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Introduction
Survival models are commonly used to assess the relationship 

between a covariate of interest and time-to-event data. In these 
models it is typically assumed that the covariate is fully observed, 
but there are many situations when the underlying covariate is not 
fully observed. Incomplete measurements of a variable can occur in 
environmental, epidemiological, biological and biomedical studies [1-
3]. For example, when conducting a bioassay to quantify the biomarker 
some measurements are not fully observed because of inadequate 
instrument sensitivity. Similar incomplete measurements can also 
occur when measuring air quality, water quality, soils, contaminants 
in biota, etc. The measurement above the detection limit (LOD) is 
reported, and in those that are undetectable, LOD is reported. Several 
authors [2] reported that the use of the LOD or LOD/2 provide biased 
regression parameter estimate. When studying an association between 
a biomarker subject to LOD and time-to-event, it is necessary to adjust 
the impact of LOD in survival analysis. In this article we intend to study 
the association between a right censored survival outcome and a left-
censored covariate based on the direct maximization of a likelihood 
function where the impact of left-censoring in the covariate of interest 
will be integrate out by a numerical integration method. 

As a running example, we use the Genetic and Inflammatory 
Marker of Sepsis (GenIMS) study. This was a large cohort study of 
patients with community-acquired pneumonia and sepsis [4]. The 
goal of this study was to understand the role of inflammatory cytokine 
response in a hospitalized cohort of patients. After enrollment in the 

study, blood was drawn for a cytokine assay immediately following the 
enrollment, daily for the first week and weekly thereafter while subjects 
remained in the hospital. There are several cytokine measured in this 
study and one of them is Interleukin 10 (IL10). About one-third of the 
IL10 measurements fall below the detection limit and LOD is reported. 
In this case IL10 is a risk factor or a covariate of interest which has left-
censoring. Our goal is to find the association between 90 day mortality 
and IL10 given that a large percentage of IL10 measurements are left-
censored. More details about the GenIMS study can be found in the 
result section. 

During the past several years new methods have been developed for 
improved statistical inference when there is a censored covariate in the 
regression model, and these methods have been compared with naive 
methods. Naive methods include removing observations falling below 
the detection limit. Removing observations may provide unbiased 
regression parameter estimates but results in reduced sample size 
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Abstract
Problem statement: Modeling survival data with a set of covariates usually assumes that the values of the 

covariates are fully observed. However, in a variety of applications, some values of a covariate may be left-censored 
due to inadequate instrument sensitivity to quantify the biospecimen. When data are left-censored, the true values are 
missing but are known to be smaller than the detection limit. The most commonly used ad-hoc method to deal with 
nondetect values is to substitute the nondetect values by the detection limit. Such ad-hoc analysis of survival data with 
an explanatory variable subject to left-censoring may provide biased and inefficient estimators of hazard ratios and 
survivor functions. 

Method: We consider a parametric proportional hazards model to analyze time-to-event data. We propose a 
likelihood method for the estimation and inference of model parameters. In this likelihood approach, instead of replacing 
the nondetect values by the detection limit, we adopt a numerical integration technique to evaluate the observed data 
likelihood in the presence of a left-censored covariate. Monte Carlo simulations were used to demonstrate various 
properties of the proposed regression estimators including the consistency and efficiency. 

Results: The simulation study shows that the proposed likelihood approach provides approximately unbiased 
estimators of the model parameters. The proposed method also provides estimators that are more efficient than those 
obtained under the ad-hoc method. Also, unlike the ad-hoc estimators, the coverage probabilities of the proposed 
estimators are at their nominal level. Analysis of a large cohort study, genetic and inflammatory marker of sepsis study, 
shows discernibly different results based on the proposed method. 

Conclusion: Naive use of detection limit in a parametric survival model may provide biased and inefficient 
estimators of hazard ratios and survivor functions. The proposed likelihood approach provides approximately unbiased 
and efficient estimators of hazard ratios and survivor functions. 
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and hence decreasing efficiency of the parameter estimates. Another 
commonly practiced approach is the ad-hoc substitution method. 
In this approach observations that fall below the detection limit are 
recognized by LOD, LOD/2, LOD/ 2, or zero. Helsel [5] and Sattar 
et al. [6] studied these ad-hoc methods and showed that these ad-hoc 
methods provide biased estimates and the degree of bias increases with 
the increase in percent of LOD observations in the covariate. Helsel 
argued that there is no theoretical basis for the use of these substitution 
methods. Two articles on censored covariate in the generalized linear 
model appeared almost at the same time in the literature, one used a 
maximum likelihood method with the Monte Carlo EM algorithm 
(May et al. [7]), and the other used an optimal estimating equations 
approach (Tsimikas et al. [8]). Nie et al. [9] studied left-censoring of 
an explanatory variable in the linear regression model set-up. These 
authors demonstrated that the commonly used substitution methods 
of replacing left-censored values with LOD, LOD/ 2, LOD/2 provide 
biased parameter estimates with low Coverage Probabilities (CP). They 
proposed parameter estimation by the maximum likelihood method 
based on parametric distributional assumptions. The proposed method 
has been compared with a method of replacing LOD by E(X|X<LOD). 
The authors concluded that these two methods are competitive and are 
promising alternatives to the multiple imputation method [10]. 

There are several approaches to model the hazard of an event. A 
common approach is the parametric survival model. In this type of 
modeling, a probability distribution is assumed for the underlying 
survival time. If the distributional assumption is satisfied then this 
modeling approach is more efficient than its counterpart nonparametric 
and semi-parametric hazard models. Langor et al. [11] studied doubly 
censored survival data with an interval-censored covariate in a 
parametric survival model framework. They have considered a censored 
discrete covariate. In their estimation approach, the likelihood function 
is maximized as a non-linear constant maximization problem, and they 
used a sequential quadratic programming algorithm. This approach 
guarantees a local maximum likelihood estimate. Cox regression 
models with covariate subject to detection limit has also been studied. 
Lee et al. [12] propose to estimate the relative risk function based on the 
uncensored covariate data and used this risk function to derive a partial 
likelihood function. D’Angelo et al. [13] analyzed survival data in a 
Cox model framework with a covariate subject to left-censoring. These 
authors have used an index approach which is conceptually similar to 
the EM algorithm. In this approach the censored value is expressed as a 
function of all of the observed values of the covariate. 

In this article, we propose a method for estimating survival 
regression parameter associated with a continuous covariate of 
interest which is subject to limit of detection. The covariate of interest 
is left-censored because of the limit of detection in the bioassay. We 
maximized the likelihood function and integrate out the left-censoring 
via Simpson’s numerical integration method. Monte Carlo simulations 
study show that the proposed method provides approximately unbiased 
estimates of the model parameters. The parameter estimates are also 
efficient and its Coverage Probabilities (CP) is at the nominal level. 
The method has been implemented in standard statistical software. To 
our knowledge, no one has addressed the detection limit problem in a 
parametric survival model using a numerical integration method. 

The article is organized as follows, in section “Materials and 
Methods”, we have developed the general framework of our proposed 
method. In sections “Simulation Study” and “Illustrative Example”, we 
have presented the simulation and GenIMS study results, respectively. 
We have offered a discussion and conclusion in the final section.

Materials and Methods

i i 1 0h (t ) exp( x ' )h (t )β=

where h0(t) is a baseline hazard function depending on unknown 
parameters β0 and β1 is a p×1 vector of unknown regression coefficients. 
Assuming that the survival times are independent, the likelihood 
function of β = (β0, β1) for given data (yi,δi,xi) can be defined as 
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where Si (t) = P (Ti > t | xi, β) is the survivor function for subject i at time 
t. Let 

iT if (t | x , )β  denote the density function for the survival time Ti at 
time t. Then the above likelihood function can be expressed as
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We assume that the binary random variable Ri follows the Bernoulli 

distribution
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for r = 0,1, where πi = P(Xi ≥ c) is the probability that the value of Xi is 
observed. To estimate the model parameters β, we propose to maximize 
the observed data likelihood function
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In the absence of left-censored covariates, the above likelihood 
function L(β) becomes the ordinary likelihood L0(β), as defined in (1). 
From (2), the log-likelihood function is obtained as
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Suppose in an experiment with n subjects, Ti denotes the survival 
time of subject i, i=1,…,n. Assume that some of the “true” values t1,t2,…,tn 
of the random variables T1,…,Tn are right-censored. We further assume 
that the censoring is non-informative. The right-censored observed 
survival data can be written as pairs (yi,δi), where δi is the event 
indicator: δi=1 if yi is a true event time, that is, if ti= yi, and δi=0 if ti is 
right-censored, that is, if ti> yi. Let Xi denote a p×1 vector of covariates 
associated with the ith subject. Suppose the hazard rate hi(t) for subject i 
at time t is related to the values xi of the covariates by the proportional 
hazards model 

When the values of a covariate are censored due to the limit of 
detection, and the censored values are replaced by the LOD, then 
likelihood function (1) provides biased and inefficient regression 
parameter estimates [13,14]. To obtain consistent and efficient 
regression parameter estimates from a survival regression model with 
a covariate subject to left-censoring we are proposing the following 
method. This method is based on Simpson’s numerical integration 
technique and easy to implement in standard statistical software. The 
likelihood function can be constructed for the censored and observed 
values with a fair amount of effort. For now we consider that Xi has only 
one continuous covariate and its value xi is left-censored if xi < C for 
a given value of c. Let 

iX
f ( x)  denote the density of the random variable 

Xi, which is assumed to be known. Define a binary random variable Ri 
which is 1 if Xi is observed and 0 if Xi is not detected, that is, 
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Note that the above log-likelihood function (3) cannot be written 
in a closed form, and numerical methods may be used to evaluate the 
integral with respect to the covariate xi. Here we consider evaluating 
this integral using Simpson’s 1/3 rule of numerical integration. The 
Simpson’s method produces a numerical value for the integration of 
a function over a set. Suppose that an interval [a,b] is divided into k 
subintervals, with k an even number. Then the composite Simpson’s 
rule is defined by [15]

b n/ 2 1 n/ 2

0 2 j 2 j 1 n
j 1 j 1a

hf ( z)dz f ( z ) 2 f ( z ) 4 f ( z ) f ( z )
3
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−
= =
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where zj = a + jh for j = 0,1,…,n, with h = (b-a)/n. The error term 
associated with the composite Simpson’s rule is bounded (in absolute 

value) by 4 4
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(h / 180)(b a)max f ( )

ξ
ξ

∈
− . Differentiating l(β) with respect 

to β, gives the score equations U(β) = (∂/∂β)l(β) = 0. The maximum 
likelihood estimators of the model parameters β can be obtained by 
solving these score equations numerically using an iterative method 
or by directly maximizing the log-likelihood function (3) using some 

numerical optimization technique, which is discussed further in the 
next section. 

Standard maximum likelihood theory suggests that E{U(β)} = 0. 
The observed Fisher information I(β) is the negative of the p×p Hessian 
matrix of the log-likelihood, so that I(β) = −(∂2/∂β∂β’)l(β) =  −(∂/∂β)
U(β). For the exponential family, the expected Fisher information 
matrix, J(β) = E{U(β)U’(β)} = −E{(∂/∂β) U(β)}. Under appropriate 
regularity conditions, the maximum likelihood estimators follow an 
approximate normal distribution for a large sample size n: 

1(0, ))ˆ( ) (β β β−→− d N Jn .

Simulation study

To examine the performance of the proposed method, we 
conducted a simulation study. In this study, we compared our 
proposed method based on the log-likelihood function (3) with the 
naïve method, which estimates the model parameters by replacing the 
left-censored covariates with the LOD under a number of different 
scenarios. We refer to these two methods of analysis as the “corrected” 

Scenario Intercept( β0) Slope( β1)

N SD of X LOD Analysis Bias MSE CP Bias MSE CP

0%
Naïve 0.004 0.300 94.5% -0.00014 0.0118 95.1%

Corrected 0.004 0.300 94.5% -0.00014 0.0118 95.1%

500

0.5 20%
Naïve 0.139 0.451 94.6% -0.02549 0.0174 94.8%

Corrected -0.021 0.312 94.9% 0.004033 0.0124 94.7%

50%
Naïve 0.574 1.309 90.5% -0.10275 0.0466 91.2%

Corrected 0.027 0.376 94.8% -0.00509 0.0148 94.8%

1

0%
Naïve 0.010 0.069 95.4% -0.00148 0.0027 95.9%

Corrected 0.010 0.069 95.4% -0.00148 0.0027 95.9%

20%
Naïve 0.190 0.150 91.6% -0.03297 0.0055 92.0%

Corrected 0.010 0.078 94.6% -0.00185 0.0031 95.1%

50%
Naïve 0.547 0.571 81.4% -0.08614 0.0167 85.7%

Corrected -0.019 0.098 95.0% 0.004916 0.0037 95.5%

2

0%
Naïve 0.002 0.019 95.9% -0.00017 0.0007 95.5%

Corrected 0.002 0.019 95.9% -0.00017 0.0007 95.5%

20%
Naïve 0.212 0.080 78.6% -0.03273 0.0023 83.5%

Corrected 0.007 0.023 93.5% -0.00102 0.0009 94.5%

50%
Naïve 0.724 0.612 33.7% -0.09892 0.0125 52.4%

Corrected 0.012 0.029 95.4% -0.00127 0.0011 94.9%

1000

0.5

0%
Naïve 0.005 0.148 94.6% -0.00101 0.0058 95.2%

Corrected 0.005 0.148 94.6% -0.00101 0.0058 95.2%

20%
Naïve 0.168 0.247 93.3% -0.03074 0.0095 93.5%

Corrected 0.009 0.158 94.4% -0.00151 0.0063 94.0%

50%
Naïve 0.530 0.781 87.1% -0.09401 0.0274 87.9%

Corrected 0.008 0.189 94.6% -0.00100 0.0075 94.4%

1

0%
Naïve -0.002 0.038 94.5% 0.000437 0.0015 94.5%

Corrected -0.002 0.038 94.5% 0.000436 0.0015 94.5%

20%
Naïve 0.188 0.090 88.0% -0.03253 0.0032 89.9%

Corrected 0.008 0.038 95.3% -0.00152 0.0015 95.5%

50%
Naïve 0.588 0.491 65.3% -0.09484 0.0140 70.1%

Corrected 0.003 0.052 94.2% -0.00059 0.0020 94.3%

2

0%
Naïve -0.001 0.010 95.8% -0.00015 0.0004 95.0%

Corrected -0.001 0.010 95.8% -0.00016 0.0004 95.0%

20%
Naïve 0.210 0.059 62.9% -0.03248 0.0016 72.9%

Corrected 0.003 0.010 95.5% -0.00055 0.0004 96.1%

50%
Naïve 0.724 0.569 6.7% -0.09928 0.0112 21.9%

Corrected 0.008 0.015 95.1% -0.00105 0.0005 95.8%

Table 1: Simulation results of a parametric survival model when a covariate is subject to limit of detection. The true values of the regression parameters set to β0 = −2.0, 
and β1 = −0.2.
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and the “naïve” approach, respectively. In each scenario, we consider a 
Weibull proportional hazard model. Under this proportional hazards 
model, the hazard of death at time t for the ith subject is [16]

1
i i 1h (t ) exp( x ' ) t γβ λγ −=                       (4)

where λ and γ are the scale and shape parameters of the Weibull 
distribution, respectively. The survivor function corresponding to the 

hazard function (4) is ( ){ }i iS (t ) exp exp x ' t γβ λ= − . For simplicity, 
we set the shape parameter γ =1. In this setting, the hazard function (4) 
can be written in the form *

i ih (t ) exp( x ' )β= , where *
i ix (1,x )'=   and β 

= [β0, β1]’ with β0 = log(λ). The values of the covariate X were generated 
from the normal distribution with mean 5.0 and standard deviation 
which differed for some of the scenarios. True values of the regression 
parameters intercept (β0) and slope (β1) were set to -2.0 and -0.2, 
respectively. The right-censored survival times were generated from the 
Weibull distribution by setting λ = exp(intercept + 50) If the observed 
time is less than the right-censoring time, then the event is observed. 
Otherwise, the survival time is right-censored. The values that differed 
for each scenario were the sample size ( { }500, 1000∈N ), the standard 
deviation of the covariate ( { }1( ) 0.5,1.0, 2.0∈SD X ) and the percentages 
of covariates which were censored ( { }1 0%, 20%, 50%π− ∈ ).To 
generate various percentages of left-censored covariate values, we set 
LOD = 5+SD(X1)Ф-1(1-π), where Ф is the normal cumulative density 
function. If the generated values of the covariate X1 are less than the 
LOD, then LOD is recorded. The statistical software R [13] was used 
for the computation. In particular, to maximize the likelihood function 
derived under the above Weibull proportional hazard model, we used 
the method L-BFGS-B [14] available through the R function optim. 
This method uses function values and gradients to build up a picture of 
the surface to be optimized. For the naive approach we used the survival 
package in R. The simulation results are presented in Table 1. As 
expected with no LOD (i.e. 1-π = 0%), the naïve approach and corrected 
approach are identical. As the proportion of censored values increased, 
the bias in the estimates from the naïve approach also increased. Also, 
the bias in the estimates from the naïve approach was significantly 
higher when the standard deviation of the covariate was higher. When 
the standard deviation of the covariate was 2.0 with a sample size 1000 
and 50% observations were left-censored, the estimated 95% coverage 
rate for both the slope and intercept was less than 22% for the naïve 
approach. In contrast, the corrected approach produced results with 
very small bias, smaller mean square error, and approximately correct 
coverage for most scenarios. When the variance of the covariate was 
2.0, the corrected approach had a slightly low coverage rate for 500 
sample size, but significantly improved coverage compared to the naïve 
approach. Thus the proposed approach is approximately unbiased and 
achieves good coverage rates in most of the scenarios.

Illustrative example
Severe sepsis is the systemic inflammatory response to infection 

with complication of organ dysfunction. Community-Acquired 
Pneumonia (CAP) is the leading cause of severe sepsis. The Genetic and 
Inflammatory Markers of Sepsis (GenIMS) study - a large, multicenter, 
cohort study of patients with CAP was conducted to understand the 
pattern of systemic cytokine response to infection and to determine 
if there were specific patterns associated with severe sepsis and death 
[17]. A total of 2320 patients with CAP presenting to the emergency 
departments of 28 hospitals in Pennsylvania, Connecticut, Michigan, 
and Tennessee enrolled in the study during December 2001 and 
November 2003. GenIMS included patients with age ≥ 18 years old 
with a clinical and radiologic diagnosis of pneumonia. After enrollment 

detail baseline and clinical information were gathered, and blood was 
drawn for cytokine assays immediately following enrollment and daily 
throughout the first seven days of hospitalization. The primary outcome 
variable in the GenIMS study was severe sepsis and 90-day mortality. 
The markers of greatest interest in the GenIMS study were the pro-
inflammatory marker Interleukin-6 (IL6) and anti-inflammatory 
marker Interleukin-10 (IL10). More information regarding the study 
population, outcomes, treatment, and covariates can be found in the 
Kellum et al. [17]. 

In this illustration, we consider the association between 90-day 
mortality and the IL10 biomarker baseline (Day 1) data. Blood was 
drawn for a cytokine assay from 1429 subjects. If the patients presented 
to the emergency department after 11 pm or on the weekends or 
holidays, then the blood was not drawn for logistic reasons. Note 
that there are some intermittent missing biomarker data due to 
administrative reasons and we are assuming that this intermittently 
missing data are missing completely at random. A detail decomposition 
of the study subjects can be found in the above mentioned reference. 
In this analysis, we have a total 867 subjects with IL10 measurements 
at baseline. However, the measurements of IL10 were left-censored 
(47.87 percent) because of the inadequate sensitivity of the cytokine 
assay resulting in a left-censoring of the measure at the lower limit of 
detection. 

Table 2 reports the descriptive statistics of the covariates that we 
consider in this analysis. The presented result is based on the baseline 
(Day 1) characteristics of demographic and clinical variables. From this 
table we can say that the patients who have died during the first 90 days 
after the hospitalization for CAP were mostly male and older patients. 
Higher proportions of these patients had been treated with steroids, 
and their D-dimer and IL10 levels were higher. 

Table 3 summarizes the results from the GenIMS data analyses. To 
examine the impact of left-censoring in a real study, we have fit the 
corrected and naïve models described in the simulation section. The 
naïve survival model is a parametric Weibull survival model where 
nondetect values are replaced by the LOD. The corrected survival model 
is our proposed model where we have fitted the survival model with an 
implementation of the Simpson’s numerical integration technique for 
the left-censoring for IL10. The model considered includes the anti-
inflammatory biomarker IL10, age, gender, steroid use, and coagulation 
marker D-dimer. We have performed the logarithmic transformation 
on the continuous skewed data (IL10 and D-dimer), and rescale the 
age variable (age ÷ 10) so that the estimates become stable and have 
improved the interpretation. The estimates from the two models are 
different. The corrected model Hazard Ratio (HR) estimate for the 
covariate IL10 is smaller than its counterpart naive model HR estimate. 
The proposed model HR estimate for IL10 is also more efficient than 
the other model. The 95% CI of the HR estimate for IL10 obtained from 

Variable Sample size 
(survivors)

Survivors 
(Mean ± SD)

Sample size 
(nonsurvivors)

Nonsurvivors 
(Mean ± SD)

Age 789 64.64 ± 17.86 86 78.53 ± 11.46
Gender(Female) 789 0.49 ± 0.02 86 0.41 ± 0.05

Steroid1 789 0.35 ± 0.02 86 0.43 ± 0.05
D-dimer1 787 6.02 ± 1.59 86 6.83 ± 1.52

IL102 782 2.28 ± 1.0 85 2.69 ± 1.21
1Log transformation is applied to D-dimer and IL10; 2Censored values are replaced 
by the limit of detection (LOD) 5. 

Table 2: Demographic and clinical characteristics of survivors and nonsurvivors 
at baseline.
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the naive and corrected models are [1.108, 1.539] and [1.111, 1.432] 
respectively. These results suggest that the naive use of the detection 
limit as a substitution for an undetected value can lead to a different 
estimate and interpretation of the risk factors. Our simulation results 
have shown that there are situation where the difference between the 
two approaches is even larger than in our real data example.

Discussion
A censored covariate is a challenge for statistical analysis. We 

consider left-censoring of a covariate and examined the impact of 
left-censoring in a parametric survival model. There are several ad-
hoc methods to deal with the limit of detection problem of a covariate 
in a regression model framework. These methods provide biased and 
inefficient parameter estimates. In this paper we proposed a method for 
correcting bias and making an efficient parametric survival inference 
when there is a left-censored covariate. Our propose likelihood method 
is based on Simpson’s numerical integration technique. Because the 
data involves both a right-censored time-to-event outcome and a left-
censored covariate, the likelihood function becomes a complicated 
one. From this complicated likelihood function, we have integrated out 
the impact of left-censoring. The Monte Carlo simulation study shows 
that the proposed model’s performance is comparable to the standard 
survival model’s performance where there is no left-censoring. We have 
also applied the proposed method to a large cohort data set. From this 
exercise we have found that the proposed method results are different 
from the ad-hoc method results. 

In the situation when a covariate is subject to left-censoring, 
this paper compares a new method for analyzing survival data to a 
commonly used naive method that replace the censored values by the 
limit of detection. We have demonstrated that the naive method provide 
biased, efficient regression parameter estimates with low coverage 
probabilities. On the other hand our proposed likelihood method 
based on a numerical integration technique provides approximately 
unbiased and efficient parameter estimates, and achieves good 
coverage probabilities in most of the scenarios. The proposed method 
is relatively simple to understand and easy to implement in a standard 
statistical software. 

relax the assumption of normality, and perform sensitivity analysis. 
In summary, in the presence of limit of detection in a covariate of a 
parametric survival model, the estimates are biased and inefficient. 
Our proposed likelihood-based method using a numerical integration 
provides unbiased and efficient parameter estimates. Therefore, the 
proposed method is an encouraging one to use when a covariate is 
subject to a limit of detection. The statistical analysis was performed 
using R software version 2.15.0. The R script can be obtained upon 
request to the corresponding author. 
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