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Abstract

Using only the transcription network structure information, a probabilistic model was developed that computes

the probabilities with which a pair of genes responds simultaneously (SR) or differentially (DR) to a random

network perturbation. Study of yeast’s transcription regulatory network in association with gene expression

profiles shows that SR and DR probabilities are significantly associated with the distribution of strong co-expression.

It is 100 fold more probable to observe co-expression when P(SR)≈0.5 for a random perturbation of 3 transcription

factors (TFs), allowing for perturbation spread until a depth of 3 connections in the regulatory network. The

model also predicts that positive co-expression enhancement is related with the proportion of common TFs

(number of TFs that regulate both genes in a pair divided by the total number of TFs that regulate at least one

gene in the pair), and not to the absolute number. The relationship between the model derived probabilities and

other graph-theoretic measures used to analyse biological networks is discussed.

Key words: Gene regulatory networks; Network perturbation; Response probability; Co-regulation; Co-expression; and Graph-

based measures

Abbreviations

GTOM:  Generalized Topological Overlap Measure;

P(DR): Probability of Differential Response to network

perturbation;

P(NR): Probability of Neutral Response to network

perturbation;

P(SR): Probability of Simultaneous Response to network

perturbation;

TF: Transcription Factor;

TFS: Transcription Factor Similarity;

TOM: Topological Overlap Measure

Introduction

Systems biology has recently re-emerged (Westerhoff and

Palsson, 2004), after a long quiescent period since its firsts

steps (Bertalanfy, 1928), due to the acknowledgement of

the components’ interactions importance for an enhanced

understanding of living organisms. Analysis of these

interactions can be achieved through the identification of

biological networks. Typically, they are characterized by their

connectivity distributions (Barabasi and Oltvai, 2004) or by

the enrichment in small network motifs, as compared with

randomly connected networks (Milo et al., 2002). The

present work studies transcription regulatory networks, in

particular for the yeast Saccharomyces cerevisiae. The

most abundant information available about these networks
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corresponds to a topological model or wiring diagram (Schlitt

and Brazma, 2005). In other words, the network consists

on a directed graph, where each node corresponds to a gene

and respective gene product, and a directed interaction

between A and B means that A gene product is a transcription

factor (TF) that regulates the expression of gene B. For S.

cerevisiae these interactions have been gathered from the

literature (Guelzim et al., 2002) and detected with high

throughput experimental techniques like chromatin immuno-

precipitation combined with DNA chip technology (ChIP-

chip) (Lee et al., 2002). Additionally, this model organism is

relatively rich in microarray gene expression studies. Soon

after the availability of topological models of yeast’s

transcriptional regulatory network, several researchers

evaluated the agreement between network structure

information and its dynamical behaviour. Some studies only

categorized pairs of genes into two or three classes: no

common TFs, one or more common TF and two or more

common TFs (Allocco et al., 2004; Yeung et al., 2004; Yu

et al., 2003). Others looked at blocks of target genes

modulated by the same set of TFs, measuring the impact of

the number of TFs on block co-expression Herrgard et al.,

2003). These studies used the same general approach to

detect co-expression (applying a threshold to an expression

correlation measure), but relied on stringent criteria to

recognize co-regulation.  In the present report the association

patterns that emerge under more generic definitions are

explored. With this aim, a probabilistic framework was

developed to predict when two genes respond simultaneously

to a random perturbation.

Methods

Gene Expression Data

The gene expression data used in this work (Gasch et al.,

2000) consists of 173 cDNA array experiments, involving

around 30 different environmental perturbations of yeast

cultures. Some perturbations are monitored for several time

points. The actual dataset, normalization procedure and other

pre-processing methods are described in the paper

supplementary website: http://www-genome.stanford.edu/

yeast_stress. Pearson’s linear correlation coefficient was

calculated between the expression profiles of every pair of

genes. For a given gene pair, if the number of missing values

was greater than 10% of the total number of arrays, the

corresponding correlation coefficient was not used in further

analysis.

Regulatory Network Information

The yeast’s transcription network topology was obtained

from the public dataset of Lee and colleagues. The promoter

binding sites of 106 TFs were detected through a

chromosome immuno-precipitation followed by hybridization

in a DNA chip. As proposed by the authors, a cut-off of

p<0.001 was used to define that a promoter region is bound

by a given TF (Lee et al., 2002).

Co-expression Thresholds and Detection of

Associations

The association between co-expression and network

perturbation responses was assessed by computing the

probability of finding strong co-expressions among pairs of

gene with similar response probabilities. Having a similar

response probability means it is within an interval centred

on a value of interest. The range of the interval was always

selected to be 1/10 of the total observed range of the

respective response probability. The strong co-expression

probabilities were computed for 100 equally spaced values

across the total range of observed response probabilities.

Positive and negative co-expressions were analysed

separately. Positively co-expressed gene pairs were defined

as the 0.5% gene pairs with the highest expression

correlation coefficients. This was equivalent to the

application of a correlation threshold r
t+

=0.82. Analogously,

negatively co-expressed gene pairs were defined as the 0.5%

gene pairs with the lowest expression correlation

coefficients, corresponding to a threshold of r
t-
=-0.73.

Randomization Procedure

To estimate the range of strong co-expression probabilities

in the null case of independence between co-expression and

perturbation responses, 0.5% of gene pairs were randomly

assigned as strongly co-expressed and all the strong co-

expression probabilities were re-computed. This procedure

was repeated 2000 times, retaining for each value of the

perturbation response probability the minimum and maximum

limit values of the strong co-expression probability. In a

probability profile composed of 100 points, the null probability

of finding at least one point out of the random range will be

0.05, according to a Bonferroni correction for multiple testing

(Quinn, 2002). All the procedures, graphs and calculations

were implemented in Matlab (Release 14).

Results

Most of the common expression datasets are collections

of expression values, relating two gene expression states,

one before and the other after a specific environmental

perturbation. The correlation coefficient between expression

profiles is dependent on the number of times the two genes

respond simultaneously and the number of times only one
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of the genes responds. In this section estimates are derived

for the probabilities of observing each kind of response from

available network data. This is done in the absence of

information about strengths and signs of each regulatory

interaction.

In the following derivation, a random perturbation is

applied, where a limited number of TFs e are perturbed,

and around them the perturbation propagates through all

the possible pathways until a maximum depth d.

The response of a given pair of genes is in one of three

classes: a) both genes respond (simultaneous response, SR);

b) only one of the genes responds (differential response,

DR); c) none of the genes respond (neutral response, NR).

NRs should only randomly affect the pair-wise correlation

coefficients of expression profiles. SRs effect will depend

on interaction signs and DRs should contribute to lower

correlation coefficients.

For different d values and for every pair of genes A and

B, it is possible to count the transcription factors (TFs) in

each of the following four classes: a) number of TFs that

regulate both genes – X
d
; b) number of TFs that regulate

only gene A – Y
d
; c) number of TFs that regulate only gene

B – W
d
 and d) number of TFs that do not regulate any of

the genes – Z
d
. Every transcription factor among the N

present in the network can be classified in this way. In a

random perturbation, e TFs are perturbed. For a given pair

of genes, x
d
, y

d
, w

d
 and z

d
 will represent the numbers of

perturbed TFs in each of the four possible classes.

Perturbing at least one common TF (x
d
>0), irrespective

of whatever other TFs are perturbed, is considered to be

sufficient to elicit an SR. If x
d
=0, it can still be possible to

observe an SR if y
d
 and w

d
 are both greater than zero. This

means that, by chance, the two target genes are regulated

after a perturbation by TFs that exclusively regulate each

one of the target genes separately. If none of the perturbed

TFs regulates any of the target genes (z
d
=e), then the pair

of genes will show a NRs. All the other cases correspond to

DRs.

In this deduction two main assumptions are made: a) when

more than one TF acts on a given promoter, even if some

are activating and others repressing, there is always a net

response from the target gene, and b) every TF has an equal

probability of being perturbed. The latter is not necessarily

reasonable. It could be that TFs are involved in perturbation

responses more frequently because their activity is modulated

by a higher number of signal transduction cascades.

However, in the absence of information about the activity

frequency of different signalling pathways, the least biased

hypothesis is the equal-probability one.

Knowing the six parameters (e, d, X
d
, Y

d
, W

d
 and Z

d
) it is

possible to compute the probability of observing any of the

possible responses (SR, DR or NR) after a random network

perturbation:

( | , ) ( 0) (( 0)

( 0) ( 0))

d d

d d

P SR e d P x P x

y w

= > + =

∧ > ∧ >
(1)

( | , ) (( 0) ( 0) ( 0))

(( 0) ( 0) ( 0))

d d d

d d d

P DR e d P y w x

P w y x

= > ∧ = ∧ =

+ > ∧ = ∧ =
     (2)

( | , ) (( 0) ( 0))
d d d d

P NR e d P z x y w= > ∧ = = =      (3)

Applying probability calculus, expressions (1), (2) and (3)

can be converted to algebraic functions. The simplest case

to calculate is:

( | , )
dZ

N

e

e

C
P NR e d

C
=  (4)

Where nC
p
 is number of combinations of n elements taken

p at a time.

2
( | , )

d d d d dZ Y Z W Z

e e e

N

e

C C C
P DR e d

C

+ +

+ − ⋅

= (5)

( | , )
d d d d dZ Y Z W ZN

N

e e e e

e

C C C C
P SR e d

C

+ +

− − +
=         (6)

For e=1:

( | 1, ) dZ
P NR e d

N
= = (7)

( | 1, ) d dY W
P DR e d

N

+

= = (8)

( | 1, ) dX
P SR e d

N
= = (9)

As only one factor is perturbed, the factors in Y
d
 and W

d
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always contribute to DR and not to SR. It is also noticeable

that P(DR) only depends on the sum (Y
d
+W

d
) and not on

the relative proportion of each one alone.

The values of X
d
, Y

d
, W

d
 and Z

d
 at the various depths d,

are completely defined by the regulatory network

architecture. Consequently, for a perturbation with depth d,

the network architecture also defines P(SR), P(DR) and

P(NR) values for a given pair of genes. I surveyed the

relations between the probability of observing strong

correlations in gene expression and the values of P(SR) and

P(DR) for different values of e (1 to 4) and d (1 to 9, the

diameter of the regulatory network used in this study). A

change in the parameters e and d induces smooth

modifications in the strong correlation probability profiles

for P(SR) and P(DR). Strong positive expression correlations

are more clearly associated with high P(SR) for e=3 and

d=3. The intensity of the strong co-expression enrichment

grows from d=1 until d=3, and decreases for higher depths.

P(DR) for those parameter values is also a characteristic

example of the remaining P(DR) profiles. These particular

results are shown in Figure 1. The two most remarkable

observations made from Figure 1 are that the greatest

enrichments of positive strong expression correlations happen

near the maximum values of P(SR) and at the minimum

possible values of P(DR). Additionally, strong positive

correlations are less frequent for higher values of P(DR).

Near a P(SR) of 0.5, half of the gene pairs have a correlation

coefficient higher than the top 0.5% threshold, meaning that

strong positive correlations are concentrated 100 times.

Strong negative expression correlations only show some

significant deviation from the random null model when they

are stratified by P(DR) values. Although much less intense,

they have an inverted profile relatively to the positive

correlations. That is, they are less frequent for low values

of P(DR) and slightly enriched for some intervals of greater

P(DR) values.

Combining expressions (8) and (9):

( | 1, )

( | 1, ) ( | 1, )

( | 0, 1, )

d

d d d

e

X P SR e d

X Y W P SR e d P DR e d

P SR z e d

=

=

+ + = + =

= = = (10)

Figure 1: Plots of the relation between strong co-expression and the probability of observing simultaneous (SR) or differential

(DR) responses of a target gene pair after network perturbations initially affecting e=3 TFs and spreading until a maximum

depth of d=3. Blue lines represent the probability of finding strong positive co-expression (P(r>r
t+

), with a positive threshold

r
t+

=0.82 and where r is the linear correlation coefficient between two gene expression profiles) among pairs of genes with

similar response probabilities. Red lines represent the probability of finding strong negative co-expression (P(r<r
t-
), with a

negative threshold r
t-
=-0.73) among pairs of genes with similar response probabilities. Black lines represent the maximum and

minimum randomized probabilities of finding strong co-expression among pairs of genes with similar co-regulatory similarity

measure, after 2000 random permutations of the gene expression correlation matrix.
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According to expression (10), the proportion of common

direct TFs is the probability of observing a simultaneous

response knowing that it is not neutral - P(SR|z
d
=0,e=1,d=1).

If we recall that neutral responses should not affect

correlation coefficients between expression profiles, the

proportion in expression (10) should be more related with

co-expression than the number of common TFs alone. After

observing the gene expression profile of a sufficiently high

number of perturbation experiments or distinct cellular states

it would be expectable that genes sharing more common

TFs are more frequently co-regulated. On the other hand, if

two genes are regulated by very distinct TF sets, it would

be expectable to observe perturbations where only one of

the genes is regulated. Measuring the proportion of common

TFs does effectively account for both the common TFs and

the exclusive TFs of a given target gene pair.

In fact, Notebaart and colleagues (Notebaart et al., 2008)

successfully used a transcription factor similarity (TFS)

measure to explain the coupling of metabolic flux between

two enzyme-coding genes. This success was not attained

when graph distance between the genes in the transcription

regulatory network was used instead of the TFS. They

defined TFS as the total number of shared TFs between

two genes divided by the total number of unique TFs

regulating the two genes, which is equivalent to expression

(10).

Other well-known graph-theoretic measure used to

analyse biological networks is the topological overlap

measure (TOM) (Ravasz et al., 2002). Interestingly, TOM

is also closely related to the perturbation response

probabilities derived in our model:

1

1 1 1 1

( | 1, 1)

min( ( | 1, 1), ( | 1, 1))

min(( ), ( ))

P SR e d

TOM

P AR e d P BR e d

X

X Y X W

= =

=

= = = =

=

+ + (11)

Where, for the pair of genes A and B, P(AR) and P(BR) are

the probabilities that genes A and B, respectively, respond

to the perturbation. Yip and Horvath expanded TOM to a

generalized form (GTOM) that presents associations with

gene function that are more robust to uncertainties in

network topology data (Yip and Horvath, 2007). In this

probabilistic model language, the generalization corresponds

to the possibility to consider perturbations with higher depths:

( | 1, )

( )

min( ( | 1, ), ( | 1, ))

min(( ), ( ))

d

d d d d

P SR e d

GTOM d

P AR e d P BR e d

X

X Y X W

=

=

= =

=

+ +
       (12)

It is readily apparent from expression (12) that GTOM can

be further generalized by allowing perturbations involving

more than one TF:

( | , )

( , )

min( ( | , ), ( | , ))

P SR e d

GTOM e d

P AR e d P BR e d

=       (13)

These relationships and equivalences between our

probabilistic approach and common graph based measures

further suggests that P(SR) and P(DR) estimates can

provide valuable information about the correlation between

regulatory network topology and function. On the other hand,

measures like TSF, TOM or GTOM are also enriched with

the use of the presented response probabilities. They gain a

more concrete biological meaning, which can potentiate the

interpretation of the associations between their values and

network functional properties. TSF may be read as the

probability of observing a simultaneous response to network

perturbations, knowing that the response is not neutral. TOM

and GTOM are also proportional to the probability of

simultaneous response, but their values are normalized by

the response probability of the gene that responds less

frequently to network perturbations. Thus, when TOM or

GTOM are 1, it does not mean that both genes respond

exactly to the same network perturbations, but that one gene

is sensible to a set of perturbations that is contained in the

set of perturbations that have an effect in the other gene.

Discussion

A main result of this work consisted in proposing a simple

rational connection between the architecture of the

regulatory network topology and its functional behaviour.

Using a minimal probabilistic model it was possible to justify

the differences between computing the proportion versus

the absolute number of common TFs. In addition to the effect



Journal of Computer Science & Systems Biology - Open Access

                Research  Article      JCSB/Vol.2 January-February  2009

J Comput Sci Syst Biol Volume 2(1): 044-050 (2009) - 049

 ISSN:0974-7230   JCSB, an open access journal

of common TFs, the use of the proportion has also accounts

for the TFs exclusively regulating the expression of one gene

in a target pair. As a consequence, it reflects both the

probability of observing a simultaneous response, P(SR) and

a differential response, P(DR), after a system perturbation.

The absolute count is more directly related with the P(SR)

and does not include the impact of P(DR) in the experimental

correlation coefficients between expression profiles.

It is also shown that integrating information about indirect

factors may be important for the analysis of gene expression

data. The results obtained with the P(SR) indicate that

including factor information until 3 regulatory levels up of

the target genes provides the most strong association

between the probability of simultaneous response and the

probability of observing strong co-expression. This

observation does not necessarily imply that on average, the

perturbations associated with the used dataset had a depth

of three connections. It could alternatively mean that the

past history of network activations or inhibitions could be

relevant for the response to newer perturbations.

Besides the associations found between response

probabilities and strong correlation of expression profiles,

this approach was further validated by the relationship with

other methodologies (TFS, TOM, GTOM), which on their

own have previously demonstrated their utility in providing

valuable insights into the functional organization of biological

regulatory networks. Perturbation response probabilities

enhance the interpretation of graph-based measures by

attributing them a biological meaning related to the network

capacity to respond to and propagate random perturbations.

In fact, the use of P(SR) and P(DR) allows an extra

generalization of the GTOM measure. It is plausible that

the latter can have an increased performance since the most

strong association between P(SR) and expression profiles

occurred for perturbations of 3 TFs propagating through 3

network connection levels (e=3 and d=3).

Conclusions and Perspectives

The presented approach uses minimal information about

transcriptional regulatory network. I believe this approach

can be useful as it can be easily validated with most common

microarray experiments. More detailed models of

transcriptional regulatory network dynamics, using Boolean,

Bayesian, stochastic or differential equations frameworks

would be optimally validated against expression profiles with

long and well-sampled time series not so commonly

produced. As the network information grows and becomes

more complete, the probabilistic model shown here can

provide better predictions. The simplicity of the input

information and model assumptions may allow the analysis

of integrated networks including simultaneously several

mechanisms of gene transcription or protein activity

regulation.

I finally propose that coarse level analysis like the one

presented here can provide a useful bridge between large

gene expression datasets and more fine-detailed models of

biological network dynamics.
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