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Abstract

The purpose of this paper is to study the prediction model of tumor growth non-vascularized lung cancer (first
stage of cancer) before and during chemotherapeutic treatment. This model will be represented by a differential
equations system, which will describe, among other things, tumor volume and proliferating cells. Finally, all the
numerical results presented in this paper have been implemented in Scilab.

Keywords: Tumor; Temporal model; Lung; Chemotherapy;
Equilibrium; Stability

Introduction
Proliferation cells: These cancerous cells participate in the growth of

the tumor by their incessant division, and they are able to use glucose
from medium to ensure their energy far more easily than others cells.

Quiescent cells: They are old proliferating cells which suffer from a
lack of nutrients. They are waiting to have enough energy at their
disposal to become proliferating again.

Necrotic cells: They are quiescent cells that have died because of a
lack of nutrients.

Hypoxia: It is the absence of oxygen in the environment.

Scanner: The scanner is a medical imaging method that measures
the absorption of X-rays by the tissues. The apparatus consists of a ring
in which the patient is placed. The scanner makes it possible to have
2D and 3D images with precision. It gives information on the
geometry of the tumor and its size. The duration of the exam takes less
than an hour.

Methods

The laws of tumor growth
The exponential law: To model tumor growth, the most appropriate

way is to consider the growth rate of the tumor. In the first half of the
20th century, the analysis of observations experimental animal and
human population data led to consider an exponential growth of the
tumor. The evolution of the tumor is therefore given by the following
dynamics [1,2]:

dC/dt=λCC(t) ……….(1)

Where C(t) represents the law of evolution of the quantity of 
cancerous cells; C0=C(t=0) is the initial quantity; and λC ≥ 0 denotes 
the growth rate of the tumor. The solution of the equation (1) is given 
by:

C(t)=C0eλ
C

t

Using the data in Table 1, we obtain (Figure 1):

Model Parameter Unit Value

Exponential C0 mm3 13.2

λC day-1 0.257

Logistic λC day-1 0.502

C∞ mm3 1297

Gompertz λC day-1 0.742

k day-1 0.0792

Table 1: Parameter values estimated from lung data adjustments.

Figure 1: The evolution of the quantity of cancer cells according to
the exponential law.

Tumor growth in this model is considered not limited by any factor.
But the continuation of tumor growth is linked by mechanical and
environmental constraints (problem of oxygen distribution, nutrients),
so unlimited proliferation is impossible. These constraints are taken
into account in the following models:
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The logistic law: It was formulated for the first time by Verhulst in
1838 [3], as a means of describe the dynamics of the population with
an intrinsic growth rate, whose size total is limited by a load capacity.
The logistics equation presupposes that the growth rate decreases
linearly with size. The Logistic growth model has been proposed [4]:���� = ��� 1− ��∞ ,

C(0)=C0

Where C∞=(t→∞) represents the tumor equilibrium state. Initially, 
the growth of the tumor is exponential with a rate λC, then, it converges 
to the equilibrium state C∞. However, the logistics function does not 
correspond faithful to the experimental observations of the tumors 
evolution. The logistic law is an equation of type (Figure 2):

[dY/dt(x)]=a(x)Y(x)+b(x)Y(x)n

By using Bernoulli's method this problem is reduced to a following
linear problem:

dZ/dt=[-λCZ(t)+(λC/C∞)] …………(2)

With: Z(t)=C(t)-1

The resolution of linear equation (3) gives:

Z(t)=[(1+C1C∞e-λ
c
t)/C∞]

Where C1 is a constant.

So the general solution of problem (3) is:

�(�) = �∞�0�����∞+ �0���� − 1

Figure 2: The evolution of the cancer cells quantity according to the
logistic law (Table 1).

The law of Gompertz: In the 1960s, Laird et al. succeeded in fitting
experimental tumor growth data using a Gompertz function. The
Gompertzian evolution of the tumor is then described by the following
dynamics [4,5] (Figure 3):

dC/dt=λCCe-kt ………(3)

Where k is a positive constant. The equation (3) is an ordinary 
differential equation of the first order which admits the following 
solution with C(0)=C0:

�(�) = �0���� 1− �−��

Figure 3: The evolution of the amount of cancer cells according to
the Gompertian law (Table 2) [6].

4

5.0000007

6.0000071

Table 2: Treatment dates [7].

Tumor Growth Model (Temporal Model)
The authors set up a model based on a system of ODE (Ordinary

Differential Equations) to describe the evolution of tumor volume over
time (model of growth and activity of a non-vascularized tumor). This
model does not take into account the spatial aspects of the tumor but
calculates the amount of oxygen (or other nutrients) available inside
the tumor. They considered only two types of cells: proliferating and
quiescent (which are assumed to have the same behavior as necrotic
cells) [7].

We note:

P: The proportion of proliferating cells in the tumor (P∈[0;1]).

V: The total volume of the tumor (the amount of proliferating cells
in the tumor is therefore equal to PV).

Q: The proportion of quiescent cells in the tumor (Q∈ [0;1],
assuming the confusion of the quiescent cells and the necrotic ones, we
have: 1=P+Q).

C: The amount of nutrients available in the tumor. (This is  a 
concentration; it does not take into account the problems of diffusion  
and distribution. This constant concentration is assumed to be 1 in 
healthy tissues).

Chyp: The minimum concentration of nutrients to allow a cell to 
divide (hyp is for hypoxia). The amount of nutrients available in the 
tumor is directly related to how the cell divides, i.e., P because we do 
not consider space variables. The authors assume that if C>Chyp, then 
cell division occurs normally and otherwise it does not occur at all. To 
describe this behavior, the first idea is to use a function of Heavyside (it 
is a function defined from     to the interval [0;1] and which is worth 0 
if x<0 and 1 if no [8]).
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 In fact, it is more efficient for numerical calculations to pose a 
sort of regularized Heavyside, noted below.

Tumor growth is described by the following ODE system [7]:

The first line shows that the volume has an exponential growth if 
there are enough nutrients and remains constant in case of hypoxia 
(the absence of oxygen in the medium). On the second line, the right-
hand side can be seen as the sum of a logistic term for cell division 
(γP(1−P)) and a term that refers to the passage in quiescent ((1−γ)P). 
The equation for C is composed of a production term proportional to 
the outer surface of the tumor and consumption by proliferating cells. 
V0 is a characteristic term and a parameter. The quantity Q does not 
appear in the system because it is simply deduced from P by Q=1-P [7]. 

Behavior of the model solutions
Calculation of equilibrium points: An equilibrium point of (5) is the

point (V, P, C) that is satisfied the solution of the system:

Let's start with the resolution of the system (5):

We have:

dV/dt=0 ⇒ γPV=0 ............(6)
dP/dt=0 ⇒ γP(1-P)-(1-γ)  P=0 ………..(7) 
dC/dt=0 ⇒ (1-C) (V/V0)2/3-��αPC=0 ………..(8)

• If V=0 and P=0: then (0,0,C) is an equilibrium point with C∈[0;1].
From equation (6) we have:  γ=0 or P=0 or V=0, but    γ ≠ 0,

because if we assume the opposite:

γ=[1+tanh{10(C-Chyp)}/2]=0 

We get: 

tanh(10(� − �ℎ��)) = �10(� − �ℎ��)− �−10(� − �ℎ��)�10(� − �ℎ��) + �−10(� − �ℎ��) = − 1

So: e10(C-Chyp)=-e10(C−C
hyp

) This is impossible. Then γ ≠ 0.

• If P=0 and V  ≠ 0, we obtain from the equation (8) that C=1 or V=0, 
since V ≠ 0 then C=1.

Hence (V,0,1) is an equilibrium point, (it is acceptable because we
have P+Q=1 (P=0, then Q=1, so there are quiescent cells from where 
V∈   *+.)).

• If V=0 and P≠0, we obtain from the equation (8) that C=0 since P≠0 
and α≠0, From equation (7) we have: P=(2γ-1)/γ
Hence [0,(2γ−1)/γ,0] is an equilibrium point, it is not acceptable

because:

If C=0, then γ=[1+tanh(-10Chyp)/2] and

� = 2� − 1� = 2tanh(− 10�ℎ��)1 + tanh(− 10�ℎ��) = 2 sinh(− 10�ℎ��)cosh(− 10�ℎ��)1 + sinh(− 10�ℎ��)cosh(− 10�ℎ��)
− 2�−10�ℎ�� − �10�ℎ���−10�ℎ��+ �10�ℎ��1 + �−10�ℎ�� − �10�ℎ���−10�ℎ��+ �10�ℎ��

= �−10�ℎ�� − �10�ℎ���−10�ℎ��
Since: e-10C

hyp-e10C
hyp<0 …………(9)

e-10C
hyp>0 …………(10)

From (9) and (10) we obtain  P<0 (this is impossible because P is the 
proportion of proliferating cells: 0 ≤ P ≤ 1.

So, [0,(2γ−1)/γ,0] is not an equilibrium point.

Stability of equilibrium points
The stability of an equilibrium point determines whether the

equilibrium state approaches or not as the time increases. If we start
from a point that is not a point of equilibrium, our values of V, P and C
will change until they are equal to the point of stable equilibrium. A
point of equilibrium is unstable if V, P and C will never reach this
point, they will never be equal at this point of equilibrium [7]. To study
the stability of a point of equilibrium, Theorem 1.1.2 is applied as
follows:

f(V,P,C)=(f1(V,P,C),f2(V,P,C),f3(V,P,C))

With f1(V,P,C)=γPC, f2(V,P,C)=γP(1-P)-(1-γ)P, f3(V,P,C)=
(1-C)(V/V0)2/3-αPC.

��(�,�,�) =
∂�1(�,�,�)∂� ∂�1(�,�,�)∂� ∂�1(�,�,�)∂�∂�2(�,�,�)∂� ∂�2(�,�,�)∂� ∂�2(�,�,�)∂�∂�3(�,�,�)∂� ∂�3(�,�,�)∂� ∂�3(�,�,�)∂�
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=
�� �� ���0 −2��+ 2� − 1 −��2+ 2��23 1− �

(�0)23 (�)
−13 −�� −�� − ��0 23

With: W=(5-5(tanh2(10(C−Chyp)))

The stability of the point (0, 0, C): Note that the trivial equilibrium
point (0,0,C) with C∈[0;1] gives an indefinite case, because if we
replace it in the Jacobian the V-1/3=0-1/3, then we cannot conclude
anything.

The stability of the point (V, 0, 1): Let's calculate the Jacobian at the
point (V,0,1), we obtain:

� = ��(�, 0, 1) =
0 1 + tanh(10− 10�ℎ��)2 � 00 tanh(10− 10�ℎ��) 0
0 −� − ��0 23

Let's now calculate the eigenvalues of the matrix J:

The eigenvalues of the matrix J are the scalars such as:

Then:

det (J−λI)=0−� 1 + tanh(10− 10�ℎ��)2 � 00 tanh(10− 10�ℎ��)− � 0
0 −� − ��0 23 − � = 0

So:

(-λ)(tanh(10-10hyp-λ)(-(V/V0)2/3-λ)=0 

Finally we have: λ1=0, 

Where, λ2= tanh(10-10Chyp)>0. (Because if:

tanh(10− 10�ℎ��) = �10(� − �ℎ��)− �−10(� − �ℎ��)�10(� − �ℎ��) + �−10(� − �ℎ��) < 0.

Then e10(C−C
hyp

)<-e10(C−C
hyp

), this is impossible).

And: λ3=-(V/V0)2/3<0 (because V>0 and V0>0). Hence 

the point (V,0,1) is an unstable equilibrium point.

The existence of model solutions
The local existence of the solutions of the system (2.5) is given by

the Cauchy Lipschitz theorem, if we succeed in obtaining that P and C
are bounded, we will have the global existence.

Proposition 3.1: [9] (P and V properties). Let  γ be a real function 
such as  γ∈C∞([0,+∞[) and: ∀t ≥ 0, γ(t)∈[0;1].

Let now P0∈[0;1] et (P,V) such as: V(0)=1,P(0)=P0

     ≥ 0:

dV/dt=γPV,

dP/dt=(2γ-1)P-γP2 …... (11)

Then, there exists a unique pair (P,V)  ∈C∞([0,+∞[ solution of (5). 
In addition, P and V verify: ∀t>0, V(t) ≥ 1; P(t)∈[0;1].

Proof: see [7].

Proposition 3.2: [7] (properties of C). Let        be a positive 
parameter and P, V two functions C∞([0,+∞]) such as:

     ≥ 0, V(t) ≥ 1; P(t)∈[0;1].

Let C0∈[0;1] and C such as:

C(0)=C0

dC/dt=(1−C)(V/V0)2/3- �    PC

Then, C exists and is unique in C1 ([0,+∞[ and verifes: 

    >0, C(t)∈[0;1].

Proof: see [7].

Adding Treatment

We modeled the growth of a non-vascularized lung tumor in the 
absence of treatment. The only cause of a decrease in the amount of 
proliferating cells was thus the case where the tumor was in a state of 
hypoxia. However, cases in which no treatment is undertaken to treat 
the tumor are quite rare. So we will add a term in our equation to 
simulate chemotherapy [10]. This is simply a term that decreases the 
amount of proliferating cells in the tumor. We will consider that 
chemotherapy consists of several injections, on dates ti and quantities 
of f i product. The quantity of product present in the organism has an

exponential decay in 1� > ���−�(� − ��). (This hypothesis is false:

chemotherapy is eliminated very quickly in the body, but its effects are
long-lasting in the body because certain types of cells take a long time
to regenerate. side effects of chemotherapy that have an exponential
decay. For obvious reasons of patient health, one cannot restart the
treatment as long as these effects are not largely passed) [7].

It is considered that the total of the injection will not be able to
exceed a quantity fmax of product, even if modifying the coefficient
which gives the force of action of the chemotherapy on the
proliferating cells, one can take fmax=1, [7]. Let∑� �� ≤ 1.

We consider here that the parameters of our problem are known
(that is, we have already determined the parameters that come into
play in the growth of the tumor without treatment and we consider
that the treatment does not change these parameters) and that we only
have to determine the optimal moments and the ideal doses for
injection [7].

Considering that treatment consists of three injections and that the
amount of chemotherapy in an organism decreases exponentially over
time, our system equation becomes [7]:
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Where, λ is a parameter.

The first injection is carried out at a fixed time t0 and with a known
amount f0 of drug. We want to determine the dates of injections 1 and
2 and the amount of product f1 to be injected at time t1.

Behavior of Model Solutions (12)
With the same procedure (already done above), we will calculate

and study the stability of the system equilibrium points (13).

Calculation of equilibrium points
In the same previous way we obtain the three following equilibrium 

points: The trivial equilibrium point (0, 0, C) with C∈[0;1],(,0,1) with 
V>0 and

(0, 2− (1 + �∑� = 02 1� > �����−�(� − ��)� ), 0)
Stability of equilibrium points

Let's compute the Jacobian of f: 

Let's put:

X=(V,P,C), f(X) =[f1(X),f2(X),f3(X)] 

Such as:

f1(V,P,C)=γPC,

�2(�,�,�) = ��(1− �)− (1− �)�− �∑� = 02 1� > �����−�(� − ��)�,
f3(V,P,C)=(1-C)(V/V0)2/3-   PC.

With: W=(5−5[tanh2{10(C−Chyp)}])

The stability of the point (0,0,C): For the point (0,0,C) with C∈[0;1]
we cannot conclude anything about its stability. (See more above).

The stability of the point (0,2-(1+Σ2
i=01t>tifie-λ(t-ti)/),1): Note that

this equilibrium point gives an indefinite case, because if we replace it
in the Jacobian we obtain V-1/3=0-1/3, then it is not an equilibrium
point.

The stability of the point (V,0,1) with V>0: With the same 
method that we adopted above (by substituting the point (V,0,1) in 
the Jacobian and by calculating the eigenvalues of this matrix) we 
obtain three eigenvalues:

λ1=0, λ2=[tanh(10-10Chyp)-Σ2
i=01t>tifie-λ(t-ti)]>0, and λ3=-(V/

V0)2/3<0 (because V>0 and V0>0)

Hence the point (, 0, 1) is an unstable equilibrium point.

Numerical Simulation
To fully understand these models, we will illustrate the result of the

problems (2.5) and (2.13) on the same Figure 4, using the SCILAB
software. For a fast-growing (exponential) tumor the algorithm advises
giving the maximum doses of treatment at the smallest possible time
intervals. For example for the tumor of Figure 4, we considered that
the treatment could only take place between the instants t=4 and t=10.
The algorithm advises us the dates of treatment and the chemotherapy
following quantities [7] (Tables 3-5):

φ0 0.3

φ1 0.3939344

φ2 0.3060656

Table 3: Quantities of chemotherapy injected [7].
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Figure 4: In red, the V without treatment, in green the V with
treatment and in blue PV with treatment.

This modifies the growth of the tumor as shown in Figure 4. On the
other hand, for a tumor with growth slowed by a tray, the algorithm
advises well to wait the end of the tray to give the last two injections
[7]:

4

6.0077193

8.0023693

Table 4: Treatment dates [7].

φ0 0.3

φ1 0.4627891

φ2 0.2372109

Table 5: Maximum doses of treatment each time [7].

Figure 5: In red, the V without treatment, in green the V with
treatment and in blue PV with treatment [7].

Discussion
According to Figure 4, we note that the tumor volume without

treatment gradually increases from an initial volume V0=1 at t=0 to
V=25 at t=18 with an exponential growth (Note that the quantity of
proliferating cells in the tumor grows from t=0 to t=3). But during the
first chemotherapy injection f0=0.3 at t=4, we notice that the volume
increases slowly then it becomes constant (The proliferating cells begin
to disappear). After t=12, the tumor volume is still growing until V=6
at t=18, and the proliferating cells begin to multiply again.

From Figure 5, we note that the tumor volume with treatment is
increased from an initial volume V0=1 at t=0 to V=1.2 at t=1 and that
the quantity of proliferating cells in the tumor also grows from t=0 to
t=1. During the first chemotherapeutic injection f0=0.3 at t=4, the
volume becomes constant from t=1 to t=15 (add other injections), and
at the same time, the curve of the quantity of proliferating cells in the
tumor decreases and then vanishes from t=1 to t=15. Note that after
t=15, the tumor volume begins to grow again until it reaches V=1.5 at
t=18 (the same behavior of proliferating cells).

From these experiments, it is deduced that chemotherapy is not
very effective in getting rid of the tumor, but only to minimize its size
and slow down its growth.

Conclusion
In this paper, we presented a temporal mathematical model which

represents firstly the growth of a non-vascularized pulmonary tumor
with a study of the stability of this model and secondly we studied the
same model in the presence of chemotherapeutic treatment, and for
that we have to add a term in our equation to simulate the
chemotherapy, this one is simply presented as a term which decreases
the quantity of proliferating cells in the tumor, and also we study the
stability in this case.

After, a comparison was made between the evolution of the growth
of this tumor before and during the treatment which in the figures
shows that chemotherapy is not very effective in definitively rid the
tumor, but just to minimize its size and slow its growth. Lung cancer
starts in the cells of the lung. The tumor cancerous (malignant) is a
group of cancer cells that can invade and destroy the neighboring
tissue. It can also spread (metastasize) to other parts of the body.
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