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Abstract
Over the years, methods capable of integrating data from omics, such as transcriptomics, proteomics and 

metabolomics have emerged in Systems Biology, principally the use of networks to integrate omics information. 
In particular, the role of each biological pathway aims to understand the intermolecular interactions. While there 
are theoretical and experimental strategies to investigate biological pathways involved in cellular metabolism, 
computational modeling methods allow for a better understanding of them. Here we propose a new method to 
connect transcriptomic data with simulation approach using stochastic Petri Net (PN) metabolic networks. This new 
approach was developed based on well-studied theoretical gene expression modeling while trying to assimilate 
dynamic ordinary systems to a stochastic model function. The developed method was used to perform stochastic 
PN simulations of ethanol fermentation by Saccharomyces cerevisiae considering glucose and xylose as carbon 
sources. Lastly, we developed the PeNTIOS software, which is capable of converting Saccharomyces cerevisiae 
metabolic pathways and transcriptomic data into SBML format. The generated files can be readily imported into PN 
simulation programs. Our results show that the reconstruction of stochastic PN systems with transcriptomics data is 
a promising method that can generate new insights about biological experiments, as shown through our case study 
with the xylose-fermenting yeast.
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Introduction
The large-scale generation of biological information on metabolism 

and gene regulation led to the development of new bioinformatics 
methods based on mathematical modeling which, coupled with multi-
omics approaches, have enabled a deeper understanding of cellular 
systems. In this context, systems biology emerges as a field of study 
capable of integrating omics data and metabolic networks to extract 
information about biological responses and phenotypes.

The standard analysis in metabolic network simulation is Flux 
Balance Analysis (FBA) [1], an approach that studies metabolism 
through the reconstruction of metabolic pathways at the genomic 
scale and the integration of omics data [2]. This mathematical 
representation uses linear programming to solve reaction equations 
and to calculate possible flows using a metabolic model. In order to 
apply this methodology, one must have a completely validated model 
supported by experimental data, such as fermentation profiles and 
cellular growth. Moreover, transcriptomic and metabolomic data can 
be used as additional constraints to the model and to give support for 
the evaluation step.

Many other methodologies have been used for modeling complex 
biological systems. Examples include the ordinary differential 
equations (DOE), Boolean networks and Bayesian models. The Petri 
net (PN), introduced by Carl Petri in early 1960s [3], emerges as a 
potential mathematical approach for modeling biological systems [4] 
and metabolic networks [5]. There are various Petri Net models, such 
classical Petri Net, Continuous Petri Net, Colored Petri Net (CPT) and 
Stochastic Petri Net (SPN). SPN preserves the conditions of qualitative 
networks with the addition of an exponential probability distribution 
(delay function) to each transition trigger action. The modeling 
of stochastic networks can be generated by adding the transition 
probability estimated from previously available data. Considering 
the complexity of biological systems, the use of stochastic modeling 

represents an improvement over FBA, but it also brings the challenge 
of choosing the appropriate delay function.

In the present work we describe a new method that uses 
transcriptomic data to estimate the delay function in SPN and applies it 
to metabolic network simulations. Saccharomyces cerevisiae considering 
glucose and xylose as carbon sources, a case study for both the first 
and the second-generation ethanol production processes [6]. Lastly, 
we developed the PeNTIOS software, which is capable of converting 
Saccharomyces cerevisiae metabolic pathways and transcriptomic data 
into SBML format. The generated files can be readily imported into PN 
simulation programs.

Methods and Implementation
In a metabolic PN model, the network representation consists 

of states, transitions and tokens, normally represented by circles, 
rectangles and black dots, respectively. State S represents the substance 
(metabolites, cofactors, etc) and transition T represents the biochemical 
reaction, where the token-pass is activated only by the transition T, 
since the state immediately above contains a token. Edges connect a 
state to transition and represent the flux of the reaction promoted by 
token passing [7]. PN always reach the next state, unless if there is not 
any token to fire, resulting in the end of simulation. Other advantage 
in Petri Net simulation is the use of logical nodes. This type of notation 
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is useful to represent multiple nodes in network that cause the same 
trigger during simulation.

SPN can be expressed as a stochastic probability function F(t) of 
a PN transition using an exponential delay function given by F(t)=1-
e-λt, which has an expected distribution value of 1

λ
. In terms of PN 

transition, different values of λ change the probability function (Figure 
1A) and generate different final states to the network simulations. Thus, 
the correct choice of λ values for each transition is an essential step for 
simulations to converge the results into a real biological system.

Thus, our method is based on a gene expression model [8], in 
which the mRNA is produced from DNA at a rate km and degraded at a 
rate γm, as shown in equation 1:

[ ] [ ]m m
d mRNA k y mRNA

dt
= − 			                  (1)

The deterministic analysis of the model reveals a temporal 
variation of mRNA formation over time in function of km and γm 
ratio. The analytical solution of mRNA(t) and its final stationary state 
are observed in the equations 2 and 3, respectively, where the value  
represents the stationary state of this system.
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In a biological system, considering that at any given moment the 
metabolic flux of the cells is constant as a function of time (called steady 
state), we can assume that the transcription and degradation rates, and 
its respective ratio m

m

k
y

, will also be constant in the steady state. In this 

condition, we can consider that the ratio 
m

m

k
y  can be approximated by 

mRNA expression data obtained from transcriptome analysis, such as 
RPKM, FPKM, TPM or normalized microarray [9].

In this context, our method proposes a positive correlation 
between λ values and normalized gene expression data obtained from 
transcriptome analysis. This insight was achieved by comparing the 
graph of the delay function over the time (Figure 1A) and the graph of 
the theoretical deterministic model of inverse mRNA production over 
time (Figure 1B).

Based on the comparison of the functions steady state, we 
associated the expected value 1/λ of delay function with the plateau of 

the inverse of the equation (2) achieved in 
1
m

m

k
y

, implicating in m

m

k
 

and, therefore, associating the λ value of the delay function with 
normalized gene expression data.

Since the normalized expression values range from 0 to large 
positive values, it is necessary to rescale the range to values around 
1. Thus, we applied a simple median normalization by dividing the 
obtained values by the median value of the expression data, resulting 
in a transition function for a gene i, Fi(t), defined as, where FPKMi is 

Figure 1: A) Behavior of F(t)=1-e-λt using low (blue) and high (red) values of λ and B) mRNA deterministic inverse 
function mRNA-1(t) over the time.
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the expression value of gene i in the condition of interest and FPKMs 
represents the arrays expression of all genes in that condition.

Although this new method can be applied to any organism, we 
focused our analyses on the metabolic pathways of Saccharomyces 
cerevisiae, with a case study of the consumption of glucose and xylose 
and their conversion into ethanol. For this purpose, we implemented 
the PeNTIOS software (https://github.com/lmigueel/PeNTIOS) in Perl 
language to automatically generate a SBML file for the PN network 
simulations, including the calculation of the λ value extracted from 
transcriptomic data. PeNTIOS requires as inputs a (1) pathway name 
from the Saccharomyces Genome Database (SGD) (example: glycolysis) 

Figure 2: PeNTIOS Pipeline.

Figure 3: Petri Net model of the glucose fermentation super pathway generated by PeNTIOS with manual adjustments. The simulation initializes at β-D-glucose 
(red) and produces ethanol (green) and glycerol (blue). The logical nodes (grey) and the blue path (two reactions) were implemented manually to allow for glycerol 
production by the model.  

and (2) a tab-separated text file containing names and expression 
data (RPKM, FPKM, TPM, CPM or normalized microarray) for all 
genes in the condition of interest. PeNTIOS performs the download 
of metabolic pathways from SGD (HTML format) and makes a 
conversion into SBML format parsing the reactions. To attribute the 
correct gene name for each reaction ID, each reaction is downloaded 
from the HTML page using a reaction ID and parsed to recover the 
gene name. After that, gene expression data from each gene identified in 
metabolic pathway is extracted from transcriptomic data, normalized 
by median and converted to SBML math format for simulation (Figure 
2). Furthermore, all the simulation can be performed using Snoopy2 
v1.21 [10] in Windows/Linux.

Example of Usage

In order to validate our method, we focused on the analysis of ethanol 
production by Saccharomyces cerevisiae having glucose and xylose as 
carbon sources. Although yeast glucose uptake and its conversion into 
ethanol has been well studied through several experimental techniques 
and models [11,12], xylose fermentation remains an unresolved 
problem that requires the development of new genetically modified 
strains and presents metabolism bottlenecks. Thus, several strategies 
have been employed to study this system, including transcriptomic and 
metabolomic approaches [12,13].
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Ethanol production from glucose

PeNTIOS was used to convert the super pathway of glucose 
fermentation (glycolysis, glycerol biosynthesis and alcoholic 
fermentation pathways) and a publicly available transcriptome dataset 
(FPKM values) [11] into a SBML file containing all metabolic reactions, 
cofactors and λ value calculated by rescaled FPKM values. After the 
PeNTIOS conversion, all cofactors nodes, such as ATP and NADH, 
were manually converted to logical nodes. Also, the cofactor was 
modified from NAD-dependent to NADP-dependent in the acetate 
production reactions, as previously described [14], and two other 
reactions for acetate formation (ALD4 and ALD5) were excluded as 
they involve mitochondrial genes (details in Supplementary Figure 1). 
Finally, as shown in Figure 3, the initial conditions of the tokens in 
SPN simulation were configured to 1, 2, 1 for glucose, ATP and NAD, 
respectively, in order to allow for glucose consumption in the first 
steps of the metabolic pathway. The simulation was performed using 
Gillespie model over 1000 iterations during 60 ms. We compared the 
scenario where all the transition rates were defined as λ=1, symbolizing 
the simulation without any external information, against the scenario 
where all transition rates were corrected by the transcriptome data.

In the first scenario, the simulation resulted in ethanol and glycerol 
as the main products at a proportion of 50% each (Figure 4A). On 
the other hand, in the second scenario, the simulation resulted in the 
production of ethanol and glycerol at a ratio of 9:1 (Figure 4B), showing 
a good correlation with experimental results (Figure 4C). These results 
reveal the potential of the new method for recovering the essence of 
biological systems through computational simulation supported by 
transcriptomic data.

Ethanol production from xylose

The production of ethanol using xylose as a carbon source is 
commonly referred to as second generation (2G) ethanol technology. 
It is a promising process which can increase production and reduce 
the costs associated with the first-generation (1G) ethanol production 
from glucose. The 2G process is based on the deconstruction of 
lignocellulosic biomass to release fermentable sugars (mainly glucose 

and xylose) [6]. Since wild type yeast cannot consume xylose, it 
is necessary to perform genetic modifications that enable xylose 
consumption, such as the insertion of the exogenous xylose pathway 
genes xylose reductase (XR) and xylitol dehydrogenase (XDH) [15,16]. 
These specific modifications cause an unbalanced redox in the yeast 
cell, leading to xylitol accumulation and ultimately hindering the 
production of ethanol.

In order to evaluate the performance of our new integration method 
in the study of xylose-fermenting yeast, we created a SPN containing 
a xylose consumption pathway by insertion of the XR and XDH genes 
and the pentose phosphate pathway (PPP) into the already described 
model (Supplementary Figure 1). The stochastic simulation was then 
performed using as input transcriptomic data from a study where 
glucose and xylose consumption and their conversion into ethanol by 
a genetically modified yeast were investigated [12]. The simulation was 
started with 5 tokens of glucose or xylose, 10 tokens of ATP, 5 tokens of 
NAD+ and 5 tokens of NADP+. The Gillespie model was used over 1000 
iterations during 60 ms. The resulting number of tokens of ethanol and 
xylitol predicted by the simulation with glucose and xylose as carbon 
sources are shown in Figure 5A. A comparison of these numbers with 
experimental data, obtained from Zeng et al. [12], shows very similar 
end-products profiles (Figure 5B). The lower ethanol yield observed 
during the consumption of xylose when compared to glucose is related 
to the accumulation of xylitol, which is produced by the XR reaction 
and cannot be consumed by the XDH reaction due to the unavailability 
of the NAD cofactor.

In order to reinforce the correlation between simulation and 
experimental results, a publicly available metabolomic dataset from 
yeast genetically modified for xylose consumption was obtained 
from Wasylenko et al. [13]. Figure 5C shows the number of tokens 
of internal metabolites and the NAD/NADH ratio obtained through 
the simulation using glucose and xylose as carbon sources. The 
comparison with the retrieved metabolomic data (Figure 5D) reveals 
good agreement between simulation and experimental results. This 
is especially true for the high accumulation of intracellular xylulose 
5-phosphate (X5P) and the reduced NAD/NADH ratio. The reduction 

Figure 4: A) Amount of ethanol (red) and glycerol (blue) tokens produced from one token of glucose over 1000 cycles of simulation of the S. cerevisiae glycolytic 
pathway. As the probabilities are identical, we have equal production of ethanol and glycerol. The number of ethanol or glycerol tokens was normalized by the initial 
number of glucose tokens. B) Amount of ethanol and glycerol tokens produced from one glucose token in S. cerevisiae glycolytic pathway model, where the transition 
probability of the Petri Net network was substituted by the normalized expression values. C) Experimental results of ethanol and glycerol production using glucose 
as carbon source (data extracted from Carvalho-Netto et al. [11]).
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Figure 5: A) Fermentation end-product relative concentrations predicted by SPN simulation using glucose (red) and xylose (blue) as carbon sources. B) Experimental 
results obtained from Zeng et al. [12]. C) Normalized intensities of metabolite profiles obtained by SPN simulation using glucose (red) and xylose (blue) as carbon 
sources. D) Metabolite profiles obtained from experimental metabolomic data [13]. X5P and S7P denote xylulose 5-phosphate and sedoheptulose 7-phosphate, 
respectively.

of the NAD cofactor observed in the simulation and in the metabolomic 
data is related to xylitol production, as previously discussed. Moreover, 
the accumulation of xylulose 5-phosphate in the PPP during xylose 
consumption suggests a metabolism bottleneck that can be a target for 
genetic manipulation, such as the over expression of the transketolase 
(TKL1) gene.

The overall results showed that the here described method, which is 
based on the integration of transcriptomic data with Stochastic Petri Net 
simulation, can be used to predict end-products and internal metabolites 
profiles. The possibility of performing stochastic simulations guided by 
transcriptomic data enables the use of new strategies for interpreting 
transcriptome and metabolome experiments, besides generating new 
insights on metabolism. Although PeNTIOS has been implemented for 
Saccharomyces cerevisiae, the method developed in this work can be 
applied to other organisms.
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