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Introduction
Quadratic integral equations provide an important tool for 

modeling the numerous problems in engineering and science. These 
equations appear in the modeling of radiative transfer, kinetic theory of 
gases, traffic theory, neutron transport and in many other phenomena 
[2-7]. So, it is clear that solving this class of integral equations can be 
used to describe many events in the real world. Recently, many different 
types of research have been focusing on the effective properties of 
quadratic integral equations such as existence, uniqueness, monotonic 
solutions and positive solutions of this class of equations [8-13]. There 
are a few numerical and analytical methods to estimate the solution 
of the quadratic integral equations such as Picard and Adomian 
decomposition method (ADM) [14], and some other methods [15].

In this study, the radial basis functions method with the collocation 
scheme for solving quadratic integral equations of Urysohn’s type is 
described. The use of radial basis functions for solving the Fredholm 
integral equation was offered by Makroglou [1] and Alipanah and 
Dehghan [16] facilitated this method with the quadrature integration 
technique. Also, this method is compared with the method via 
orthogonal polynomials [17]. We utilize the method for solving the 
quadratic integral equations.

A nonlinear Fredholm quadratic integral equation of Urysohn’s 
type can be considered as the following general form 

( ) = ( ) ( , ( )) ( , , ( )) , , ,
b

a
u t f t t u t F t s u s ds a t s bλ+ ≤ ≤∫         (1)

 and Volterra Urysohn quadratic integral equation of the second 
kind as follows 

( ) = ( ) ( , ( )) ( , , ( )) , , ,
t

a
u t f t t u t F t s u s ds a t s bλ+ ≤ ≤∫         (2)

where ( )u t   is an unknown function, the function ( ), ( , , ( ))f t F t s u s   
and  ( , )t sλ  are given. Though the different choices of the parameters 
lead to various problems, the method can afford to approximate the 
solution of them. 

The presented paper is organized in the following way. In Basic 
definitions section, we review some basic definitions relevant to the 
radial basis functions and quadrature integration rules which were 
applied in solving the process. In Description of method section, 

we describe the method of solving quadratic integral equations by 
using radial basis functions in details. Some illustrative examples are 
presented in Numerical examples section. Numerical results confirm 
the efficiency and high accuracy of the method. Finally, Conclusion 
Section concludes this paper with the brief summary and more 
discussion of the numerical results. 

Basic Definitions
In this section, we review some required tools and definitions. 

Firstly, we introduce radial basis functions as the effective tools 
for approximation of the given functions. These basis functions 
approximate the continuous function with exponential rate of 
convergency [18,19]. Also, we remind the quadrature formulae for 
numerical integration. 

Radial basis functions
Definition (Interpolation by translates of a single function [20]): 

Given a set of   distinct data points =1{ }n
j jx  and corresponding data 

scalar values =1{ }n
j jf  , the basic interpolant is given by 

=1

( ) = ( ),
n

j i
j

s x x xλψ −∑  (3)

when the interpolation conditions are imposed as follows: 

=1
( ) = ( ) = ( ), = 1,2,..., .

n

i i j i j
j

f x s x x x i nλψ −∑    (4)

The unknown coefficient jλ  is determined by solving the following 
linear system 

= ,
f

A
λ
   

     
     
     
      

   

(5)
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where the entries of  A  are given by 

  = ( ).jk j ka x xψ −                                                   (6)

The interpolant of ( )f x  is unique if and only if the matrix A  is 
nonsingular. 

Radial basis functions (RBF) are the class of single functions 
whose translates can be useful in multivariate interpolation. RBF 
methodology was introduced by Hardy [21] and became popular for 
solving interpolation problems [18,22-29]. The radial basis functions 
are involved with Euclidean norm as follows: 

   
=1

( ) = (P P),
n

j i
j

s x x xλ ϕ −∑                                
(7)

corresponding to Eq.(3) where ( )rϕ , > 0r . Micchelli [30] gave 
sufficient conditions for ( )rϕ  in Eq.(7) to guarantee that A  matrix in 
Eq.(5) is unconditionally nonsingular. Therefore, the RBF interpolant 
is uniquely solvable. Some common infinitely smooth examples of the 

( )rϕ , > 0r , that lead to a uniquely solvable method are the following 
forms: 

 where =
2 2i i

b a b aζ ξ− +
+  . It is well known that the integration 

in Eq.(9) is exact whenever  ( )f ξ  is a polynomial of degree 2 1M≤ + .

Description of Method
In 1992, Makroglou [1] proposed the use of radial basis functions 

for solving the Fredholm integral equation. Alipanah and Dehghan 
[16] facilitated this method with the quadrature integration technique. 
In this section, we develop the method for solving the quadratic integral 
equations.

Fredholm integral equation
Consider the following Urysohn Fredholm quadratic integral 

equation 

 ( ) = ( ) ( , ( )) ( , , ( )) , ,
b

a
u t f t t u t F t s u s ds a t s bλ+ ≤ ≤∫                (12)

which is mentioned in Eq.(1). Let  ( )xϕ  be a radial basis function 

and we approximate ( )u t  with the following interpolant 

         
=0

( ); (P P) = ( ).
n

T
j j

j
u t c t t C tϕ − Ψ∑                                  (13)

where 0 1= [ , ,..., ]T
nC c c c  and  0 1= [ (P P), (P P),..., (P P)]T

nt t t t t tϕ ϕ ϕΨ − − − . 

Now, by replacing Eq.(13) in Eq.(12) we obtain 

 ( ) = ( ) ( , ( )) ( , , ( )) .
bT T T

a
C t f t t C t F t s C s dsλΨ + Ψ Ψ∫               (14)

To obtain , = 0,1,..., ,jc j n   as unknowns in above equation, we 
collocate the points , = 0,1,..., ,it i n   such as follows 

( ) = ( ) ( , ( )) ( , ( )) .
bT T T

i i i i ia
C t f t t C t F t C s dsλΨ + Ψ Ψ∫                  (15)

By applying quadrature integration formula described in Eq.(11), 
we can rewrite Eq.(15) in the following form 

=0
( ) = ( ) ( , ( )) ( , , ( )),

, = 0,1,..., ,

N
T T T

i i i i j i j j
j

C t f t t C t w F t C

i j n

λ τ τΨ + Ψ Ψ∑           (16)

where jw  and jτ , = 0,1,...,j n , are weights and nodes of 
Legendre-Gauss-Lobatto integration rule. This is a nonlinear system of 
equation that can be solved by the Newton’s iteration method to obtain 
the unknown vector  TC .

Volterra integral equation

Consider the following quadratic integral equation of Volterra type 

 ( ) = ( ) ( , ( )) ( , , ( )) , , ,
t

a
u t f t t u t F t s u s ds a t s bλ+ ≤ ≤∫                (17)

which is mentioned in Eq.(2). Similarly, we substitute Eq.(13) in 
Eq.(17) and collocate the points  , = 0,1,...,it i n . So we have 

( ) = ( ) ( , ( )) ( , , ( )) .
tiT T T

i i i i ia
C t f t t C t F t s C s dsλΨ + Ψ Ψ∫                (18)

In above equation, we let = ( ) =
2 2

i it a t as g v v− +
+  . It reduces 

Eq.(18) to the following equation

 Parameter ε   is a parameter for controlling the shape of functions 
which effects on the rate of convergency. The interested readers can 
see [18,20] and the references therein. Also, there are some piecewise 
smooth RBF such as 3r (Cubic) and  2 logr r (thin plate spline). 

It has been discussed about sufficient conditions for ( )rϕ  to 
guarantee nonsingularity of the A  matrix [18,20]. These conditions 
show that the larger class of functions could be considered.

Legendre-Gauss-Lobatto (nodes and weights)
Let 1( )ML ξ+  be the Legendre polynomial of order 1M +  on  [ 1,1]−

. Then the Legendre-Gauss-Lobatto nodes are 

        0 11 < < < < < 1,Mξ ξ ξ−                                   (8)

where  0 = 1ξ − ,  = 1Mξ  and  iξ ,  = 1,2,..., 1i M − , are the zeros 
of  ( )ML ξ′ . No explicit formulas are known for the points iξ , and so they 
are computed numerically using subroutines. Also, we approximate the 
integral of  f on  [ 1,1]−  as :

  
1

1
=0

( ) ; ( ),
M

i i
i

f d w fξ ξ ξ
− ∑∫                                     (9)

 where iξ  denotes Legendre-Guass-Lobatto nodes in Eq.(8) and 

the weights iw   given in [25] 

  2

2 1= , = 0,1, , .
( 1) [ ( )]i

M i

w i M
M M P ξ+

                  (10)

 Obviously, for arbitrary interval  [ , ]a b ,we have 

  
=0

( ) ; ( ),
2

Mb

i ia
i

b af d w fξ ξ ζ− ∑∫                                  (11)

 Gaussian(GA) 2( )re ε−

 Multi Quadric(MQ)
2 2(1 ( ) ) ( 0, 2N)r

α

ε α α+ ≠ ≠

 Inverse Multi Quadric(IMQ) 
1

2 2(1 ( ) )rε
−

+

 Inverse Quadric(IQ) 2 1(1 ( ) ) .rε −+
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1

1
( ) = ( ) ( , ( )) ( , ( ),

2
( ( ))) .

T Ti
i i i i i i

T
i

t aC t f t t C t F t t g v

C t g v dv

λ
−

−
Ψ + Ψ

Ψ

∫                              (19)

Now, by applying Legendre-Gauss-Lobatto integration formula 
demonstrated in Eq.(9), we approximate the integral of Eq.(19) as 
follows 

 =0
( ) = ( ) ( , ( )) ( , ( ),

2

( ( ))),

N
T Ti

i i i i j i j
j

T
j

t aC t f t t C t w F t g

C g

λ τ

τ

−
Ψ + Ψ

Ψ

∑             
(20)

where jw   and jτ ,  = 0,1,...,j n , are weights and nodes of the 

integration rule. Again, we have a nonlinear system of equations that 
can be solved by the Newton’s iteration method to obtain the unknown 
vector  TC .

Numerical Examples
In this section, some examples are considered. The obtained 

numerical results confirm the validity and efficiency of the proposed 
method. The associated computations with the examples were performed 
using MAPLE 13 with 128  digits precision on a Personal Computer. 
We note that however 64  digits are considered in computations, we 
demonstrate only 3  digits for the illustrative examples.

 Example 1. As the first example consider the following Volterra 
quadratic integral equation of Urysohn’s type [6] 

  
2

20

( ) ( )( ) = ( ) ,
1 ( )

t t s u su t t u t ds
u s

+
+

+∫
where the exact solution is not given and we construct the 

approximate solution in the space C[0,1] . According to Eq.(2) 

  2
2

( ) ( )( , , ( )) = , ( , ( )) = ( ), ( ) = ,
1 ( )
t s u sF t s u s t u t u t f t t

u s
λ+

+

and the approximate solution of the integral equation is based on 
radial basis functions. The approximate solution is demonstrated in 
Figure 1. Since the exact solution is not given, we proceed the process 
of investigating of error with the following formula : 

  
=1

( )
= ,

m

i
i

t
rms

m

δ∑                                                 (21)

 where 

 ( ) = ( ) ( ) ( , ( )) ( , , ( )) , = 1,..., ,i i i i i it u t f t t u t F t s u s pds i mδ λ− − ∫       (22)

where  [ , ]it a b∈  can be selected uniformly or randomly and  m  
is a large integer number. The error values for = 10,15N  and 20  for   

= 400m are illustrated in Table 1. We solve the problem with multi 
quadratic (MQ), inverse quadratic (IQ) and Gaussian (GA) radial basis 
function. The further investigations will be described in the conclusion 
section.

Example 2. Consider the following Volterra quadratic integral 
equation of Urysohn’s type [9,31] 

 
2

0

ln(1 | ( ) |)( ) = ( ) ,
2

tt
t s

t s u su t e u t ds
e

−
+

+
+ ∫

where the exact solution is not given and we construct the 
approximate solution in the space  C[0, ]T . According to Eq.(2) :

2 ln(1 | ( ) |)( , , ( )) = , ( , ( )) = ( ), ( ) = ,
2

t
t s

t s u tF t s u s t u t u t f t e
e

λ −
+

+  

and the approximate solution of the integral equation is based on 
radial basis functions. The approximate solution is demonstrated in 
Figure 2. Since the exact solution is not given, we investigate the error 
values with the rms  criterion according to Eq.(21). The error values 
for = 5,10N  and 15   for  = 1,2T  and 5  are illustrated in Table 2. The 
further investigations will be described in the conclusion section. 

Example 3. Consider the following Fredholm quadratic integral 
equation of Urysohn’s type [12]

Example 1. Example 1.

Residual error functionApproximate solution
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Figure 1: The approximate solution and residual error function for = 15N . See 
Example 1.
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Figure 2: The approximate solution and residual error function for = 15N   
and  = 5T . See Example 2.

= 5N = 10N = 15N

Gaussian (GA)
47.858 10−×

64.718 10−× 82.206 10−×
Multi Quadratic (MQ) 47.883 10−× 64.715 10−× 82.216 10−×
Inverse Quadratic(IQ) 47.119 10−× 64.715 10−× 82.218 10−×

Table 1: The rms  values for different  N . The obtained results by using different 
radial basis functions are similar. 

= 5N = 10N = 15N

T=1 65.426 10−× 81.161 10−× 125.172 10−×

T=2 41.112 10−× 61.239 10−× 92.085 10−×

T=5 32.091 10−× 53.504 10−× 61.844 10−×

Table 2: The  rms  values for different N  when = 1,2T   and 5 . See Example 2. 
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2

2
2 20

( ) ( )( ) = arctan ,
1 1

Tt tu t tu su t t e ds
t s

−  
+  + + 

∫
where the exact solution is not given and we construct the 

approximate solution in the space C[0, ]T   with  0 < , <s t T . According 
to Eq.(1) 

2
2

2 2

( ) ( )( , , ( )) = arctan( ), ( , ( )) = , ( ) = ,
1 1

ttu s tu tF t s u s t u t f t t e
s t

λ −

+ +
 

and the approximate solution of the integral equation is based on 
radial basis functions. The obtained solution is demonstrated in Figure 
3. Since the exact solution is not given, we investigate the error values 
with the rms  criterion according to Eq.(21). 

The error values for = 5,10N   and 15   for  = 400m  are illustrated in 
Table 3. The further investigations will be described in the conclusion 
section.

 
Example 4. Consider the following Fredholm quadratic integral 

equation of Urysohn’s type 

( )1 2 2
2 1

( )( ) = ( ) sin( ) ( ) ,
1 ( )sin

u tu t f t s u s ts ds
t −

+ +
+ ∫

where according to Eq.(1) 

( )2 2
2

( )( , , ( )) = sin( ) ( ) , ( , ( )) = ,
1 ( )sin

u tF t s u s s u s ts t u t
t

λ+
+

  

and ( )f t   is chosen such that the exact solution in this example is 
( ) = sin( )u t t t t− . Also, we construct the approximate solution in the 

space  C[ 1,1]− . The error functions are obtained for = 10N   and 15   
and demonstrated in Figure 4. Also, the rms  values for different N   
are reported in Table 4. 

 Example 5. Consider the Fredholm quadratic integral equation as 
follows 

1 2

0

( )( ) = ( ) tanh( ) ( ) , [0,1],
sin( ) t

tu tu t f t s t u s ds t
t e

+ ∈
+ ∫  

where the exact solution is  ( ) = sintu t e t . According to Eq.(1) 
 

2 ( ) sin (2 sinh )( , , ( )) = tanh( ) ( ), ( , ( )) = , ( ) = .
sin 2(sin )cosh

t

t t

tu t e t t tF t s u s s t u s t u t f t
t e t e t

λ −
+ +

We approximate the solution in the space  C[0,1] . The error 
function is shown in Figure 5. Also, the rms   values for different N  
are reported in Table 4.

 Example 6. Consider the Fredholm quadratic integral equation as 
follows 

3 2
2 0

( )( ) = ( ) cos( ) ( ) , , [0,3],
1 t

u tu t f t s s u s ds t s
e

+ ∈
+

∫   

where according to Eq.(1) 
2

2
( )( , , ( )) = cos( ) ( ), ( , ( )) = ,

1 t

u tF t s u s s s u s t u t
e

λ
+  

and ( )f t   is chosen so that the exact solution is  ( ) = sinu t t t . We 

approximate the solution with the radial basis functions in the space  
C[0,3] . The error function is shown in Figure 6. Also, the rms  values 
for different N  are reported in Table 4. 

0.6

0.5

0.4

0.3

0.2

0.1

0

8. x 10-6

6. x 10-6

4. x 10-6

2. x 10-6

0

-2. x 10-6

-4. x 10-6

-6. x 10-6

-8. x 10-6

0                   1                   2                   3                   4                   5 0                1                2                 3                4                5

Residual error functionApproximate solutior

Example 3. Example 3.

Figure 3: The approximate solution and residual error function for = 15N   
and  = 5T . See Example 3.

= 5N = 10N = 15N

T=1 51.336 10−× 105.403 10−× 133.062 10−×

T=2 41.797 10−× 77.218 10−× 129.935 10−×

T=5 39.609 10−× 58.583 10−× 88.608 10−×

Table 3: The rms   values for different N   when  = 1,2T  and  5 . See Example 3. 

Example = 5N = 10N = 15N

4 58.280 10−× 129.750 10−× 166.274 10−×

5 67.342 10−× 135.516 10−× 218.678 10−×

6 45.763 10−× 81.340 10−× 172.832 10−×

7 66.651 10−× 94.332 10−× 123.879 10−×

Table 4: The rms   values for different  N . 

Example 4. Example 4.
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Figure 4: The error functions for = 10N   and  15 . See Example 4.
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Figure 5: The error functions for = 10N   and  15 . See Example 5.
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 Example 7. Consider the following nonlinear Fredholm quadratic 
integral equation 

1 2

1

( )( ) = ( ) ( ) ,
1

t

t

e u tu t f t su s ds
e −

+
+ ∫

where according to Eq.(1) 

2 ( )( , , ( )) = ( ), ( , ( )) = ,
1

t

t

e u tF t s u s su s t u t
t

λ
+

 

and ( )f t  is chosen such that the exact solution in this example is  
1( ) = sin( 2)
3

u t t + . Also, we construct the approximate solution in the 
space C[ 1,1]−  . The error function is obtained for = 10N  and 15  and 
demonstrated in Figure 7. Also, the rms  values for different N  are 
reported in Table 4. 

Conclusion
The radial basis functions and the collocation method provide 

the efficient method to solve the general type of linear and nonlinear 
quadratic integral equations. Moreover, the Urysohn’s type of 
Fredholm and Volterra integral equation can be solved by this method. 
The proposed method reduces an integral equation to a system of 
equations. The obtained results showed that this approach can be 
flexible to solve many different problems effectively. 

There are some notable points in numerical results which are 
considerable. Different radial basis functions can be applicable. 
Example 1 is solved by multi quadratic (MQ), inverse quadratic (IQ) 
and Gaussian (GA) radial basis functions that lead to the good results. 
Although the other examples are solved by different radial basis 
functions, we only report the obtained results by Gaussian radial basis 
functions. In addition, number of used basis can be effective on the 

rate of convergency, see Figures 4,5 and 7. Also, magnitude of domain 
affects the accuracy. The reported numerical results in Table 2 and 3 
is related to = 1,2T  and 5 . An increase in T  causes decrease in the 
accuracy. Moreover, there are reasonable relationships between rms  
and absolute error, see Table 4 and Figures 4-7. It will be considerable 
for cases that exact solution is not given.

Since RBF method uses the norm properties, the presented method 
can be useful for two dimensional quadratic integral equations. 
Moreover, the proposed method can be extended to solve the more 
general types of problem such as quadratic integro-differential 
equations and systems included quadratic integral equations.
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Figure 6: The error function for = 15N  and the exact solution which is 
non-monotonic. See Example 6.

Example 7. Example 7.

N=10 N=15
xx

8. x 10-9

6. x 10-9

4. x 10-9

2. x 10-9

0

-2. x 10-9

-4. x 10-9

-6. x 10-9

-8. x 10-9

6. x 10-12

4. x 10-12

2. x 10-12

0

-2. x 10-12

-4. x 10-12

-6. x 10-12

Figure 7: The error functions for = 10N  and 15 . See Example 7. 

http://www.springerlink.com/content/lj2227282646850x/?MUD=MP
http://onlinelibrary.wiley.com/doi/10.1002/qj.49707633016/abstract
http://www.tandfonline.com/doi/abs/10.1080/00036818908839899
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4765672
http://www.sciencedirect.com/science/article/pii/S0898122104900247
http://www.sciencedirect.com/science/article/pii/S0377042799002423
http://www.sciencedirect.com/science/article/pii/S0022247X98959418
http://www.sciencedirect.com/science/article/pii/S089812210600037X
http://www.springerlink.com/content/mn3np2765k73323j/
http://www.sciencedirect.com/science/article/pii/S009630031000353X
http://www.sciencedirect.com/science/article/pii/S0096300307002238
http://m-hikari.com/ams/ams-2011/ams-21-24-2011/avazzadehAMS21-24-2011.pdf
http://books.google.co.in/books?hl=en&lr=&id=TRMf53opzlsC&oi=fnd&pg=PP1&dq=+MD+Buhmann+%282003%29+Radial+Basis+Functions:+Theory+and+Implementations.+Cambridge+University+Press.+&ots=dKpprFjWGX&sig=ADAspHzlKsLLJlHkABfzo6WO4eA%23v=onepage&q&f=false
http://www.sciencedirect.com/science/article/pii/089812219290175H


Citation: Avazzadeh Z (2012) A Numerical Approach for Solving Quadratic Integral Equations of Urysohn’s Type using Radial Basis Functions. J Appl 
Computat Math 1:116. doi:10.4172/2168-9679.1000116

Page 6 of 6

Volume 1 • Issue 4 • 1000116
J Appl Computat Math
ISSN:2168-9679 JACM, an open access journal 

23. Buhmann MD (1990) Multivariate cardinal interpolation with radial basis 
functions. Constr Approx 6: 225-255.

24. Buhmann MD (1989) “Multivariable Interpolation Using Radial Basis Functions”. 
PhD Dissertation, University of Cambridge, United Kingdom.

25. Jackson IRH (1988) “Radial Basis Function Methods for Multivariable 
Approximation”. PhD Dissertation, University of Cambridge, United Kingdom.

26. Madych WR, Nelson SA (1988) Multivariate interpolation and conditionally 
positive definite functions. Approx Theory Appl 4: 77-89. 

27. Madych WR, Nelson SA (1990) Multivariate interpolation and conditionally 
positive definite functions. II. Math Comput 54: 211-230. 

28. Micchelli CA (1986) Interpolation of scattered data: Distance matrices and 
conditionally positive definite functions. Constr Approx 2: 11-22.

29. Kythe PK, Schäferkotter MR (2005) Handbook of computational method for 
integration. Chapman & Hall/CRC Press. 

30. El-sayed AMA,  Hashem HHG, Ziada EAA (2010) Picard and Adomian methods 
for quadratic integral equation. Comp Appl Math 29: 447-463.

22. Buhmann MD (1990) Multivariate interpolation in odd-dimensional euclidean 
spaces using multiquadrics. Const Approx 6: 21-34.

http://www.springerlink.com/content/l278246072411323/
http://www.springerlink.com/content/r2301168m07761n8/
http://www.opengrey.eu/item/display/10068/651268
http://hdl.handle.net/10068/649937
http://www.jstor.org/discover/10.2307/2008691?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21100959100953
http://www.springerlink.com/content/w62233k766460945/
http://www.worldcat.org/title/handbook-of-computational-methods-for-integration/oclc/424190895
http://www.scielo.br/pdf/cam/v29n3/a07v29n3.pdf

	Title
	Abstract
	Corresponding author
	Keywords
	Introduction
	Basic Definitions
	Radial basis functions
	Legendre-Gauss-Lobatto (nodes and weights)

	Description of Method
	Fredholm integral equation
	Volterra integral equation

	Numerical Examples
	Conclusion
	Table 1
	Table 2
	Table 3
	Table 4
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	References



