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Introduction
Transportation has an important role in various domains, such 

as enterprise, economic and service systems. By this way, researchers 
are interested in improving the routes, deleting the unnecessary 
travels and creating the replacement short routes. In addition, many 
problems, such as traveling salesman problem (TSP), vehicle routing 
problem (VRP) and the like, are developed by this approach. The 
Vehicle Routing Problem (VRP) is a widely studied combinatorial 
optimization problem that was introduced in 1959 by Dantzig and 
Ramser [2]. VRP is one of the most significant problems in distribution 
management. Its objective is to find the optimal routes for distributing 
various shipments [3], such as goods, mail and raw materials. The basic 
VRP consists of a number of geographically scattered customers, each 
requiring a specified weight (or volume) of goods to be delivered (or 
picked up). A fleet of identical vehicles dispatched from a single depot 
is used to deliver the goods required and once the delivery routes have 
been completed, the vehicles must return to the depot. Each vehicle 
can carry a limited weight and only one vehicle is allowed to visit each 
customer. It is assumed that all problem parameters, such as customer 
demands and travel times between customers are known with certainty. 
Solving the problem consists of finding a set of delivery routes which 
satisfy the above requirements at minimal total cost. In the literature the 
above described problem is called capacitated VRP (CVRP). In CVRP 
the total cost equals to the total distance or travel time [4]. Hundreds of 
papers in world literature have been devoted to this problem. But most 
of them assume that all information is deterministic, such as customer 
information, Vehicle information, state of roads information as well as 
dispatcher information and soon, and the proposed algorithm is only 
used to solve the deterministic VRP [5]. Actually, in some new systems, 
it is hard to describe the parameters of the vehicle routing problem 
as deterministic VRP because there exist much uncertain data such as 
customer demands, traveling time as well as the set of customers to be 
visited.

Erbao and Mingyong [5] considered a vehicle routing problem 
with fuzzy demand. Yanwen and Masatoshi [6] considered a vehicle 
routing problem where vehicles had finite capacities and demands of 
customers were uncertain. Yang and Yemei [7] proposed a novel real 
number encoding method of Particle Swarm Optimization (PSO) to 

solve the vehicle routing problem with fuzzy demands (FVRP). Erbao 
and Mingyong [8] considered the open vehicle routing problem with 
fuzzy demands (OVRPFD). Lian and Xiaoxia [9] considered the 
vehicle routing problem with fuzzy demands and established a fuzzy 
constrained programming mathematical model based on possibility 
theory. Changshi and Fuhua [10] proposed the vehicle routing 
problem with fuzzy demand at nodes. Tang et al. [11] proposed the 
vehicle routing problem with fuzzy time windows. They applied 
membership functions to characterize the service level issues associated 
with time window violation in a vehicle routing problem and proposed 
VRPFTW. Gupta et al. [12] considered multi objective fuzzy vehicle 
routing problem. Zheng and Liu [13] considered the vehicle routing 
problem in which the travel times are assumed to be fuzzy variables. 

According to the Table 1, no studies that consider the capacity of 
fleets as fuzzy number have been done. According to statistics published 
by the freight companies, any vehicle regardless of its capacity can 
load 500 kg extra load. But with increasing loading, driver satisfaction 
also decreases. On the other hand, it is not convenient for driver, if he 
loads less than a certain amount of this. Thus, according to Figure 1, 
the capacity of the vehicle can be considered as fuzzy numbers with 
triangular membership function.

Possibility theory was proposed by Zadeh in 1978 and developed 
by Dubois and Prade in 1988. Since the 1980s, the possibility theory 
has become more and more important in the decision field and several 
methods have been developed to solve possibilistic programming 
problems [1].

Possibilistic Linear Programming (PLP) problem is a linear 
programming with imprecise coefficients restricted by possibilistic 
distribution. Possibilistic decision making models have provided an 
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important aspect in handling practical decision making problems. 
Negoita et al. [14] were the first who formulated the possibilistic linear 
programming [15].

This paper proposes a possibilistic linear programming for vehicle 
routing problem with fuzzy capacity where the right hand coefficient, 
is a triangular fuzzy number.

Fuzzy CVRP Model Formulation
The CVRP can be formulated as follows. A customer is an entity 

that has a certain demand and therefore the presence of a vehicle, a unit 
that can move between customers and the depot. The fleet is defined 
as the total group of vehicles. Moving a vehicle between the depot and 
the customers come with a certain cost. A route is a sequence of visited 
customers by a certain vehicle, starting and ending at a depot. The goal 
of the vehicle routing problem is to serve all customers, minimizing 
the total cost of the routes of all vehicles. Let us consider that V= 
{v0,v1,v2,…,vn} is a set of n+1(n≥1) vertices. We distinguish the depot 
v0 and exactly n customers {v1,v2,…,vn}. E= {(vi,vj) | 0≤ i , j ≤ n , i≠j} is 
the set of |V|*(|V|-1) edges(arcs) between the vertices, called the roads. 
D= (dij) is a matrix, where dij≥0 is the distance corresponding to edge 
(vi,vj); dii is always equal to 0 and dij=dji. C is the capacity of vehicle 
that is a fuzzy number which have a triangular membership function. 
We assume that, if the vehicle travels from node i to node j, xij=1 and 
otherwise xij=0 and if the node i, visited with the vehicle k, yik=1 and 
otherwise yik=0.

The problem can be formulated as the following:
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Objective function (1) states that the total distance is to be 
minimized. Constraints (2) and (4) ensure that each demand node is 
served by exactly one vehicle and constraints (3) and (5) guarantee that 
each vehicle starts and ends at the distribution depot. Route continuity 
is represented by (6), i.e. if a vehicle enters in a demand node, it must 
exit from that node. Constraint (7) is the vehicle capacity constraints. 
Constraint (8) eliminates the sub-tour and finally, Constraints (9) and 
(10) define the nature of the decision variable.

The Proposed Solution Method
Several methods have been developed in the literature to deal with 

the possibilistic models involving the imprecise coefficients [1,16,17]. 
Here, we applying an efficient possibilistic method proposed by Parra 
et al. [1], to convert the proposed possibilistic 0-1 programming 
model into an equivalent auxiliary crisp model because of its several 
advantages as follows:

•	 This method is computationally efficient to solve fuzzy linear 
problems because it both preserves its linearity and do not 
increase the number of objective functions and inequality 
constraints. 

•	 This method relies on the [18] general ranking method which 
can be applied to different kinds of membership functions such 

Fuzzy parameter References Category Objective Function Solving approach
Fuzzy demand Erbao and Mingyong (2009) VRPFD Minimization of travel cost Stochastic simulation and differential evolution algorithm

Yanwen and Masatoshi (2010) VRPFD Minimization of travel cost Two-stage possibilistic programming and ACSO
Yang and Yemei (2010) VRPFD Minimization of travel cost Fuzzy  constrained programming and PSO algorithm

Cao and Lai (2010) OVRPFD Minimization of travel cost Fuzzy simulation and differential evolution algorithm
Lian and Xiaoxia (2011) VRPFD Minimization of travel cost Fuzzy simulation and differential evolution algorithm

Changshi and Fuhua (2010) VRPFD Minimization of travel cost and the number of 
used vehicle

Possibilistic programming and improved Sweeping 
algorithm

Fuzzy time window Tang et al. (2009) VRPTW
Minimization of travel distance  and maxi-
mization the service level of the suppliers to 
customers

Two-stage algorithm

Gupta et al. (2010) VRPTW
Minimization of fleet size, distance and waiting 
time and maximization of customer satisfaction 
grade

Fuzzy genetic algorithm

Zheng and Liu (2006) VRPTW Minimization of travel distance Fuzzy simulation and genetic algorithm

Table 1: The State-of-the art.
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Figure 1: Membership functions of triangular fuzzy number.
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as triangular, trapezoidal and nonlinear ones in both symmetric 
and asymmetric forms.

•	 This method is based on the strong mathematical concepts such 
as expected interval and expected value of fuzzy numbers.

Assume that C  is a triangular fuzzy number, the following equation 
can be define as the membership function of C :
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According to (Jimenez, 1996) [18], the expected interval (EI) and 
expected value (EV) of triangular fuzzy number C  can be define as 
follow:
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It is noted that the same equations can be used for a trapezoidal 
fuzzy number. Moreover, according to the ranking method of Jimenez 
[18] for any pair of fuzzy numbers a  and b , the degree in which a  is 
bigger than b  is define as follows:
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When ( , )µ α≥




M a b  it will be said that a is bigger than or equal to, 
b  at least in degree α and it will be represented as 

α≥ 

a b                        (6)

Also, according to the definition of fuzzy equations in Parra et al. 
[1], for any pair of fuzzy numbers a   and b , it will be said that a  is 
indifferent (equal) to b  in degree of α if the following relationships 
hold simultaneously:

2 2
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 a b a b                      (7)

Now, we consider the following constraint with fuzzy parameters:

 i=1,...,m≥ i ia x b                 (8) 

As mentioned by Jimenez et al. [19], a decision vector x ∈Rn is 

feasible in degree if { }1,...,min ( , )µ α= =

i m M i ia x b , according to (5) 

and (6), the equation ≥ i ia x b  is equivalent to the following ones, 
respectively:
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This equation can be rewritten as follows:
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According to above descriptions, the FCVRP model can be 
formulated as follows:
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Hybrid Genetic Algorithm
As it is an NP-hard problem, the instances with a large number 

of customers and vehicles cannot be solved in optimality within 
reasonable time. Therefore, the metaheuristics algorithms used to 
solve these problems [20]. These algorithms can solve these problems 
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Figure 2: Swap Mutation.
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Figure 4:  2-opt operator
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Test code No. of customers No. of vehicles α -level
Lingo 9.0 HGA

Gap (%) Saving (%)
Best solution Time Run(Sec) Best solution Time Run(Sec)

E-n13-k4 13 4

1 277 280 277 8 0
0.8 277 280 277 8 0
0.6 268 280 268 8 0
0.5 247 280 247 8 0
0.4 240 280 240 8 0 2.9
0.2 237 280 237 8 0 4.1
0 230 280 230 8 0 6.9

P-n16-k8 16 8

1 Inf - Inf - -
0.8 Inf - Inf - -
0.6 461.32 409 460.83 18 0.1
0.5 450 409 450.45 18 0.1
0.4 451.34 409 451.875 18 0.1 0.4
0.2 440.37 409 440.33 18 0 2.2
0 428.56 409 428.63 18 0 4.7

P-n19-k2 19 2

1 Inf - Inf - -
0.8 Inf - Inf - -
0.6 223.39 339 231.48 19 0.1
0.5 212 339 212.31 19 0.1
0.4 196.65 339 196.65 19 0 7.3
0.2 196.65 339 196.65 19 0 7.3
0 196.65 339 196.65 19 0 7.3

P-n20-k2 20 2

1 Inf - Inf - -
0.8 Inf - Inf - -
0.6 218.31 370 222.22 22 1.8
0.5 216 370 217.39 22 0.6
0.4 209.12 370 212.31 22 1.4 1.7
0.2 209.12 370 212.31 22 1.4 1.7
0 208.20 370 208.33 22 0 3.6

P-n21-k2 21 2

1 Inf - Inf - -
0.8 212 563 215.98 26 1.8
0.6 215 563 215.05 26 0
0.5 211 563 212.77 26 0.8
0.4 208.29 563 208.33 26 0 1.3
0.2 208.29 563 208.33 26 0 1.3
0 204 563 204.1 26 0 3.3

P-n22-k2 22 2

1 Inf - Inf - -
0.8 Inf - Inf - -
0.6 222.22 806 222.62 28 0.2
0.5 217 806 217.82 28 0.4
0.4 212.31 806 210.53 28 0.1 2.6
0.2 212.31 806 210.53 28 0.1 2.6
0 207.13 806 207.81 28 0 3.8

E-n22-k4 22 4

1 Inf - Inf - -
0.8 Inf - Inf - -
0.6 394.75 10843 400 32 1
0.5 375 10843 375 32 0
0.4 369 10843 370.37 32 0.4
0.2 360.54 10843 363.64 32 0.9
0 355 10843 357.14 32 0.6

E-n23-k3 23 3

1 Inf - Inf - - -
0.8 569.89 - 573.39 38 0.6 -
0.6 568.57 946 568.57 38 0
0.5 569 946 569 38 0
0.4 564.08 946 567.85 38 0.6 0.8
0.2 564.08 946 567.85 38 0.6 0.8
0 563.81 946 563.81 38 0 1

Table 2: Comparison of the performance of the proposed HGA for small and medium scale of problem.
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Test code No. of customers/
vehicles α -level

Lingo 9.0 HGA The best solu-
tion ever found Gap (%) Saving

Lower Bound Time Run(Sec) Best solution Time Run(Sec)

P-n23-k9

23/9 1 Inf - Inf - - -
0.8 Inf - Inf - - -
0.6 Inf - Inf - - -
0.5 416.95 1800 534.76 47 529 1.08
0.4 416.95 1800 510.64 47 - - 3.5
0.2 361.85 1800 510.64 47 - - 3.5
0 340.23 1800 504.49 47 - - 4.7

B-n31-k5

31/5 1 498.54 1800 709.22 - - -
0.8 498.51 1800 692.04 - - -
0.6 504.14 1800 692.04 82 - -
0.5 522.35 1800 689.65 82 672 2.6
0.4 503.16 1800 632.27 82 - - 5.9
0.2 484.17 1800 617.28 82 - - 8.1
0 422.88 1800 4613.5 82 - - 8.7

A-n33-k6

33/6 1 Inf 1800 Inf - - -
0.8 570.52 1800 813 - - -
0.6 572.07 1800 769 112 - -
0.5 593.16 1800 751.88 112 742 1.3
0.4 570.95 1800 735.294 112 - - 1
0.2 569.11 1800 724.64 112 - - 2.4
0 535.65 1800 680.27 112 - - 8.3

A-n37-k6

37/6 1 615.13 1800 1008 172 - -
0.8 610.59 1800 980.39 172 - -
0.6 612 1800 972.76 172 - -
0.5 613.63 1800 949.67 172 949 0
0.4 568.13 1800 906.32 172 - - 4.5
0.2 563.76 1800 865.59 172 - - 8.7
0 569.68 1800 857.63 172 - - 9.6

A-n38-k5

38/5 1 Inf 1800 Inf - - -
0.8 Inf 1800 Inf - - -
0.6 524.84 1800 833.33 144 - -
0.5 525.20 1800 769.23 144 730 5.37
0.4 530.96 1800 751.88 144 - - -
0.2 526.33 1800 740.74 144 - - -
0 524.91 1800 740.74 144 - - -

A-n44-k6

44/6 1 Inf 1800 Inf - - -
0.8 Inf 1800 Inf - - -
0.6 864 1800 1023.57 223 - -
0.5 751.63 1800 980.39 223 934 5
0.4 728.53 1800 915.45 223 - - 1.9
0.2 712.14 1800 909.91 223 - - 2.7
0 712.14 1800 909.91 223 - - 2.7

B-n50-k7

50/7 1 672.83 1800 909.91 - - -
0.8 653.85 1800 866.29 334 - -
0.6 625.14 1800 833.33 334 - -
0.5 598.16 1800 813.33 334 741 9.7
0.4 538.75 1800 741.28 334 - - 3.6
0.2 512.24 1800 704.22 334 - - 4.9
0 473.46 1800 689.65 334 - - 6.9

P-n50-k10

50/10 1 Inf - Inf - - -
0.8 Inf - Inf - - -
0.6 673.48 1800 787.40 350 - -
0.5 640.65 1800 769.23 350 696 11
0.4 555.73 1800 680.27 350 - - 2.2
0.2 541.51 1800 671.14 350 - - 3.5
0 546.13 1800 666.67 350 - - 4.2

Table 3: Comparison of the performance of the proposed HGA for large-scale of problem.
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with a good solution in reasonable time. The different criteria used for 
classification metaheuristics algorithms, such as solution-based and 
population-based, inspiration of nature and without the inspiration of 
nature and Genetic algorithms like ant colony, bee colony and inspired 
by nature and will begin work on an initial population of solutions [21].

Genetic algorithm (GA) developed by John Holland in the 1960s, 
is a stochastic optimization technique. Similar to other artificial 
intelligence heuristics like SA (Simulated Annealing) and TS (Tabu 
search), GA can avoid getting trapped in a local optimum by the aid of 
one of the genetic operations called mutation.

The idea of genetic algorithm based on evolution in nature. GA 
starts with an initial set of random solutions, called population. Each 
solution in the population is called a chromosome, which represents 
a point in the search space. The chromosomes evolve through 
successive iterations, called generations. During each generation, 
the chromosomes are evaluated using some measures of fitness. The 
fitter the chromosomes, the higher the probabilities of being selected 
to perform the genetic operations, including crossover and mutation. 
In the crossover phase, the GA attempts to exchange portions of two 
parents, that is, two chromosomes in the population to generate an 
offspring. The crossover operation speeds up the process to reach better 
solutions. In the mutation phase, the mutation operation maintains the 
diversity in the population to avoid being trapped in a local optimum. 
A new generation is formed by selecting some parents and some 
offspring according to their fitness values, and by rejecting others to 
keep the population size constant. After the predetermined number 
of generations is performed, the algorithm converges to the best 
chromosome, which hopefully represents the optimal solution or may 
be a near-optimal solution of the problem. The mutation and crossover 
operation used in this algorithm is shown respectively in Figure 2 and 
Figure 3.

Zafari et al. [22] in “A hybrid genetic algorithm for solving the 
vehicle routing problem” selected 110 test problems from (http://
branchandcut.org/VRP/data/) and solved them with HGA. In these 
test problems, the range of the number of customer was 12 to 149. The 
comparison of the best solution of Lingo and the proposed algorithm 
showed that the HGA algorithm obtained the best solution of lingo 
exactly in 85 cases from 110 test problems. Extensive computational tests 
on standard instances from the literature confirmed the effectiveness of 
the presented approach. So to solve the proposed FCVRP model, the 
HGA algorithm is applied.

A simple GA may not perform well in this situation. Therefore, the 
GA developed in this paper is hybridized with one heuristic to improve 
the solution further. The 2-opt local search heuristic is generally used 
to improve the solutions of the hard optimization problems. However, 
it increases the computational time because every two swaps are 
examined. If a new solution generated is better than the original one, 
or parent, in terms of quality, it will replace and become the parent. All 
two swaps are examined again until there is no further improvement in 
the parent [23]. The 2-opt exchange operation is shown in Figure 4, in 
which the edge (i, i + 1) and (j, j + 1) are replaced by edge (i, j) and (i +1, 
j +1), thus reversing the direction of customers between i + 1 and j [24].

Numerical Examples
In this section, the proposed algorithm is tested on three categories 

of VRP problems [25]. The first group includes problems that Lingo 
optimization software can reach optimum solution in a reasonable 
time. In the second category, the Lingo solution is optimized but the 

time to solve the problem is not appropriate and finally, the third 
category, which includes problems Lingo not able to solve them. It is 
important to note that this algorithm has only been tested 10 times 
for each problem and the best answer is shown. Then, to evaluate the 
quality of the solutions, the model is solved by the lingo 9 and the 
results of this have been compared with the results of the presented 
metaheuristics algorithm. For this purpose, the relative gap between 
the best solutions obtained from the Lingo (Z (Lingo)) with the best 
solutions obtained from the proposed HGA (Z (HGA)) is computed 
by: 100[Z (HGA)-Z (Lingo)]/Z (Lingo). 

The comparison of Lingo with the proposed algorithm shows that 
our proposed algorithm can obtain approximately an optimal solution 
in less time than Lingo as shown in Table 2 and 3. The average gap 
between the optimal and the HGA solutions is 0.32% showing the 
efficiency of the proposed HGA. Furthermore, increasing the size of 
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Figure 5: Comparison of the time spent in solving problem with Lingo 9.0 
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Figure 6:  Saving in travel costs.

Name of vehicle Number of vehicle Capacity of vehicle(Ton)
Ten wheel drive Renault 5 8.5

Ten wheel Tkv 5 8.5

Table 4: Vehicles.
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the problem increases the solution time of Lingo exponentially while it 
does not tangible effect on the solution time of the proposed algorithm 
as shown in Figure 5. Problem solving results in small, medium and 
large sizes is shown respectively, in table 2 and 3.

According to table 2, the saving of transportation cost for small and 
medium scale of problem is computed by: 100[Z(HGA)-Z(Lingoα=0.5)]/
Z(Lingoα=0.5) and according to table 3, the saving of transportation cost 
for large scale of problem is computed by: 

100[Z(HGA)-Zα=0.5 (The best solution ever found)]/Zα=0.5 (The best 
solution ever found).

The comparison of best solution of both Lingo and HGA shows 
that with decreasing α, also the transportation cost decrease as shown 
in Figure 6. This means that with considering the acceptable extra 
loading, we have a saving in travel cost.

Case Study
In order to provide a better understanding of the model, the Kalleh 

Company’s data of 2011 is used. The Company situated at Amol city 
and their production activities has started since 1983. Products of this 
company are divided into three categories: dairy products, sausages 
and salami, and prepared foods. For studying the proposed model in 
this company, we consider the customers and the vehicles that assigned 
to their prepared foods. The company, having 10 trucks, will serve 23 
cities in the Iran. These data are shown separately in tables 4 and 5.

As we mention before, any vehicle regardless of its capacity can load 
500 kg extra load. But with increasing loading, driver satisfaction also 
decreases. On the other hand, it is not convenient for driver, if he loads 

less than a certain amount of this. So the capacity of the vehicle can 
be considered as fuzzy numbers with triangular membership function.

According to table 6, the comparison of best solution of both Lingo 
and HGA shows that with decreasing α, (increasing loading) also the 
transportation cost decrease. This means that with considering the 
acceptable extra loading, we have a saving in travel cost (Figure 7).

Conclusion
This paper has presented a vehicle routing problem with fuzzy fleet 

capacity (FCVRP) in which the right hand coefficient, is a triangular 
fuzzy number. According to statistics published by the freight 
companies, any vehicle regardless of its capacity can load 500 kg extra 
load. But with increasing loading, driver satisfaction also decreases. 
On the other hand, it is not convenient for driver, if he loads less 
than a certain amount of this. Thus, the capacity of the vehicle can be 
considered as fuzzy numbers with triangular membership function. 
We proposed a possibilistic 0-1 linear programming model to deal 
with this problem. To solve the proposed possibilistic optimization 
model, we apply an efficient possibilistic method proposed by Parra 
et al. [1]. In addition we developed a hybrid genetic algorithm (HGA) 
to find the short routes with the minimum travel cost. To verify the 
solution technique, 16 test problems have been solved by the Lingo 
9.0 software and the related results obtained by the proposed hybrid 
genetic algorithm (HGA) have been very efficient approaching to the 
optimal solution. For small sizes, the average gap between the proposed 
HGA and Lingo solutions has been equal to 0.32 showing an acceptable 
result. The comparison of best solution of both Lingo and HGA shows 
that with decreasing α, (increasing loading) also the transportation 
cost decrease. This means that with considering the acceptable extra 
loading, we have a saving in travel costs.
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