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Background
Sets of data in which the distribution of the two classes are not equal 

are referred to as imbalanced [1,2]. These data sets can range from the 
fields of bioinformatics [3] to telecommunications management [4]. 
A standard classification method, in which a balanced distribution 
is assumed, has been difficult to apply to these imbalanced data sets. 
Furthermore, many classification methods link classifiers mainly to 
the majority class, thus producing poor classification results in the 
minority class and decreasing the overall performance of the classifier. 

Common techniques to bypass this problem are via under or over 
sampling [5]. Under sampling is when the majority class in the data set 
is reduced to equal that of the minority class. Oversampling increases 
the minority class to equal that of the majority class. Each method, 
however, produces a bias when training the data. 

Complex classification algorithms such as SMOTE, random forest 
and tree-based learning, are then applied to these under or over sampled 
data sets. A clustering algorithm is often implemented beforehand to 
produce distinct groups. K-means is a common clustering algorithm 
[6]. In this method, fixed centroids are initially randomly placed in 
the data set as far away from one another as possible. Each data point 
is then grouped into these centroids based on relative proximity. 

Problems with this method include whether or not the squared error 
function-to determine random proximity-will converge to a global 
minimum, rather than a local minimum [7]. Also, because the initial 
points at which the centroids are placed are at random, each titration 
will produce different results. To get the best results, the k-means 
algorithm can be run over and over, but this approach may take some 
time. 

Others have modified these techniques, one of which includes the 
LVQ-SMOTE method of Nakamura et al. [8]. This article compares 
results obtained from the work of Nakamura et al. to our proposed 
one-dimensional PCA-based approach. We have developed two 
classification techniques in which the original data does not need to be 
over or under sampled. 

Thus, this article presents a new approach to classification problems 
of imbalanced biomedical data. This approach is based on principal 
component analysis (PCA) and partially follows PCA methodologies 
in [9,10]. In the proposed approach, PCA is used to create p pseudo-
variables that are linear combinations of the p features for data sets of 
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Abstract
Background: Highly complex and computational intensive methods based on Synthetic Minority Over-sampling 

Technique (SMOTE) and more recently Learning Vector Quantization SMOTE (LVQ-SMOTE) have been proposed 
for classification problems of imbalanced biomedical data. This works presents a much simpler approach that is 
not computationally intensive and competes well with existing approaches. It uses principal component analysis 
(PCA) to generate a pseudo-variable as a linear combination of the features. From this one pseudo-variable, several 
classification methods are developed that classify directly based on very simple statistics. One method, the Mean 
Method (MM), classifies cases based on closeness to the means for the two classes from training data sets. When 
the number of features is very large, a feature reduction (FR) procedure is proposed to reduce misclassifications. 
In cases where the means of both classes are similar but their spread about their means are different, the Spread 
Method (SM) is proposed. A unique feature of this method is that one is able to vary the accuracy of classification 
between the two classes by changing the width of the window for allocation of cases. These proposed methods are 
found to perform well without the use of over-sampling techniques and multiple-fold cross validation.

Results: The MM or the MM with FR was compared directly to recently published results for LVQ-SMOTE 
on six (6) data sets and gave better or much better results in every case as measured by adding the percent of 
true positives to the percent of true negatives. The SM was compared with LVQ-SMOTE on two (2) data sets and 
operating windows widths were obtained that gave much better results for the SM over LVQ-SMOTE. 

Conclusion: Given the simplicity, strengths, and performance of the proposed approach in comparison to current 
methods, these methods and procedures are recommended for use in classification of imbalanced biomedical data 
applications.
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the two classes [11-13]. One, and only one, of the p pseudo-variables 
are selected for use in the methodologies. This is the one that gives the 
greatest difference between the mean values for the two classes when 
using the proposed mean method (MM) or the greatest difference 
between the spread for the two classes when using the proposed spread 
method (SM). The MM is not used when the two means are very close 
together and the SM gives sufficient differences in spread that can 
provide accurate and acceptable classification accuracy. 

The results of our proposed methods are compared directly to the 
results in Nakamura et al. (i.e., their Learning Vector Quantization-
Synthetic Minority Over-sampling Technique, or “LVQ-SMOTE”). 
Nakamura et al. reported results on eight bench-mark data sets. This 
work is compared to LVQ-SMOTE on seven of these data sets. The data 
set that is not evaluated in this work was not done because the amount 
of missing data was too large to obtain any meaningful results.

The classification statistics are determined from training data with 
m and n samples for each class [14]. Since m and n are usually quite 
large, these statistics will have small standard errors and will be close to 
the population (true) values. Thus, in these cases k-fold cross-validation 
is unnecessary. We demonstrate this strength of the proposed approach 
by showing excellent agreement for two studies that compare 10-fold 
cross-validation results and results that use only the means from the 
two classes without any cross validation [15]. 

Strength of the proposed approach is its ability to treat imbalanced 
data sets directly. Since the proposed methods are based on the 
exploitation of differences in centrality and spread for a selected pseudo 
variable, as long as m and n are sufficiently large, their effectiveness do 
not depend on m and n being the same as long as both are sufficiently 
large. Thus, preconditioning for treating imbalance data is not needed 
for this approach. Moreover, we compare the results of this work that 
use the original imbalanced data sets with LVQ-SMOTE that used 
over-sampling to obtain balanced data as indicated in Nakamura et al.

When the number of features is very large, for example in gene 
expression data, the standard error of the selected pseudo variable 
can be inflated by the inclusion of many features with negligible 
impact. Removing these features can reduce the standard error of the 
pseudo variable and thus, improve the classification accuracy. This 
works presents a feature reduction approach that follows the work of 
Rollins et al. and Rollins and Teh [9,10] and is based on ranking the 
contribution of each feature and eliminating features that give less than 
a certain amount of contribution. This procedure is applied in two case 
studies involving the MM.

Methods
This section describes in detail the MM and the SM. In addition, 

a methodology will also be presented for ranking the features and 
removing ones with lower rank. This procedure is called the feature 
reduction (FR) technique and can be applied prior to using the MM 
or the SM. 

The approach in this work is based on use of PCA to find one 
pseudo-variable that is a linear combination of the features that gives 
large separation between the two classes or gives very different variances 
about the means of the two classes. Thus, both proposed method use 
basic statistical concepts and are one dimensional in application.

Mean Method (MM)

The MM will be described first. Let Xtr be a given ptr by q matrix 
with ptr – n rows of Class 1 data and n rows of Class 2 data that are 

stacked one on top of the other one, and with q columns of features. 
Let Xts be a given pts by q matrix with pts – m rows of Class 1 data and 
m rows of Class 2 data that are stacked one on top of the other one, 
and with the same order of the q columns of features. The steps for 
the applying the MM to Xtr for one fold or multiple folds in a cross-
validation study are given as:

1. Standardize the columns of Xtr and obtain the matrix Ztr. With 
the number of rows in the training data as ptr and the number 
of features as q, then Ztr is a ptr by q matrix. 

2. Standardize the columns of Xts by using the means and standard 
deviations from the same columns of the training data set and 
obtain the matrix Zts. With the number of rows in the training 
data as pts and the number of features as q, then Zts is a pts by q 
matrix. 

3. Note that all steps below are done on standardized data sets.

4. Do PCA (Johnson and Wichern [1]) on the Class 1 Training 
(Tr) data in the Ztr matrix. Obtain loading scatter plots for the 
1st k principal components (PCs).

5. Do PCA on the Class 2 Tr data in the Ztr matrix. Obtain scatter 
plots for the 1st k PCs.

6. For the PCs from Step 4, use them to obtain scores for the Class 
2 Tr data in the Ztr matrix and obtain k score plots from these 
scores.

7. For the PCs from Step 5, use them to obtain scores for the Class 
1 Tr data in the Ztr matrix and obtain k score plots from these 
scores. 

8. Examine all the Score plots. Select the PC that gives the greatest 
separation of Classes 1 and 2. 

9. Use the selected PC and plot the Tr Scores for both classes on 
one plot to confirm the separation.

10. Obtain 1x and 2x from the Scores in the plot from Step 9.

11. Using 1x and 2x , classify the test data using the MM procedure 
given by Equation 3 below. 

12. After classifying every sample in the Ts set, determine the 
summary statistics (i.e., TN, FP, TP, FN) for this fold using the results 
from Step 11.

13. Repeat Steps 1-12 for each fold.

14. After getting the individual results for each fold, obtain 
summary statistics for all the folds combined.

The classification rule needed for Step 11 is determined as follows. 
Johnson and Wichern [1] give the following classification rule under 
the assumption that both classes come from normal distributions with 
the same variance σ2

Allocate x0 to Class 1 if

( ) ( ) ( )
( )

2 2 1
1 2 0 1 2

2

c 1 | 2 p1x ln
2 c 2 |1 p

   
µ −µ − µ −µ ≥         

                   (1)

Allocate x0 to Class 2 otherwise,

where x0 is the pseudo observation to be classified, 1µ and 2µ  are 
the true means for Class 1 and Class 2, respectively, ( )c i | j is the cost 
when observation from Class j is incorrectly classified as Class i, ip
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on one plot to confirm the very tight and very wide spread 
relationship between the two classes.

3. Set the upper and lower limits for the tightest spreading class.

4. Classify each sample vector in the Ts set. Allocate x0 to the 
tightest spreading class if it is within the limits; otherwise 
allocate it to the other class. 

5. After classifying every sample in the Ts set, determine the 
summary statistics (i.e., TN, FP, TP, FN) for this fold using the 
results from Step 5.

6. Repeat Steps 1-6 for each fold.

7. After getting the individual results for each fold, obtain 
summary statistics for all the folds combined.

Figure 2 is a graphical example of the SM for the Breast data set. 
As in Figure 1, in this figure, x0 for the test data are plotted in sequence 
with the negative class first followed by the values of the positive class. 
In addition, lines are plotted representing the lower and upper limits 
for allocation to the negative class. The differences in the spread for the 
two classes are quite apparent. Values of x0 that fall within the limits 
are allocated to the negative class; otherwise they are allocated to the 
positive class. While the accuracy of the allocations shown is not as 
high as the MM in Figure 1, it is still quite high and on par with LVQ-
SMOTE as discussed in the Results Section later. 

Results and Discussion
The Mean Method (MM)

The MM results for six data sets are given in Table 1 along with 
LVQ-SMOTE results from Nakamura et al. The results are given in 
terms of the number of true negatives (TN) and number of true positives 
(TP) as well as the percent of TN and TP. This is not how Nakamura et 
al. reported their results and we had to calculate TN and TP from the 
following two statistics that they used to report their results:

TPSE
TP FP

=
+

                    (5)

is the prior probability of Class i, i = 1, 2, with 1 2p p 1,+ = and in this 
context of normalized variables, 1σ = . With ( ) ( )c 1| 2 c 2 |1= , 1 2p p=
and substitution of the sample statistics, Equation 1 becomes

( ) ( )2 2
1 2 0 1 2

1x x x x x 0
2

− − − ≥                    (2)

such that, upon rearranging, gives the allocation rule in this work as

( )0 1 2
0

1Class 1 if x x x
Allocate x  to 2

Class 2, otherwise

 ≥ +



                 (3)

For PC j, let li,j be the value of its ith loading, i = 1, …, q; then the mth 
value for x0 computed from this PC is obtained by

0 1, j m,1 q, j m,qx l z l z= + +                    (4)

Figure 1 is a graphical example of the MM for the Breast [16] 
data set. In this figure, x0 for the test data are plotted in sequence with 
the negative class first followed by the values of the positive class. In 
addition, lines are plotted representing 1x (“Mean Negative Class”), 

2x (“Mean Positive Class”), and ( ( )1 2x x / 2+  “Mid-Point/Dividing 
Line”). The difference in the mean levels is quite apparent. Values 
below the “Dividing Line” (DL) are allocated to the negative class and 
values above the DL are allocated to the positive class. As shown in this 
plot, the percent of correct allocations for both classes is quite high. 
These results will be given later in the Results Section.

Spread Method (SM)

The steps for the applying the SM to Xtr for one fold or multiple 
folds in a cross-validation study are given as:

Follow Steps 1-7 in the MM procedure.

1. Examine all the Score plots. Select the PC that gives the tightest 
spread for one class while giving the greatest spread for the 
other class around the same mean for both classes. 

2. Use the selected PC and plot the Tr Scores for both classes 
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Figure 1: An example of the MM. This test data set is for Breast. The values of 
x0 are plotted for negative class (black filled circles) first and then for the positive 
class (gray filled circles). Lines for the means of both classes are shown as well 
as their average value (the red line). Values above the red line are classified as 
being in the positive class and values below the line are classified as belonging 
to the negative class. 
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Figure 2: An example of the SM. This test data set is for Breast. The values 
of x0 are plotted for negative class (black filled circles) first and then for the 
positive class (gray filled circles). The red lines are the upper and lower limits for 
being classified as belonging to the negative class. Thus, values inside the red 
lines are classified as belonging to the negative class and values outside the 
red lines are classified as belonging to the positive class. The percent of total 
variation for this PC is 8.6%.
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TNSP
TN FP

=
+

                    (6)

where SE and SP are called the “Sensitivity” and “Specificity,” 
respectively, and FP is the number of false positives. Note that the 
number of false negatives is defined as “FN.” When the class size (CS) 
of both classes are the same (i.e., balanced),

CS TP FN TN FP= + = +                   (7)

Then from substituting Equation 7 into Equation 6 and solving for 
TN gives 

TN SP CS= ⋅                   (8)

From Equation 7

FP CS TN= −                     (9)

Solving Equation 5 for TP gives

SETP FP
1 SE

=
−

                      (10)

Therefore, again from Equation 7

FN CS TP= −                        (11) 

When CSp=TP + FN, CSn=TN + FP, where CSp > CSn, and CSp and 
CSn are the positive and negative class sizes, respectively, then

nTN SP CS= ⋅                         (12)

nFP CS TN= −                    (13)

pFN CS TP= −                     (14) 

Equations 8 to 14 are used to obtain the LVQ-SMOTE results in 
this article. We prefer to report our results in terms of TP and TN 
because given these statistics and the class sizes one can obtain any 
summary statistic based on these results such as SE and SP. However, 
the reverse is not true. Depending on the summary statistics presented, 
it is not necessarily possible to obtain TN and TP. We will illustrate 
this limitation from the results reported by Nakamura et al. later in 
this section.

To simplify the comparisons with LVQ-SMOTE, we created a 
summary statistic that sums the % of TN and the % of TP. We call 
this statistic the sum of the true % or STP. STP values are reported in 
Table 2 and these results will be primarily used to compare the two 
approaches. Unless otherwise stated, all the results given are Ts results. 
Also note that STP is used in this work only as a way to compare the 
methods because it is based strictly on TP % and TN %. We are not 
advocating it as the sole measure of accuracy in all applications or 
situations. It is one way to measure accuracy and nothing more. If one 
prefers some other measure of performance such as G-means (i.e., the 
SE + SP divided by 2), the information is provided to obtain the statistic 
since the TP and TN values are given. We do not report G-means here, 
for example, because of the dependence on statistics with limitations 
which makes it limited also. 

The first data set in Table 1 is called “Satimage” [16]. It consists of 

Data Set (PC % of 
Total Variation for 
MM)

# Features # of Folds1
Size of Data Set Testing Size Current Method Mean Method (MM)

Positive Negative Positive Negative TN (%) TP (%) TN (%) TP (%)

Satimage         
(39.1%)

36
One

3397 3397 1530 1530   878 (57.4) 1495 (97.7)
36 3397 3397 1530 1530 1159 (75.8) 1159 (75.8)   

Breast 
(65%)

(9)2 10 239 444

 

  436 (98.2) 229 (95.8)
(9)2 None 239 444   434 (97.7) 225 (94.1)
10 10 444 444 301 (67.8) 409 (92.1)   

Blood                
(36.1%)

(3)3 None 178 570
 

  343 (60.2) 136 (76.4)
4 10 570 570 103 (18.1) 565 (99.1)   

Yeast
(26.2%)

8 10 1433 1433

 

  1150 (80.3) 1164 (81.2)
8 None 1433 1433   1200 (83.7) 1125 (78.5)
8 10 1433 1433 1301 (90.8) 329 (23.0)   

Colon Cancer                  
(5.2 %)

(1788)4

None
40 22

 

  20 (90.9) 34 (85.0)
2000 40 22   18 (81.8) 30 (75.0)
2000 10 40 40 29 (72.5) Unknown4   

Leukemia                    
(4.5%)

(2000)4

One
11 27 14 20   16 (80.0) 5 (35.7)

7129 11 27 14 20   14 (70.0) 7 (50.0)
7129 11 27 14 20 20 (100.0) Unknown4   

Table 1: Results for the LVQ-SMOTE and MM for six (6) data sets
1The results are based on 10-fold, 1-fold or no (represented by “None”) cross validation. “None” is applicable to MM only.
2For this data set there were only three true features, i.e., Xtr has a rank of 3.
3The number of features was reduced using the FR technique.
4It was not possible to determine TP for LVQ-SMOTE from the value of the statistics reported in Nakamura et al.
5These numbers represent the sizes of the classes for the training data sets.
6The balanced data sets for LVQ-SMOTE are determined by over-sampling except in the case of Colon Cancer.
7Oversampling is not used to determine the LVQ-SMOTE because the results are not possible.

Data Set
TN % + TP %

LVQ-SMOTE MM
Satimage 151.7 155.1
Breast 160.0 1191.8
Blood 117.3 136.6
Yeast 114.1 1162.2
Colon Cancer 157.5 2175.9
Leukemia Not Determinable 2115.7

Table 2: The sum of TP % and TN % reported in Table 1.



Citation: Derrick K Rollins, Pankayatselvan V (2015) A One-Dimensional PCA Approach for Classifying Imbalanced Data. J Comput Sci Syst Biol 8: 
245-251. doi:10.4172/jcsb.1000165

Volume 8(1) 005-011 (2015) - 9 
J Comput Sci Syst Biol       
ISSN: 0974-7230 JCSB, an open access journal  

fixed Tr and Ts sets. Thus, only one-fold cross validation was done and 
under balanced data as given. For LVQ-SMOTE, the TN % and TP % 
are both 75.8% and for the MM they are 57.4% and 97.7%, respectively. 
STP for LVQ-SMOTE and MM are 151.6 and 155.1, respectively. 
Hence, although the TN and TP percentage are very different, the STP 
values are very close.

The next data set in Table 1 is called “Breast” [16]. For the MM, 
results were obtained two ways: using 10-fold cross validation and 
directly from using the sample means based on all the pseudo values for 
each class. A k-fold cross validation study can provide information on 
not only the mean level of classification accuracy but also its variability 
in accuracy for the size of data in the Tr set. For confidence in the 
estimate of the variability k must be sufficiently large. However, when 
classification allocation is based solely on means, as in the MM, accuracy 
is maximized by using all the available data to estimate the means for 
the classes since the standard errors for a sample mean decreases with 
increasing sample size. Nonetheless, to show that it is unnecessary to 
do 10-fold validation for the MM, this is one of two data sets that give 
results with 10-fold cross validation and without cross validation. For 
the MM without cross validation, the TN% and TP% for 10-fold cross 
validation and the means based on all the data without cross validation 
are 98.2% and 95.8%, and 97.7% and 94.1%, respectively. The closeness 
of these results confirms that cross validation is not necessary. Actually, 
since the results without cross validation are based on larger sample 
sizes to estimate the means for each class, they are more reliable. 

For the Breast data set, the TN % and TP % for LVQ-SMOTE are 
67.8% and 92.1%, respectively. Both values are lower than the MM and 
TN is considerably lower. STP for LVQ-SMOTE and the MM based on 
averages for all the data in the classes are 160.0 and 191.8, respectively, 
as shown in Table 2. 

We found the Blood [16] data set to have only three (3) independent 
features and eliminated one from our analysis. For this case the means 
were determined for the MM using all the data for each class only (i.e., 
we did not do 10-fold cross validation). The TN % and TP % are 60.2% 
and 76.4%, respectively. For LVQ-SMOTE they are 18.1% and 99.1%, 
respectively. Thus, LVQ-SMOTE results are more at the extremes while 
the MM is more balanced in these values. Thus, for LVQ-SMOTE, it 
seems to have such a high TP level, but the TN level is sacrificed. STP 
for LVQ-SMOTE and the MM are 117.2 and 136.6, respectively, as 
shown in Table 2. 

The next data set is called “Yeast” [16] For the MM, 10-fold 
cross validation and no cross validation results for TN % and TP % 
are reported in Table 1 as 80.3% and 81.2%, and 83.7% and 78.5%, 
respectively. Thus, these results are in excellent agreement and support 
our conclusions given for the Breast data set regarding the sufficiency 
of determining the results for the MM without the need for cross 
validation. 

For the Yeast data set, LVQ-SMOTE TN % and TP % are 90.8% 
and 23.0%, respectively. Thus, like the previous data set, although in a 
reverse manner, LVQ-SMOTE results are more at the extremes and the 
MM is more balanced in its classifications. Thus, for LVQ-SMOTE, it 
seems to have such a high TN level, the TP level is sacrificed. STP for 
LVQ-SMOTE and MM based on averages for all the data in the classes 
are 114.1 and 162.2, respectively, as shown in Table 2. 

The Colon Cancer [17] data set is the first of two with a very large 
number of features and much smaller number of samples in both 
classes. The features in this and the Leukemia [18] data set are genes 
in microarray data sets. For both these data sets we apply the MM to 

all the features and to a reduced set of features. Our feature reduction 
(FR) technique is based on the work of Rollins et al. and Rollins and 
Teh [9,10]. This technique obtains loadings by applying PCA to the 
standardized matrix, Ztr. For any PC, the magnitude of a loading is 
its relative contribution to the pseudo-variable x0. For the selected 
PC, the loadings are ranked and plotted against its rank as shown in 
Figure 3 in this case of Colon Cancer data set. As shown, this plot is 
highly nonlinear with decreasing rank from left to right (i.e., the higher 
the rank number the lower the contribution). As shown, as the rank 
decreases, the highest contributing loadings drop off rapidly, then 
fairly linearly for a large number of loadings, and then drops off quite 
rapidly again. From this plot we chose to eliminate all loadings above 
rank numbers 1788, the point where the drop off is very rapidly after 
the linear period. 

The Colon Cancer case in Table 1, for the MM, contains results 
with and without the elimination of features (i.e., FR). The FR results 
are significantly better than the results with all the features used. 
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Figure 3: An example of loadings for a PCA plotted against their magnitude 
which is proportional to their contribution. The loadings are for the selected PC 
for the MM in the Colon Cancer case. The highest ranks are on the left and the 
rank decreases as the value on the x-axis increase.
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Figure 4: SM results for the Breast case showing how TN % and TP % vary with 
increasing range for the negative class limits.



Citation: Derrick K Rollins, Pankayatselvan V (2015) A One-Dimensional PCA Approach for Classifying Imbalanced Data. J Comput Sci Syst Biol 8: 
245-251. doi:10.4172/jcsb.1000165

Volume 8(1) 005-011 (2015) - 10 
J Comput Sci Syst Biol       
ISSN: 0974-7230 JCSB, an open access journal  

The MM FR TN % and TP % are 90.9% and 85%, respectively. The 
corresponding LVQ-SMOTE results are 72.5% and 85%, respectively. 
However, we are uncertain of these values based on the information 
contained in Nakamura et al. Upon assuming balanced data (i.e., 40 
samples in both classes), it is not possible to get realistic numbers for 
TP % and TN % using the SE and SP values reported by Nakamura et 
al. Therefore, to get realistic numbers we used the original sample sizes 
for both classes. STP for LVQ-SMOTE and the MM with FR are 157.5 
and 175.9, respectively, as shown in Table 2. 

The last data set in Table 1 is Leukemia (18). This data set has the 
most features (7129) and the fewest samples in each class; 11 and 27 for 
the negative and positive classes, respectively. Thus, the information 
for classification is very poor. In an effort to improve the quality of the 
selected pseudo-variable, the FR technique was applied and only the 
top 2000 features with the greatest contribution were kept for use in 
the MM. This modification resulted in an increase in the TN % from 
70% to 80%. However, the TP percentage decreased from 50% to 35%. 
Nonetheless, this still could be a more accurate number since there are 
only 11 samples in the positive class and hence, not much information 
to achieve very high accuracy. Thus, the FR technique appears to also 
be improving the accuracy of classification here. For LVQ-SMOTE it 
is not possible to determine TP for this case because their SE value was 
reported to be 1.0 and Eq. 10 is not solvable. STP for the MM is 115.7 
as given in Table 2. This is the lowest value for all the cases for the MM 
and it is the only one with a value below 50% for any statistic. The poor 
TP accuracy is consistent with this case having a very small number 
of samples, 11, for the positive class for training. In addition, the 
information quality is also weakened by the very large set of features. 

The Spread Method (SM)

When a PCA pseudo-variable shows very different spread about 
class means, the SM may provide accurate classification. For the data 
sets evaluated in Nakamura et al. using their LVQ-SMOTE method, 
we found two of them to be good choices for the SM. The first one is 
the Breast data set. As discussed above, it has already been evaluated 
by the MM. The second one, Ionosphere [16], was not found to be 
suited for the MM. This data set consists of 34 features, 225 samples 
in the negative class and 126 samples in the positive class. SM results 
for the Breast and Ionosphere data sets are given in Figure 4 and 5, 
respectively, where the TN % and TP % are plotted against the width 
of the limits for the negative class, the one with the tightest spread. The 
crossover point where TN % = TP % is about 86% and 76% for Breast 
and Ionosphere, respectively, as shown in these figures. Thus, the SM 
gave better classification results for the Breast data set. 

Figures 6 and 7 are plots of TP % versus TN% for the results in 
Figures 5 and 6, respectively. It is desirable for this type of plot to be 
in the upper right corner where both TP % and TN % are high. From 
comparing these plots, the higher accuracy of the Breast data set is seen 
by its curve being higher in the upper right corner. In addition, these 
figures have the LVQ-SMOTE result plotted as a point on these graph. 
For the Breast case, this result is TN % = 67.8% and TP % = 92.1%. 
This point is right on the SM curve in Figure 6. The two results for 
the MM (TN % = 98.2% and TP % = 95.8%; and TN % = 97.7% and 
TP % = 94.1%) are also plotted on Figure 6. These two points are high 
in the upper right hand corner indicating very high accuracy. For the 
Ionosphere case, the LVQ-SMOTE results are TN % = 92.4% and TP % 
= 47.1%. This point is significantly below the SM curve in Figure 7, and 
indicates lower accuracy of the LVQ-SMOTE method for this data set.

Conclusion
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Figure 5: TP % versus TN% for the results in Figure 4. The MM and LVQ-
SMOTE results are also given on this plot. 
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Figure 6: SM results for the Ionosphere case showing how TN % and TP % 
vary with increasing range for the negative class limits. The percent of total 
variation for this PC is 1.1%.

This article presented a new one-dimensional PCA approach 
for classifying subjects or objects in binary population studies in 
imbalanced biomedical data sets in particular, but also for any 
classification problem of this type in general. This approach performs 
PCA on the training data set, and then selects a pseudo-variable (x0) 
that is linear combination of the features. For the MM, this pseudo-
variable is the one that gives the greatest mean difference between the 
pseudo-data in the two classes. For the SM, this variable is the one that 
gives the greatest difference in spread between the two classes. This 
variable and method is selected when it can give high accuracy for the 
training data. A noteworthy and unique strength of the SM is the ability 
to change the accuracy levels for the classes by changing the range of 
the limits for the class with the tightest spread. Thus, depending on the 
cost of misclassification, the SM allows maximization of the class with 
the greatest misclassification cost over the other class. In every case the 
proposed approach was shown to be as accurate or more accurate as the 
LVQ-SMOTE reported results in Nakamura et al. Other strengths of 
the proposed approach includes a procedure to reduce the number of 
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features called the feature reduction (FR) technique based on the work 
in [9,10]. This approach uses PCA to rank the features and keeps only 
the most highly ranked ones. Future work will involve how to better 
optimally determine the reduced set of features. FR is a technique that 
can help to improve accuracy by eliminating features that contribute 
more noise than signal to value of the pseudo-variable which helps to 
reduce its standard error and improves classification accuracy. For the 
proposed approach, cross validation and techniques to balance data for 
the two classes is not needed. When the sizes of training data for both 
classes are sufficiently large to estimate the means under a small standard 
error, the methods should give accurate classification as evidence by 
the cases studied in this work. Thus, our overall recommendation is for 
the use of these techniques in these types of classification studies. Their 
simplicity alone is a critical advantage that can likely justify their use. 

When the mean method (MM) fails this is seen in its inability to 
separate the classes in the training data. We were fortunate, in that, 
when this occurred in the data sets in this study, the spread method 
(SM) came through. In practice, this may not always be the case. Future 
work could consist of consideration of more than one PCA when the 
MM and the SM fails. Future work could also consist of Monte Carlo 
Simulation Studies that could provide guidance on the best approach 
to use in a particular situation. The situations would have to be defined 
by experts in this area and this type of study would likely be quite 
extensive and evolving as more knowledge and understanding of the 
different situations grow. Given the performance of the proposed 
methods in this work, it appears that their inclusion into such studies 
will be of merit. 
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Figure 7: TP % versus TN% for the results in Figure 6. The LVQ-SMOTE result 
is also given on this plot. 
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