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Abstract

In this paper, we study a Peirce decomposition for (-1,-1)-Freudenthal-Kantor triple sys-
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1 Introduction

Our aim is to give a characterization of many mathematical and physical fields by means of
concept of triple systems (here, triple systems mean a vector space equipped with a triple
product <xyz >). It seems that such concept is useful to an application of nonassociative
algebras as well as the characterization of Yang-Baxter equations, and the construction of Lie
(super)algebras and Jordan (super)algebras ([3]-[10], [12], [13], [15]).

In this article, first we will consider a Peirce decomposition of (-1,-1)-Freudenthal-Kantor
triple systems, and give an example of a Peirce decomposition of simple (-1,-1)- Freudenthal-
Kantor triple systems. Second, we will study the decomposition of simple Lie superalgebras
associated with such triple systems.

Throughout this paper, we shall be concerned with algebras and triple systems over a field
Φ that is characteristic not 2 and do not assume that our algebras and triple systems are finite
dimensional, unless otherwise specified.

Summarizing briefly this article we will mainly discuss the following result.

Main Theorem. Let U be a (-1,-1)-Freudenthal-Kantor triple system with a tripotent element
e, i.e (eee)=e. Then we have the Peirce decomposition

U = U00 ⊕ U1,−1 ⊕ U01 ⊕ U11

where Uλ,µ = {x ∈ U |(eex) = λx and (xee) = µx}. In particular, for balanced cases, we have

U = U11 ⊕ U1,−1

which implies

x =
x+R(x)

2
+
x−R(x)

2
and R2(x) = x

where R(x) = (xee).

In the rest of this section, I shall give the definition and some results for a certain triple
system in order to make this paper as self-contained as possible.

For ε = ±1 and δ = ±1, a vector space U(ε, δ) over Φ with the triple product <−,−,−> is
called a (ε, δ)-Freudenthal-Kantor triple system if

[L(a, b), L(c, d)] = L(<abc>, d) + εL(c,<bad>) (1.1)
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K(<abc>, d) +K(c,<abd>) + δK(a,K(c, d)b) = 0 (1.2)

where

L(a, b)c =<abc>, K(a, b)c =<acb> −δ <bca>, [A,B] = AB −BA

A triple system is said to be a generalized Jordan triple system, if ε = −1 and only the
identity (1.1) is satisfied.

The triple products are generally denoted by

<xyz>, {xyz}, (xyz), [xyz]

Example 1.1. Let V be a vector space equipped with a bilinear form <x|y>= ε <y|x>. Then
V is a (ε, ε)-Freudenthal-Kantor triple system with respect to the product

<xyz>:=<x|z> y+ <y|z> x

Example 1.2. Let V be a Jordan triple system. Then this triple system is a special case of
the (-1,1)-Freudenthal-Kantor triple system, because the identity K(a, b)c ≡ 0 (identically zero)
implies that <acb>=<bca>, and the identity (1.1) implies that

<ab <cde>>=<<abc> de> − <c <bad> e> + <cd <abe>>

If its product satisfies <abc>= − <cba> and

<ab <cde>>=<<abc> de> + <c <bad> e> + <cd <abe>>

then this triple system is called an anti-Jordan triple system.

An (ε, δ)-Freudenthal-Kantor triple system over Φ is said to be balanced if there exists a
bilinear form < ·, ·> such that K(x, y) =<x|y> Id, where <x|y>∈ Φ∗.

Remark 1.1. For a balanced (ε, δ)-Freudenthal-Kantor triple system, we have the following
relation:

K(a, b) = L(b, a)− εL(a, b), <a|b>= −ε <b|a>= −δ <b|a>
εδ <acb> − <cba>= εδ <a|b> c− <b|c> a, εδ = 1

For convenience (in the section 3 of this paper), the notation <x|y> will be used by means of
2 <x|y>. That is, the notation <aab>=<aba>=<a|a> b imply the balanced property.

For the δ-Lie triple systems associated with (ε, δ)-Freudenthal-Kantor triple systems, we have
the following.

Proposition 1.1 ([7, 12]). Let U(ε, δ) be a (ε, δ)-Freudenthal-Kantor triple system. If P is a
linear transformation of U(ε, δ) such that P < xyz >=< PxPyPz > and P 2 = −εδ Id, then
(U(ε, δ), [−,−,−]) is a Lie triple system for the case of δ = 1 and an anti-Lie triple system for
the case of δ = −1 with respect to the product

[xyz] :=<xPyz> −δ <yPxz> +δ <xPzy> − <yPzx>

Corollary 1.1. Let U(ε, δ) be a (ε, δ)-Freudenthal-Kantor triple system. Then the vector space
T (ε, δ) := U(ε, δ) ⊕ U(ε, δ) becomes a Lie triple system for the case of δ = 1 and an anti-Lie
triple system for the case of δ = −1 with respect to the triple product defined by[ (

a
b

) (
c
d

) (
e
f

) ]
=

(
L(a, d)− δL(c, b) δK(a, c)
−εK(b, d) ε(L(d, a)− δL(b, c))

) (
e
f

)
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Proposition 1.2. Let V be an anti-Jordan triple system (that is, it satisfies the condition (L1)
with ε = 1 and L(x, y)z = −L(z, y)x). Then, V ⊕ V becomes an anti-Lie triple system with
respect to the product defined by[ (

a
b

) (
c
d

) (
e
f

) ]
=

(
L(a, d) + L(c, b) 0

0 L(d, a) + L(b, c)

) (
e
f

)
From these results, it follows that the vector space

L(V ) := Inn DerT ⊕ T (= L(T, T )⊕ T )

where T is a δ Lie triple system and Inn DerT : {L(X,Y )|X,Y ∈ T}span, makes a Lie algebra
(δ = 1) or Lie superalgebra (δ = −1) by

[D +X,D′ +X ′] = [D,D′] + L(X,X ′) +DX ′ −D′X

We denote by L(ε, δ) the Lie algebras or Lie superalgebras obtained from these constructions
associated with U(ε, δ)) and call these algebras a standard embedding.

A (ε, δ)-Freudenthal-Kantor triple system U(ε, δ)) is said to be unitary if the linear span k
of the set {K(a, b)|a, b ∈ U(ε, δ)} contains the identity endomorphism Id.

Proposition 1.3 ([6, 7]). For a unitary (ε, δ)-Freudenthal-Kantor triple system U(ε, δ) over Φ,
let T (ε, δ) be the Lie or anti-Lie triple system and L(ε, δ) be the standard embedding Lie algebra
or superalgebra associated with U(ε, δ). The following are equivalent:

a) U(ε, δ) is simple,
b) T (ε, δ) is simple,
c) L(ε, δ) is simple.

For these standard embedding Lie algebras or superalgebras L(ε, δ), we have the following 5
grading subspaces:

L(ε, δ) = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

where U(ε, δ) = L−1, T (ε, δ) = L−1 ⊕ L1, k = {K(a, b)}span = L−2.
This is one reason why we study about a characterization of triple systems, as properties of

Lie superalgebras are closely related to those of the triple systems as well as Lie algebras.

2 Main results (proof of the Main Theorem)

From now, we will only consider a (−1,−1)–Freudenthal-Kantor triple system, unless otherwise
specified, because the case of δ = 1 had considered in other papers ([3]–[7], [11]), that is, one
deal with the relations

(ab(xyz)) = ((abx)yz)− (x(bay)z) + (xy(abz)) (2.1)
K(K(a, b)c, d)− L(d, c)K(a, b)−K(a, b)L(c, d) = 0 (2.2)

where K(a, b)x = (axb) + (bxa) and L(a, b)x = (abx).

Remark 2.1. We note that the relations (2.1) and (2.2) coincide with (1.1) and (1.2) with the
case of ε = −1, and δ = −1.

Let e be a tripotent, i.e (eee) = e and denote

L(x) = (eex), R(x) = (xee), Q(x) = (exe)
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Remark 2.2. We note for the notation that

K(e, e)e = (eee) + (eee) = 2e
K(x, e)e = K(e, x)e = (xee) + (eex)
K(e, e)x = 2Q(x) = 2(exe)

From (2.1), we have

(xe(eee)) = ((xee)ee)− (e(exe)e) + (ee(xee))

and so

(xee) = ((xee)ee)− (e(exe)e) + (ee(xee))

Hence we get

R(x) = R2(x)−Q2(x) + LR(x) (2.3)

On the other hand,

(ex(eee)) = ((exe)ee)− (e(xee)e) + (ee(exe))
Q(x) = RQ(x)−QR(x) + LQ(x) (2.4)

Also,

(ee(xee)) = ((eex)ee)− (x(eee)e) + (xe(eee))

Therefore, we obtain

LR(x) = RL(x) (2.5)

and moreover

(ee(exe)) = ((eee)xe)− (e(eex)e) + (ex(eee))
LQ(x) = Q(x)−QL(x) +Q(x)

hence,

LQ(x) = 2Q(x)−QL(x) (2.6)

On the other hand, from (2.2) we have

K(K(x, e)e, e)e− L(e, e)K(x, e)e−K(x, e)L(e, e)e = 0
K(L(x) +R(x), e)e− L(L(x) +R(x))e− (L(x) +R(x))e = 0

and so

L(L(x) +R(x)) +R(L(x) +R(x))− L2(x)− LR(x)− L(x)−R(x) = 0

Therefore we have

(R− Id)(L(x) +R(x)) = 0 (2.7)

Similarly, from (2.5) we have

(L+R)(R− Id)(x) = 0 (2.8)
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Lemma 2.1. There is no vector a 6= 0 satisfying

L(a) = −R(a) = −a (2.9)

Proof. From (2.3), it follows that

R2 −Q2 + LR−R = 0

and if there is an element a satisfying (2.9), then we have

a−Q2(a)− a− a = 0

i.e

Q2(a) = −a (2.10)

From (2.4), it follows that

Q(a) = RQ(a)−Q(a) + LQ(a)
(R+ L− 2 Id)Q(a) = 0 (2.11)

From (2.6), it follows that

LQ(a) = 2Q(a) +Q(a)
LQ(a) = 3Q(a) (2.12)

We set Q(a) = b, from (2.10) we have

Q2(a) = Q(b) = −a 6= 0 (2.13)

By (2.12), L(b) = 3b and by (2.11),

R(b) = −L(b) + 2b = −3b+ 2b

Hence we have R(b) = −b. From (2.7),

(R− Id)(L(b) +R(b)) = 0

and by L(b) = 3b and R(b) = −b, we get (R − Id)(2b) = 0. Hence −2b − 2b = 0 and so b = 0.
Therefore we have

Q(b) = Q2(a) = −a = 0 (2.14)

This completes the proof.

We use the following notations.

UR=−L = {x ∈ U |R(x) = −L(x)}, UR=Id = {x ∈ U |R(x) = x}

Lemma 2.2. The space U is a direct sum of subspaces UR=−L and UR=Id :

U = UR=−L ⊕ UR=Id (2.15)
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Proof. It follows from (2.7) and (2.8) that

UR=−L ⊂ (R− Id)U (2.16)
UR=Id ⊂ (R+ L)U (2.17)

Either of (2.16) or (2.17) implies

dim UR=−L ≥ dim U − dim UR=Id (2.18)

We set P := UR=−L ∩UR=Id. To prove that P = 0, assume that P 6= 0. Then we get R = −L =
Id on P . Hence we come to a contradiction with Lemma 2.1.

Remark 2.3. We note that

UR=−L = (R− Id)U (2.19)
UR=Id = (R+ L)U (2.20)

Lemma 2.3. The subspaces UR=−L and UR=Id are invariant with respect to operators L and R.

Proof. Let us prove, for example,

RUR=Id ⊆ UR=Id

Using (2.5) and (2.20), we get

R(R+ L)U = (R+ L)RU ⊆ (R+ L)U = UR=Id

The other proofs are obtained in the same way.

Corollary 2.1. There is no vector a 6= 0 such that

L(a) = −a (2.21)

Proof. If there is an element a 6= 0 and let a = a1 + a2, where a1 ∈ UR=−L and a2 ∈ UR=Id.
Then it follows from Lemma 2.3 that

L(a1) = −a1, L(a2) = −a2

Considering the operator R on UR=−L and UR=Id, we also get

R(a1) = a1, R(a2) = a2

Now, as one comes to a contradiction of Lemma 2.1, hence the Corollary holds.

An eigensubspace of the tripotent e with respect to the eigenvalues λ, µ is called a subspace
Uλ,µ of all vectors a satisfying

L(a) = λa, R(a) = µa (2.22)

Now we prove that there are only two possibilities, i.e 1) µ = −λ, 2) µ = 1. To show this, we
will denote by Uµ=−λ the sum of all subspaces with the first possibility and by Uµ=1 with the
second one.

Lemma 2.4. Let a ∈ Uλµ. Then either of the following holds: a ∈ Uµ=−λ or a ∈ Uµ=1.
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Proof. Suppose a /∈ Uµ=−λ and a /∈ Uµ=1. By Lemma 2.2, we can see that

a = a1 + a2, a1 ∈ UR=−L, a2 ∈ UR=Id

By the definition of Uλµ, we get

L(a1 + a2) = λa1 + λa2, R(a1 + a2) = µa1 + µa2

This implies, according to Lemma 2.3,

L(a1) = λa1, L(a2) = λa2, R(a1) = µa1, R(a2) = µa2

Therefore, both a1 and a2 are common eigenvectors of L and R. This implies the fact that
µ = −λ and µ = 1, and hence we get λ = −1. This contradicts the Corollary of Lemma 2.1.

Lemma 2.5. Let a ∈ Uλ=−µ. Then one of the following two possibilities occurs:

a) a ∈ U00 and Q(a) = 0,
b) a ∈ U1,−1, Q(a) ∈ U1,−1 and Q2(a) = a.

Proof. First, suppose that Q(a) = 0. Then (2.3) is equivalent to

R2(x) + LR(x)−R(x) = 0

that is

L2(x)− L2(x)−R(x) = 0 (2.23)

Thus λ = 0 and µ = 0, and one come to the case (a).
Let Q(a) 6= 0. From (2.6) it follows that

LQ(a) = (2− λ)Q(a). (2.24)

From (2.4) it follows that

Q(a) = RQ(a) + λQ(a) + LQ(a)

i.e

(R+ L)Q(a)(Id−λ)Q(a) (2.25)

Subtracting (2.25) from (2.24), we get

RQ(a) = −Q(a) (2.26)

Thus this implies Q(a) ∈ U2−λ,−1 and from Lemma 2.4 follows Q(a) ∈ Uµ=−λ or Q(a) ∈ Uµ=1.
In the first case, we have 2 − λ = 1, i.e λ = 1, which implies that both a ∈ U1,−1 and

Q(a) ∈ U1,−1. Hence, R(a) = −a, L(a) = a, so Q2(a) = a, by (2.3). Thus in this case, we come
to the case b).

In the second case, Q(a) ∈ Uµ=1. Then it follows from (2.26) that RQ(a) = −Q(a). This
case does not appear. This completes the proof.

Lemma 2.6. Let a ∈ Uµ=1. Then one of the following two possibilities occurs:

a’) a ∈ U01 and Q(a) = 0,
b’) a ∈ U11, Q(a) 6= 0 ∈ U11 and Q2(a) = a.
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Proof. First suppose that Q(a) = 0. Then (2.3) is equivalent to L(a) = 0. This means that
λ = 0. Thus one come to the case a′).

Suppose that Q(a) 6= 0. Then by (2.6),

LQ(a) = (2− λ)Q(a) (2.27)

and by (2.4)

RQ(a) + LQ(a) = 2Q(a) (2.28)

Subtracting (2.28) from (2.27), we get

RQ(a) = λQ(a) (2.29)

Thus Q(a) ∈ U2−λ,λ and from Lemma 2.4 follows Q(a) ∈ Uµ=−λ or Q(a) ∈ Uµ=1.
In the first case, we have

RQ(a) = −λQ(a) (2.30)

Thus from (2.29) and (2.30) we get λ = 0 which implies Q(a) ∈ U00 and Q(a) ∈ U2,0, because
Q(a) ∈ Uµ=−λ and Q(a) ∈ U2−λ,λ. Thus this case does not appear.

In the second case, we have

RQ(a) = Q(a) (2.31)

From (2.29) and (2.31) we have λ = 1. The case of λ = 1 means that both a ∈ U11 and
Q(a) ∈ U11, Q2(a) = a, by (2.3). This comes to the case b′). This completes the proof.

Combining Lemma 2.5 and Lemma 2.6, we have the following.

Theorem 2.1. Let the three linear operators L,R,Q be defined on a (−1,−1)-Freudenthal-
Kantor triple system. Then the space U is a direct sum of four subspaces;

U = U00 ⊕ U1,−1 ⊕ U01 ⊕ U11 (2.32)

where

1) ∀a ∈ Uλµ we denote L(a) = λa, R(a) = µa,
2) a ∈ U00 or a ∈ U01 if Q(a) = 0,
3) a ∈ U1,−1 and Q2(a) = a if Q(a) ∈ U1,−1,
4) a ∈ U11 and Q2(a) = a if Q(a) ∈ U1,1.

Proof. To prove (2.32), it is enough to prove

UR=−L = Uλ=−µ and UR=Id = Uµ=1 (2.33)

That is, the direct sum

U = U00 ⊕ U01 ⊕ U11 ⊕ U1,−1

follows from Lemma 2.5 and Lemma 2.6. The equalities (2.33) mean that the operator L has
no Jordan blocks of second degree, i.e there are no vectors a1, a2 6= 0 such that

L(a1) = λa1, L(a2) = λa2 + a1 (2.34)
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Indeed, according to Lemma 2.2 and Lemma 2.3, we can consider the two cases: a1, a2 ∈ UR=−L
and a1, a2 ∈ UR=Id, separately.

In the case of a1, a2 ∈ UR=−L, we have

R(a1) = −λa1, R(a2) = −λa2 − a1 (2.35)

It follows from (2.6) that

LQ(a1) = 2Q(a1)−QL(a1) = (2− λ)Q(a1) (2.36)
LQ(a2) = (2− λ)Q(a2)−Q(a1). (2.37)

Using (2.36) and (2.37), we obtain from (2.4)

RQ(a1) = Q(a1) +QR(a1)− LQ(a1), RQ(a2) = Q(a2) +QR(a2)− LQ(a2)

and so

RQ(a1) = Q(a1)− λQ(a1)− (2− λ)Q(a1) = −Q(a1)

Furthermore, using (2.35),

[RQ(a2)Q(a2)+Q(−λa2−a1)−LQ(a2) = Q(a2)−λQ(a2)−Q(a1)−(2−λ)Q(a2)+Q(a1)
= −Q(a2)

That is, we have

RQ(a1)−Q(a1 and RQ(a2)−Q(a2) (2.38)

Equations (2.36), (2.37) and (2.38) imply that

(L+R)Q(a1) = (1− λ)Q(a1), (L+R)Q(a2) = (1− λ)Q(a2)−Q(a1)
RQ(a1) = −Q(a1), RQ(a2) = −Q(a2)

Now, applying (2.7) to Q(a2) and using the above relations, we obtain

(R− Id)(L+R)Q(a2) = R((1− λ)Q(a2))−R(Q(a1))− (1− λ)Q(a2) +Q(a1)
= −(1− λ)Q(a2) +Q(a1) + (λ− 1)Q(a2) +Q(a1)
= (2λ− 2)Q(a2) + 2Q(a1) = 0

From Lemma 2.5 and Lemma 2.6, the cases of λ = 1 and Q(a1) = 0 are impossible. Hence one
comes to Q(a1) = 0 and Q(a2) = 0. Therefore, by Lemma 2.5, we have a1 ∈ U00 and λ = 0, and
by (2.35), R(a2) = −a1. We come to a contradiction with (2.34).

In the second case, a1, a2 ∈ UR=Id, and we have

R(a1) = a1, R(a2) = a2. (2.39)

Thus it follows that

LQ(a1) = 2Q(a1)− λQ(a1) (2.40)
LQ(a2) = 2Q(a2)−Q(λa2 + a1) = (2− λ)Q(a2)−Q(a1) (2.41)

From (2.4), it follows that

Q(x) = RQ(x)−QR(x) + LQ(x)
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and so

RQ(a1) = Q(a1) +QR(a1)− LQ(a1)

Then using (2.39), (2.40) and (2.41) we get

RQ(a1) = Q(a1) +Q(a1)− (2Q(a1)− λQ(a1)) = λQ(a1)
RQ(a2) = Q(a2) +QR(a2)− LQ(a2) = Q(a2) +Q(a2)− (2− λ)Q(a2) +Q(a1)

= λQ(a2) +Q(a1)

Similarly to the first case, by applying (2.7) to Q(a2) and using the above relations, we obtain

(R− Id)(L+R)Q(a2) = (R− Id)((2− λ)Q(a2)−Q(a1) + λQ(a2) +Q(a1))
= 2(R− Id)Q(a2)
= 2(λQ(a2) +Q(a1))− 2Q(a2)

Thus we get

2(λ− 1)Q(a2) +Q(a1) = 0 (2.42)

Hence, from the same method as for the first case, we have Q(a1) = 0 and Q(a2) = 0. Therefore
by Lemma 2.6, it follows that a1 ∈ U01 and a2 ∈ U01, λ = 0. This implies a contradiction of the
assumption on (2.34). This completes the proof.

Remark 2.4. We note that the case of more than one tripotent elements will be discussed
elsewhere. In particular, if there exists a tripotent element e such that K(e, e)x =<e|e> x and
<e|e>= 1 then we have the balanced case U = U11 ⊕ U1,−1.

3 Examples of (-1,-1)-Freudenthal-Kantor triple systems

In this section, we will consider the standard embedding Lie superalgebras of the B(m,n) and
D(m,n) types associated with the anti-Lie triple system and the (-1,-1)-Freudenthal-Kantor
triple system. Furthermore, we will study a Peirce decomposition of such types.

Theorem 3.1 ([10]). Let U be a vector space of Mat(k, n; Φ). Then the space U is a unitary
(-1,-1)-Freudenthal-Kantor triple system with respect to the triple product

<xyz>= z tyx+ y txz − x tyz

where tx denotes the transpose matrix of x.

Remark 3.1. For this triple system, by straightforward calculations, using the results in Sec.
1, we have the following:

1) k = 2m (m ≥ 2): L(U) ∼= D(m,n) type’s Lie superalgebra and

dimL(U) = 2(n+m)2 −m+ n

2) k = 2m+ 14 (m ≥ 0): L(U) ∼= B(m,n) type’s Lie superalgebra and

dimL(U) = 2(n+m)2 + 3n+m

That is, summarizing these, we have the following.
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Theorem 3.2. Let U be the same triple system as that described in Theorem 3.1 and L(U) be
the standard embedding Lie superalgebras associated with U = Mat(k, n; Φ). Then L(U) are Lie
superalgebras of type D(m,n) or B(m,n) if k=2m or k= 2m+1, respectively.

For a bilinear trace form of a (-1,-1)-Freudenthal-Kantor triple system, we have the formula
as follows [7]:

γ(x, y) :=
1
2

Trace{2(R(x, y) +R(y, x)) + L(x, y) + L(y, x)}

where R(x, y)z =<zxy> and L(x, y)z =<xyz>.
Thus for U = Mat(k, n; Φ) of the above Theorem 3.1, by straightforward calculations, we

obtain the identity

γ(x, y) = cx,y(2n+ 2− k)

where cx,y is a constant element in Φ with dependent x, y ∈ U .
This implies that the trace form γ(x, y) is degenerate if m = n + 1 (the case of k = 2m).

Thus this fact is related to the degenerate property of the Killing form of the Lie superalgebra
D(n+ 1, n). For the correspondence between the trace form of the anti-Lie triple system U ⊕U
and the trace form (Killing form) of the standard embedding Lie superalgebra L(U) associated
with (-1,-1)-FKTS U we refer to the author’s previous paper [7] and do not go into detail here.

Remark 3.2. For the construction of balanced types of Lie algebras and superalgebras, that
is, in the case of dim k = dimL−2 = dimL2 = 1, we refer to [1, 4, 13].

Example 3.1. For the triple system given in Theorem 3.1, we have the following decomposition.
Let U = Mat(k, n; Φ) be the triple system defined by

<xyz>= z tyx+ y txz − x tyz

Here, let k ≥ n> l and we set

e :=
(
El 0
0 0

)
is (k, n) matrix, El is (l, l) identity matrix

x =
(
A B
C D

)
, A : (l, l), B : (l, n− l), C : (k − l, l), D : (k − l, n− l) matrix

Then we have

x =
(
A B
C D

)
=

(
0 0
0 D

)
+

(
0 B
0 0

)
+

(
A− tA

2 0
C 0

)
+

(
A+ tA

2 0
0 0

)
∈ U00 ⊕ U01 ⊕ U1,−1 ⊕ U11

In particular, for this triple system, let k ≥ n = l, and we set

e :=
(
El
0

)
, (k, l) matrix

Then we have eex = x, for all x ∈ U and xee = e tex + e txe − x. Thus by straightforward
calculations, we can obtain the decomposition

x =
(
A
B

)
=

(
A+ tA

2
0

)
+

(
A− tA

2
B

)
∈ U11 ⊕ U1,−1
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As the final topic in this section, we shall give several simple examples of Peirce decomposi-
tions of triple systems.

In a generalized Jordan triple system equipped with xxy = xyx =<x|x> y and <x|y>=<
y|x >, that is, this means the balanced property defined in section one, by straightforward
calculations, we have the following.

Proposition 3.1. Let U be a balanced generalized Jordan triple system. Then the decomposition
is given by U = U11 ⊕ U1,−1, where U11 = {x ∈ U |R(x) = x} and U1,−1 = {x ∈ U |R(x) = −x}.

Proof. Indeed, from R2(x) = x, we have

x =
x+R(x)

2
+
x−R(x)

2

and the proof is verified.

Remark 3.3 ([13]). For the standard embedding Lie superalgebra L(U) associated with a simple
balanced (-1,-1)-FKTS U , we have the following decomposition. For convenience, we set

U11 := U+ = {x|x = Φe}, U1,−1 := U− = {x| <x|e>= 0}

where eee = e,<e|e>= 1. In this Lie superalgebra, L(U) = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, and we
have

L−1 = U = U+ ⊕ U−

L−2 = {K(x, y)|x, y ∈ U}span
L0 = L(U,U) = {L(x, y)|x, y ∈ U}span

= L(U+, U+)⊕ L(U+, U−)⊕ L(U−, U+)⊕ L(U−, U−)

and

dimL(U) = 2 + 2 dimU + dimL(U,U)

For the examples of balanced (-1,-1)-Freudenthal-Kantor triple systems U and the standard
embedding Lie superalgebras L(U), we refer to [1] and [13].

On the other hand, for a quadratic triple system [14], that is, in a triple system equipped
with xxy = yxx =<x|x> y and <x|y>=<y|x>, we have the following.

Proposition 3.2. Let U be a quadratic triple system. Then the decomposition is given by
U = U+

11 ⊕ U
−
11, where U+

11 = {x ∈ U |exe = x} and U−11 = {x ∈ U |exe = −x}.

Example 3.2. Let U be a triple system satisfying (xyz) =< y|z > x and < x|y >=< y|x >.
Then this triple system U is a (−1,−1)-Freudenthal-Kantor triple system, but it is not balanced.
Furthermore, we have U = U11 ⊕ U01, i.e

x =
x+Qe(x)

2
+
x−Qe(x)

2

where Qe(x) = exe =<x|e> e, if <e|e>= 1, then xee = x ∀x ∈ U .

Example 3.3 ([8], anti-Jordan triple system). Let U be a vector space with an anti-symmetric
bilinear form such that < x|y >= − < y|x >. Then U is a (1,-1) Jordan triple system with
respect to the triple product

xyz =<x|y> z+ <y|z> x− <z|x> y
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This product means an anti-J.T.S.
Furthermore, by means of an element e such that eee = 0, we have the decomposition

U = U0 ⊕ U1, where U0 = {x| <e|x>= 0} and U1 = {x|x = Φe}.
This Lie superalgebra decomposition is L(U) = L−1⊕L0⊕L1, where L−1 = U and L1 is the

copy of U , L0 = L(Ui, Ui)span.
Also, it holds that L(xi, xj)xk ∈ Ui+j+k, where (i+ j + k) is mod 2, and U0U0U0 = 0.
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