	
Then the expectation value can now be expressed in terms of the density 
operator (which compasses all initial states and their coherence) using 
the general derivation:

ˆ ˆ

ˆ

ˆ ˆˆ ˆ

n n n
n

n n
ij n

ij ij
ij

O p O

i i O j j

O Tr Oρ ρ

= Ψ Ψ

= Ψ Ψ

 = =  

∑

∑∑

∑

 			                (48)

Here Ô is an operator, Tr is the trace, ρ is the density operator, 
the wave function is a pure state, and pn is a probability function. 
The statistical information that describes the state of the quantized 
electromagnetic field is implicitly contained in its density operator. So 
now combining eqns. 47 and 48 we obtain for the expectation value:

( ) ( ) ( ) ( ) ( )1 , , ,u r t Tr E r t E r tρ − + =    			                 (49)

So we have a quantum way of assessing the field at the detector. 
With OCT we are interested in comparing the analytic field with itself 
in terms of either a distance or time delay. In practice, what is measured 
through eqn. (49) is a statistical average, the correlation function. So 
the first order correlation function (the autocorrelation function) can 
be defined as (ex: in terms of time delays):

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 2 1 1 2 2

1 1 2 2

1 1

, ; , ,

, ,

, ,

G t Tr E t E t

E t E t

E t E t +

ρ

τ

− +

− +

− +

 =  

=

=

r r r r

r r

r r

 		                 (50)

Where τ is the difference in time propagating at the detector after 
traveling through the interferometer. The complex degree of coherence 
or the normalized first order degree of coherence (with respect to 
delay) is (normalized for the intensity):



Citation: Brezinski ME (2017) A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single 
Photon Interference, and Quantum Noise. J Laser Opt Photonics 5: 176. doi: 10.4172/2469-410X.1000176

Page 10 of 16

Volume 5 • Issue 1 • 1000176
J Laser Opt Photonics, an open access journal
ISSN: 2469-410X 

( ) ( )
(1)

( ) ( ) ( ) ( )

( ) (
( )

( ) ( ) ( ) ( )

E t E t
g t

E t E t E t E t

− +

− + − +

+ τ
=

+ τ + τ
 	              (51)

This can be further simplified by dividing out K and expressing it 
in terms of the annihilation operators (here for a radiation field in a 
single mode):

(1)

(1)

( ) ( ) ( )

( ) ( )
( )

G a t a t

a t a t
g

a a

+

+

+

τ = + τ

+ τ
τ =

 				                (52)

We have now developed the OCT coherence function from both 
a classical and quantum mechanical basis. This gives us insight to the 
limitations of the classical OCT coherence function discussed in the 
next section.

Relationship between the quantum and classical OCT 
correlation functions

We have presented the classical and quantum mechanics of 
linear interferometry with first order coherence, the latter using the 
quantum harmonic oscillator and single photon interference. In the 
limit of high photon counts, unlike second order correlations, they 
demonstrate the same behavior so this is of little interest (we are 
treating position probability amplitude of the target as a separate 
issue). But at low photon counts the quantum behavior of first order 
correlations becomes very significant. As a building block for both the 
remainder of the paper and subsequent work, we will demonstrate 
that the classical OCT intensity interference eqn. (35), autocorrelation 
function, and Gaussian autocorrelation function can be reproduced by 
the accumulation of single photon interferences alone (representing 
the photon field as quantum harmonic oscillators).

In the limit of high photon numbers, almost all linear quantum first 
order correlations reduce to classical first order correlation results. This 
is not true for non-linear interferometry, as ours and other groups have 
shown [33-35]. Again, it is also not true for second order correlations 
as will be seen in the part II that will likely be an important area for 
advancing OCT’s diagnostic capabilities.

We will go back to a single photon pure state to generate the 
coherence function. It represents a superposition of the single 
monochromatic photon in either arm of the interferometer. Again, we 
are ignoring phase and polarization changes by the components as they 
do not influence the theory:

1 2 1 2

1 ( 1 0 0 1 )
2

i = +  			                  (53)

From the previous section, the first order correlation function, for a 
Michelson interferometer with a given phase delay, is given by:

(1) ( ) ( )( , ) ( , ) ( , )G r r i E r t E r t i− +′ ′=  		                (54)

Assuming an absorptive process (the final state of the field is a 
monochromatic vacuum state), combining 53 and 54:
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The electric field operators are given by [derived in reference [16]:
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This allows the following wavefunction to be calculated (from eqns. 
55 and 56):
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				               (57)

The two exponentials result from propagation in the two arms of 
the interferometer as in eqn. (56) and their form (plane wave, spherical 
wave, etc.) is absorbed in the constant C. In addition, all constant terms 
not critical to the discussion are placed in the constant C. Now using 
eqns. (56) and (57), through a common trigonometry identity, the 
exponential can be converted into a cosine such that:

G(1)= D(1+cos[k(r − r ')])				               (58)

=D(1+cos[k∆l])

D(1+cosθ)

The D term simply represents the C constant times numerical 
constants (not needed for the discussion) added in the conversion. The 
term Θ has been used here to represent the phase mismatch (time or 
distance) at the point of detection between arms. This mismatch can 
be in either the time or spatial domain. Eqn. 58 yields the classical 
interference equation (derived above) for the OCT Michelson 
interferometer (assuming a 50:50 beam splitter, perfect reflection in 
both arms, and monochromatic light) where ISO is the intensity of the 
source [1,30]:
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				                 (59)

So both the quantum and classical OCT coherence function 
express first order coherence as a constant times 1 plus the cosine of 
the mismatch angle. The quantum coherence function was generated 
from single photon interference rather than the ‘combination of two 
beams’. So whether photons are coming one at a time or at a high 
intensity beam, eqns. 33 and 59 give the same intensity variations 
with mismatch. This emphasizes that all first order coherence (with 
a linear interferometer) are the linear superposition of single photon 
interferences. The same holds true for polychromatic high intensity 
ranging with OCT as we will see in the next few paragraphs, but we will 
express the comparison in terms of the correlation function.

We now move forward in a relatively straightforward manner to a 
Gaussian autocorrelation function where single photon interferences 
use photons with a Gaussian frequency distribution. Part of this relates 
to the interferometry work of Saleh and Teich, though that did not 
involve OCT or LCI. Three points, important to this derivation, have 
already been made. First, based on the discussion to this point we are 
dealing with broadband high intensity interferometry that is a linear 
sum of the superposition of single photon interference events. Second, 
interference can be described in terms of density and electric field 
operators, using the Fock state (annihilation operator) basis. Third, 
with both the quantum mechanical as well as the classical approach 
to OCT, the autocorrelation function is proportional to the Fourier 
transform of the source spectrum. So a Gaussian source spectrum leads 
to the optimal autocorrelation function (Gaussian).

The OCT signal can be constructed from wave-packet modes that 
are built from weighed super positions of the monochromatic modes 
of the field. The analysis will be in one dimension. A polychromatic 
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annihilation operator can be constructed from the various annihilation 
operators and their frequency distribution {ε (ω)}:

0
ˆ ˆ( ) ( ) ( )A a + dε ε ω ω ω

∞
+ = ∫  			              (60)

As above, this is proportion to the electric field operator as 
discussed earlier. In OCT the ideal normalized distribution function 
ε (ω) is Gaussian based on the source characteristics and is given by:
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We define σ as the full width half maximum of the spectrum. The 
distribution function can be normalized via:

2

0
| ( ) | 1dε ω ω

∞
=∫ 				                   (62)

We now reintroduce the state initially with the monochromatic 
single photon wavepacket (as above):

|ˆ1 ( ) 0aω ω+≡  				                   (63)

This has no classical analogy but plays an important role in 
quantum mechanics. Using the definition of the wavepacket operator, 
the OCT polychromatic single photon wave packet is given by:

0
ˆ ( ) 0 ( ) 1A dωω ε ε ω ω

∞
Ψ ≡ + = ∫ 			                (64)

So again we are dealing with single photons. Again, the 
autocorrelation function is given by:

(1) ( ) ( )ˆ ˆˆ( , ) ( ) ( ))G t Tr E t E tτ ρ τ− + ≡ +  			                (65)

Where the density operator is again given by (using the Gaussian 
distribution of eqn. 61):

ˆ ω ωρ = Ψ Ψ  				                   (66)

The normalized coherence function is given by:
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The solution for this complex degree of coherence (for the Gaussian 
distribution) is therefore given by:

g(τ)=exp(−σ2τ2/2)exp(iω0τ) 			                 (68)

This is the same result as for the classical derivation. But it was 
done using a density operator of single photon interferences with a 
Gaussian frequency distribution and a quantum harmonic oscillator 
representation (eqn. 11). The coherence time again is defined as:

2
1/ 2 ( )ct g dπ τ τ

∞−

−∞
≡ ∫  				                (69)

For a Gaussian function then, the coherence time can be rewritten as:
1

ct σ
= 				     	              (70)

So for OCT (ignoring constants for phase and polarization changes 
from optical components), ranging was effectively modeled using a 
quantum field approach was performed using a quantized harmonic 
field and single photon interference. We will see how this yields 
different results for noise in the system than a classical approach.

Application of Quantum Optics to Advancing OCT: 
Quantum Noise Reduction

In the previous sections, we built the foundations for advancing 
OCT through quantum optics. In the remainder we will focus on the 
practical application of this to OCT imaging, primarily where single 
photon interference provides insights into quantum noise reduction. 
An additional reason for writing this section is, in addition providing 
a first description of quantum noise sources in OCT, it gives a sense of 
the degree of experimental and theoretical work that still needs to be 
done specific to OCT.

General

The primary reason for our group studying quantum OCT is 
second order correlations and spread of the position probability 
density, which are dealt with in part II. We believe these areas will 
expand OCT’s diagnostic imaging capabilities. But there are other areas 
where quantum OCT can lead to advances in diagnostic capabilities. In 
this paper, we will provide an example where first order correlations 
give insights to improve diagnostic imaging and where research effort 
is needed. This is the area of quantum noise sources and the quantum 
noise limit. This determines the theoretical limit of the OCT signal 
to noise ratio (SNR) and it is primarily a function of single photon 
interferences/first order correlations. In the field of gravitational wave 
research (which will provide insights into OCT), field strengths with 
Michelson interferometer measurements are very low so much effort 
has successfully gone into reducing noise below the standard quantum 
limit (SQL). We will discuss quantum noise first qualitatively and the 
quantitatively. But work in both theory and application is needed in 
OCT quantum noise beyond that extrapolated from the gravitational 
field work, which will be discussed.

People often use the phrases ‘optical shot noise’ and ‘optical 
quantum noise’ synonymously. But the definition of optical shot 
noise, whose origins dates back to the 50s, the author has found to be 
inconsistent in the literature so it will not be used here. As our group 
has done with previous work, for OCT the term optical quantum noise 
will be used instead. There are also many misconceptions about optical 
quantum noise. It is commonly stated that it is the “the process of 
random absorption of the EM field by the quantized detector atoms” 
(which is how some define shot noise). This ignores the fact the EM 
field is already quantized so quanta are being absorbed by the detector 
and not a continuous field. For OCT, we will define quantum noise 
as either optical energy or target position fluctuations that decrease 
the accuracy of ranging information and are not predicted by classical 
mechanics. Remember from the discussion above that photons 
entering the beam splitter individually (we are using a Michelson 
interferometer), even at irregular intervals, will result in single photon 
interference when paths are indistinguishable. In other words, first 
order coherence is not dependent on constant photon number per unit 
time. This can be seen from eqns. (55) and (57-58). Quantum noise 
is generated primarily from photons that travel distinguishable paths 
(we will be focused here on single and not bi-photons as above). This 
can be viewed as photons that either do not undergo interference (but 
are detected) or are applying asymmetrical photon pressure to each 
arm (increasing position probability amplitude uncertainty in that arm 
and therefore variable ranging [z]). These turn out to be equivalent. 
The position probability uncertainty in the target is a complex issue. 
The position probability uncertainty of the target, using a mirror as 
an example, is complicated by the fact the object can behave as if it is 
one macroscopic object or much smaller subdomains (even individual 
molecules). The latter has a much greater amplitude than the former. 
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Factors influencing the position probability amplitude include effective 
mass, decoherence, second order correlations, and entanglement. So 
this will be dealt with briefly below but predominately in part II.

In this section, we shall be concerned primarily with two types of 
quantum errors. These are photon counting errors (PCE) and vacuum 
fluctuations entering through the detector port (in addition to some 
discussion of position uncertainty). They are explained in detail below. 
These two are believed to be the two major mechanisms of quantum 
noise in the EM field.

Before looking at specific quantum noise sources, we can just 
examine the theoretical limit posed by Heisenberg’s uncertainty 
principle. The standard quantum noise limit (SQL) is the limit for 
the conjugate pair (ex: intensity-phase, momentum-position) by the 
uncertainty principle. But it should be remembered that this can be 
reduced in one of a given quadrature pair at the cost of increased 
uncertainty of the other, called squeezing [36-38]. The SQL is 
approximately equal to the PCE and radiation-pressure from vacuum 
fluctuations entering the detector port of the beam splitter [36-38]. A 
general approximation is that, for a measurement of duration τ, the 
probable error in the interferometer’s determination of z (mirror 
position) can be no smaller then the SQL, which is approximately 
[36,37]:

1/2( ) (2 / )SQLz m∆ = τ  				                 (71)

This limit results from a direct extension of Heisenberg’s uncertainty 
principle applied to the quantum mechanical evolution of a free mass. 
Three initial points with regard to this limit. First, this is intended to 
represent the minimal approximate quantum noise. The quantum 
noise can be significantly higher. As one example, backreflection off 
an inefficient detector surface where light energy is mixing with the 
vacuum fluctuations at the beam splitter can increase noise above 
the predicted SQL. Second, again for a given quart ature pair, one of 
the pair can be reduced below the SQL at the expense of the other. 
Third, there are situations where the mass (m) can’t (or shouldn’t) 
be represented by the entire target mass (ex: mirror) but individual 
molecules or subdomains. This is dealt with in part in the next section 
and more detail in part II.

Quantum noise source: Qualitative

Position probability amplitude uncertainty: Before discussing 
vacuum fluctuations and PCE as quantum noise sources, we will briefly 
touch on position probability amplitude uncertainty. When thinking 
about an object’s position for ranging, for example mirrors in both 
arms, we tend to view them as classical with well-defined positions 
and borders. But each molecule and subdomain, as well as the entire 
object, have a position probability amplitude and are not a well-defined 
position.

We normally consider position uncertainty of an entire entity by 
the uncertainty principle, using it either in the form of the standard 
quantum limit (above incorporating detection time) or the instantaneous 
traditional Heisenberg representation dx≥h /4πmdv where dx is the 
position uncertainty, m is the mass, and dv is the velocity uncertainty. 
So the tendency is to think of an object like a large mirror to have an 
almost unappreciable uncertainty. However, it is far more complicated 
than this which is rarely considered. First, many large objects (like 
mirrors) often behave as consisting of subdomains or even a collection 
of individual molecules (many rather than a single component). How 
the object behaves can be influenced by the field (ex: second order 
correlations can cause a mirror to behave as small domains) [3]. When 

the object does not behave as a single unit, the mass and uncertainty 
of these regions are much larger than those anticipated for the whole 
mirror. Second, as demonstrated by a seminal study of decoherence, 
Joos and Zen showed while decoherence localizes (establishing one 
eigenvalue) it does so in individual units or subdomains [4]. Therefore, 
while an individual particle or entity can be localized by decoherence if 
they are part of a larger object like a mirror, the larger object (summed 
over these smaller subsystems) can be spread over a wider region of 
space (much higher uncertainty). Third, in studies from the group at 
BU using entangled photons and thermal second order correlations 
by our group, interference was noted between reflectors separated by 
millimeters even though the coherence lengths were less than 20 µm 
due to the spread of position probability density [3,5]. In both cases, 
it was felt a very broad spread of the position probability amplitude 
was taking place due to second order correlations [3,5,13,18,26,27,37]. 
Because second order correlations are more prevalent with OCT than 
gravitational wave measurements because the former uses a broadband 
thermal source, they will have a greater impact in OCT. This includes 
spreading the position probability density. Again, this source of 
quantum uncertainty (ranging errors) will be discussed in more detail 
in part II as it is more complex than noise sources described below. An 
important point addressed will be, in scattering theory, with position 
probability amplitudes being so large, how they can be ignored [38-40].

Vacuum fluctuations: Vacuum fluctuations were introduced 
earlier as the polychromatic lowest energy limit of the field. Most of 
the initial quantum noise analysis will be of a monochromatic vacuum. 
Qualitatively, in OCT, vacuum fluctuations cause noise primarily by 
asymmetric photon pressure on the end mirrors (targets) in each arm, 
leading to position uncertainty (shown quantitatively below). Vacuum 
fluctuations have been shown to be a major noise/error source in a 
Michelson interferometer, with substantial contributions coming from 
work in gravitational wave research. But this work generally uses a 
coherent monochromatic source that has differences when compared 
to OCT. With OCT, the use instead of a broad bandwidth Gaussian 
source needs to be taken into account [41,42].

With a previous body of work demonstrating the significance 
of noise (in interferometers) caused by vacuum fluctuations, it is 
somewhat surprising resistance exists in the OCT field accepting their 
relevance. It is even further surprising because vacuum fluctuations are 
of importance in other areas of optics, for example; being the source 
of spontaneous light emission, photons from spontaneous parametric 
down converted (SPDC) sources, and the Casmir effect [43-46]. They 
are even postulated to be the source of dark energy accelerating the 
entire universe, yet the general feelings is that they are too microscopic 
to be relevant to OCT imaging [47-49]. Over three decades of evidence 
would argue otherwise.

As already described the vacuum consists of non-zero energy 
modes (eqns. 12 and13), a direct result of the uncertainty principle 
and modelled in this paper by quantum harmonic oscillators. The 
energy and characteristics of the fluctuations depend on the modes 
that are present in the vacuum at any space-time point, as well as their 
interaction with non-vacuum modes [45,48-49]. The frequencies of 
the vacuum energy is in general a function of the size and shape of 
the volume they are contained in allowable modes, with the Casmir 
effect being a prime example, where not all vacuum frequencies are 
around between metal plates [45-47]. With OCT or any Michelson 
interferometer, vacuum fluctuations have their greatest impact from 
the energy fluctuations enter the detector port of the interferometer 
beam splitter. These leads to quantum noise when combined with out 
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of phase source light (described quantitatively below). This is unlike 
vacuum fluctuations entering through the source port that have 
minimal effect.

With respect to entering the detector (exit) port, the significance 
lies in the interaction with the source light entering through the source 
port and vacuum fluctuations, where the phase difference between 
reflection and transmission in the beam splitter leads to noise. If 
the fluctuation has the right phase to increase the intensity from the 
source in one arm, it decreases the intensity in the other arm creating 
distinguishable paths, which results in noise (described quantitatively 
below) [50-52]. Asymmetrical radiation pressure then leads to path 
length uncertainty ( z), the force of which is proportional to the square 
root of N [39,40].

Photon counting error (PCE): Again, the other major type of 
quantum noise error is associated with the fluctuations in the photon 
count or the time average of the light (PCE) [33,42]. In spite of this 
the origin of PCE still is somewhat controversial and in many papers 
on quantum noise, the origin is not addressed but the existence just 
taken for granted. It is not the random emission of photons from the 
source or a randomness of the detection process, as is often thought. 
In general, laser sources approximate a Poisson distribution while 
thermal sources used in OCT follow Bose-Einstein photon statistics. 
Although this guarantees fluctuations in photon number per unit time, 
we already demonstrated first order correlations are the summation 
of single photon interferences along indistinguishable paths [33,42]. 
Therefore, they only cause fluctuations in the autocorrelation function 
when the path length mismatch is greater than the coherence length, 
leading to distinguishability (photons coming from one arm or the 
other). This is not the major source of PCE when mirrors are targets 
in each arm. However, when dealing with tissue, which has scattering 
from different depths, back reflection from areas of mismatch make 
significant contributions to the PCE, which has not been studied in 
detail and is not as significant in the gravitational wave research area 
(mirrors both arms).

But also a substantial contributor of PCE is optical components in 
each arm of the OCT interferometer making paths indistinguishable. 
If photons came to an ideal detector perfectly spaced in time, the 
distribution would be perfectly sub-Poisson with no bunching or anti-
bunching (in the quantitative description below, we will lay the noise 
on this hypothetical distribution). Even with this hypothetical source, 
passing through a beam splitter (other than the initial) or reflecting off 
the mirror/fiber bends (or a variety of other components) leads to a 
Poisson-like distribution (so some of the photons will be bunched out 
of random chance). These changes are asymmetrical in each arm so 
single photon interference is not produced and the system behaves as if 
each photon is traveling down one arm or the other (no superposition 
occurs). In other words, each arm is distinguishable so photon 
pressure is unequal and therefore z changes. So components leading 
to asymmetrical photon pressure down either arm are a major source 
of PCE. Irrespective of the predominate source of PCE in the OCT 
interferometer, PCE is universally recognized as a source of quantum 
noise even if the exact origin is not completely understood or agreed 
upon.

Quantitative quantum noise

General: This section provides a quantitative evaluation of OCT 
quantum noise through two approaches, one at the beam splitter and 
one at the detector for reasons discussed. We will use as a foundation 
work from the gravitational wave field where Caves focused on 

analyzing noise from within the interferometer while Loudon (later by 
Ben-Aryeh) looked at combined quantum noise at the detector. Since 
the effect of terrestrial gravitational waves on the interferometer arm 
length is extremely small, it is very difficult to achieve gravitational 
wave detection and much effort is spent in overcoming all the 
technological problems related to extremely accurate Michelson 
interferometer measurements (we will discuss aspects of OCT distinct 
from the gravitational work). The Caves approach both demonstrates 
how vacuum fluctuations lead to noise (at the level of the beam splitter) 
and further demonstrates how ‘squeezing’ works in reducing these 
ranging errors. Squeezed vacuum Michelson interferometers (often 
using a second source in the detector port) are commonly used in the 
study of gravitational waves.

But when looking to measure total quantum noise, it is more ideal 
to examine it at the detector (where all quantum noise contributions 
are added). This is the basis of the approaches by Loudon and Ben-
Aryeh. Contributions from PCE and vacuum fluctuations are not 
separated (and they argue cannot accurately be separated) and the 
combined noise is modeled to be measured at the detector. One of the 
critical parts of the approach is the noise is placed on an ideal sub-
Poissonian (evenly spaced) distribution by artificially introducing a 
non-linear Kerr effect.

The Caves, Loudon, and Ben-Aryeh approaches were developed for 
studying gravitational waves. But several significant differences exist 
between a gravitational wave interferometer and an OCT system. These 
include the large differences between mirror masses (gravitational 
interferometers have very large mirrors), light used (gravitational 
studies use monochromatic sources with high intensities), and OCT 
generally uses a multi-layer object in the sample arm. The much smaller 
mirrors of OCT, for example, result in higher position probability 
uncertainties. This is compounded by the fact it is not monochromatic 
as the light (near infrared) is polychromatic thermal light (Gaussian 
distribution) resulting in more complex photon pressure effects. 
Finally, the fact the target in the sample arm has reflections outside the 
coherence length leads to PCN.

Vacuum fluctuations at the beam splitter causing noise: In this 
description at the beam splitter, we begin with light coming into the 
beam splitter from the source port and vacuum fluctuations entering 
from the detector port. Technically, it is a common statement that 
photons enter the beam splitter. No measurement is taking place so 
strictly speaking the terminology should be with respect to the potential 
and not actual photons (the photon is only being measured at the 
detector). We will continue with this common approach recognizing 
no measurement has actually taken place till the detector.

Returning to the model, in one sense the vacuum fluctuations can 
be viewed as half photon energy but unlike a photon, the vacuum can 
add energy to a source photon (an interaction occurs). The beam splitter 
is represented as in Caves, which uses the following transformation for 
the beam splitter [36,37]:

1/ 2
3 1 2

1/ 2
4 1 1

ˆ ˆ ˆ2 ( )
ˆ ˆ ˆ2 ( )

i i

i i

b e a e a

b e a e a

− ∆ µ

− ∆ µ

= +

= −
				                  (72)

Again we are combining source photons with vacuum fluctuations 

through the two ports. Equations demonstrate the different phase shifts 
from reflection and transmission.

So each input has different phases for each output arm. The two 
output arms are no longer in phase so paths are distinguishable. Here 
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â1, â2 are the annihilation operators of the beamsplitter’s two ‘in’ modes 
(source and vacuum) and ˆ

3b , 4b̂ are the operators for the two ‘out’ 
modes (two arms of the interferometer), while µ and are the relative and 
the overall phase-shifts, respectively. The overall (global) phase shift 
will be ignored here since (as is often the case in quantum mechanics) 
it does not affect our results. Note the exponential with the µ term has 
different signs for each output port, resulting in the phase difference 
from ‘mixing’ of the vacuum and source EM, with distinguishability of 
the b operators.

The state leaving the beam splitter can also be represented by:

3 1 2

4 1 2

1ˆ ˆ ˆ( )
2

1ˆ ˆ ˆ( )
2

b a ia

b a ia

= +

= +

				                (73)

Now from Caves, the difference in momentum transfer between 
each arm (which leads to distance uncertainty) can be given by the 
operator:

4 4 3 3
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 			                 (74)

Here we have expressed it explicitly in terms of the input â. The 
B is the bounces off the reflector. From the second term, we see that 
this difference between arms occurs with differences in the phase 
from the beam splitter due to transmission versus reflection. So 
in the Caves analysis, the phase differences in energy between the 
source and vacuum ports (final term in parenthesis in eqn. 74) leads 
to path distinguishability (and therefore momentum differences). The 
different photon pressure alters both the position probability density 
of the target and the phase of returning photons. This creates optical 
quantum noise (within otherwise the coherence length) as opposed 
to vacuum fluctuations entering through the source port (which are 
in phase between arms). Again, in this analysis first order coherence, 
as discussed earlier in the paper, is the linear summation of the single 
photon interferences.

Squeezing the vacuum at the detector port will not be dealt with 
here in detail. However, it can be imaged that by altering the vacuum 
fluctuation, such as with a second source in that port, error can be 
reduced dramatically for either amplitude or phase measurements.

Combined quantum noise at the detector: The previous analysis 
provides insights into ranging deterioration from vacuum fluctuations 
at a beam splitter and provides ways to reduce their influence as a 
noise source (ex: squeeze states). This is important from a mechanistic 
analysis, and also provides a way to reduce noise. However, from a 
practical standpoint when measuring total quantum noise we are 
interested in total amplitude quantum noise at the detector that leads 
to ranging errors. In addition, there is criticism that the vacuum 
fluctuations and PCE can’t be completely separated from each other. 
We will adapt an approach from Loudon (later modified by Ben-Aryeh) 
to OCT. In the previous section we began with the EM field before the 
beam splitter while here, we ignore that interaction and focus on events 
after the ‘beam is initially split’ (more accurately on the sum of the two 
single beam splitter through both interferometer arms (i.e., we start 
after the first pass through the beam splitter).

The states exiting the beam splitter on the return trip (headed back 
to the detector and source) are then given by the operators d̂ and ê
Photon pressure interacting with the mirror in each arm, both from 
vacuum fluctuations and PCE, is represented as a non-linear Kerr effect 

for reasons described in detail by Haus [53,54]. But basically we are using 
the Kerr effect to create a sub-Poissonian (evenly spaced) distribution 
on which to overlap the quantum noise sources. The analysis takes into 
account the respective path lengths Z1 and Z2 (reflection off the distal 
mirrors), the sub-Poissonian field, and the quantum noise sources:

1 1 1 1 1 2 2 2 2

1 1 1 1 1 2 2 2 2

1ˆ ˆ ˆ ˆ ˆ ˆ[exp( ) exp( ]
2

1 ˆ ˆ ˆ ˆ ˆˆ [exp( ) exp( ]
2

d ikZ iC b b b ikZ iC b b

e ikZ iC b b b ikZ iC b b

+ +

+ +

= + + +

= + − +
	             (75)

where k=2π λ is the wavenumber of the one-mode EM field. The 
parameters C1 and C2 depend on the properties of the targets in each 
arm (example free floating versus harmonic mirror), and their explicit 
evaluation is not discussed here. The transformations include the 
exponentials with number operators that are higher powers, which 
illustrates the nonlinearity of the Kerr-type interaction used to form the 
quantum noise free basis. We simplify for now the present treatment by 
assuming C1=C2 as is done in the case of gravitational interferometers. 
However, with a small mirror such as those used in OCT (as well as 
the multi-layer target in the sample arm) this approximation may not 
hold (and needs to be evaluated experimentally), in which case photon 
pressure induced noise would be dramatically increased (very large 
differential phase shifts). This is one area where work needs to be done 
with OCT to both understand and control OCT specific quantum 
noise.

First order or single photon interference depends on the length 
difference Z2−Z1, but one may add to this parameter any additional 
interferometer effects at constant phase difference including 
birefringence and inefficient reflection/transmission. The photon 
number in one of the output ports of the interferometer is then given by:

1 1 2 2 1 2 1 2 2 1 1 2
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( { exp[ ( ) ( )] . .})
2

d d b b b b b ik Z Z iC b b b b b H C+ + + + + += + + − + + +   (76)

where H.C. denotes the Hermitian conjugate.

Due to conservation of energy, the sum of the output of the beam 
splitter ports (e and d) must be constant excluding quantum noise 
fluctuations. If the energy in the detector arm is increased because of 
positive interference, energy directed at the source must decrease (or 
vice versa). For the photon number operator ê †ê in the second output 
port of the interferometer, one gets the same form of eqn. (59) but 
with a minus sign for the interference terms. The quantum noise is 
the fluctuation differences between each arm. In other words, we are 
looking at the difference of energy fluctuations between beamsplitter 
outputs to the detector and source ports. This provides an experimental 
approach for studying quantum noise in an OCT system.

Other vacuum fluctuations errors: As already stated, quantum 
optics studies in OCT are limited. More work in controlling vacuum 
fluctuations needs to be done. We have already discussed vacuum 
fluctuations as a significant source of error entering the detector port 
of the beam splitter. But the beam splitter is not the only site in the 
interferometer where vacuum fluctuations influence OCT performance, 
but based on our current understanding it is likely the most relevant. 
We would just like to make several points about vacuum fluctuations 
in other parts of the system, generally influenced by the volume of 
the conduit. The first example is the influence of vacuum fluctuations 
in fiber versus free space OCT embodiments (where fluctuations 
are different). It is often envisioned that vacuum fluctuations in, for 
example, a closed space versus and open space, are the same [45,46]. 
But just examining the Casimir effect, as an example, illustrates why 
this is not the case. Here, if mirrors are placed facing each other in 
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a vacuum, only certain frequencies of the vacuum can exist between 
them (nodes must exist at the interfaces). As the two mirrors move 
closer to each other, the longer waves will no longer ‘fit’. Typically 
with OCT vacuum energy is contained in the 9 µm core optical fiber, 
which can be altered for example, by fiber bending. This leads to path 
distinguishability and noise.

In the second example of a vacuum influence outside the beam 
splitter, consider a detector that has a relatively low reflective surface 
versus one where the reflections are larger. The vacuum states entering 
the detector port interact with excited states of the field reflected from 
the detector. Therefore, the unbalanced energy fluctuations entering 
the beam splitter exit port are greater for the latter compared to the 
former. Path distinguishability is then greater. These represent two 
examples emphasize different system set-ups will (and often do) result 
in different vacuum fluctuations throughout the system, altering 
quantum noise levels [1,55-60].

Summary of quantum noise reduction in OCT: Techniques 
to improve SNR through quantum noise reduction have been used 
successfully in other fields. However, with OCT work in this area is 
virtually non-existent. To advance OCT through quantum noise 
reduction, further experimental and theoretical work needs to be 
performed. This includes accounting for the broad bandwidth Gaussian 
field, the fact backreflections are coming simultaneously from different 
depths, and the difference in mass between the reference and sample 
arm targets [61-64].

Conclusions
Almost all current OCT theory is classical, but we argue that future 

advances lie in part with the quantum optics of OCT. We describe 
the need for a second quantization approach (rather than a semi-
classical approach) to study the quantum mechanics of OCT. This 
paper focuses primarily on first order correlations, while part II will 
examine second order correlations and other quantum optics topics. 
The paper models the electric field in terms of a ‘sea’ of quantum 
harmonic oscillators, with the basis being Fock states. First orders 
correlations are described in terms of single photon interference 
through path indistinguishability. High intensity OCT is then build as 
a linear summation of these interferences in a Gaussian distribution. 
A comparison of the quantum and classical correlation function is 
used to illustrate classical limitations. The paper builds in part from 
the work of gravitational wave detection where extreme sensitivity is 
needed. However, OCT has distinct aspects that need to be accounted 
for including the broad bandwidth source; the sample arm target has 
multiple reflective surfaces, and smaller mirror sizes.

The direct application of these principles is examined in this paper 
with quantum noise reduction to improve signal to noise ratio. The 
major sources of quantum noise are vacuum fluctuations entering the 
detector port, photon counting error (PCE), and position probability 
amplitude uncertainty. The first two are derive quantitatively in the 
text. The position probability amplitude uncertainty, an important area 
in OCT ranging is described qualitatively but will be expanded upon in 
part II. Techniques for quantum noise reduction are discussed.

Though taking advantage of the quantum mechanical properties 
of light offers the opportunity for creating paradigm shifts in the field, 
little work is done in this area. By introducing the fundamentals of 
OCT quantum optics, describing the quantum mechanics of first order 
correlations, and examining techniques for quantum noise reduction 
as an example; this work seeks to advance investigations into this 
paradigm shifting area.
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