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Introduction
Standard genetic algorithms (GA) have revolutionized computing 

technology representing solid and adaptive models that are based on 
the idea of natural selection [1,2]. GA are designed to emulate the 
processes observed in natural evolution. GA are used as search and 
random optimization techniques but are structured algorithms that 
demonstrate their efficiency by operating on stored information to 
create new offspring with superior performance. 

GA propose a gradual approach towards an optimal solution 
starting from an initial population. The main problem with standard 
GA is that they greatly depend on the chosen initial population and can 
be easily trapped in a local extreme point.

In order to overcome this problem Zhang et al. [2] has used the 
triangulation method to improve the research behavior of the GA. This 
is done by combining two search methods, a local and a random one, 
in order to obtain the global optimal solution without stalling. The 
triangulation method basically consist of populating the three vertices 
of a simplex by starting from a random point and computing the three 
vertices coordinates by using a constant parameter, h. Zhang et al. [1], 
multiple values were tested for the h parameter in order to compute the 
global optimum point. The h parameter represents the main constant 
value used by the triangulation method.

An attempt to improve the genetic algorithm’s results uses the fixed-
point theory in conjunction with a genetic algorithm [3]. For more 
information on fixed-point we refer to Ref. [4-7].

Zhang et al. [8,9] combined the fixed-point theory and the 
triangulation method with a genetic algorithm in order to increase 
the accuracy of the results. The necessary and sufficient condition of 
the extreme point is ∇f(x*)=0 meaning that the point gradient equals 
to 0. Since g: Rn→Rn’,(x ∈ Rn), the optimization problem is converted 
to a fixed point problem using g(x)=x-∇f(x). After the conversion the 
genetic operators are applied to the result.

The aim of our paper is to describe a novel improved genetic 
algorithm for solving dual multimodal functions. As we will see in 
Section 3, our proposed method delivers better results in comparison 
with existing work [1,2].

Our paper is organized in four main sections. It starts with this 
introduction and continues with section two that highlights the GA and 
its operators. In addition we analyze the representation, parameters, 
triangulation and fixed point implementation details. Section three 
contains the computational results compared with the Zhang et al. 
[1,2]. Finally, the conclusions section summarizes the obtained results 
and presents future research directions.

The Developed Improved Genetic Algorithm
In this section we present the implementation particularities of 

the novel improved genetic algorithm. This novel genetic algorithm 
features all the major components of a standard GA and a new one for 
the increase dimension operator. All the components of the developed 
algorithm are presented in Figure 1.

The first step in our genetic algorithm is to set the genetic 
parameters. After that the initial population is generated based on these 
genetic parameters. The initial population consists of a list of simplexes. 
We then use the genetic operators to evolve the population until we 
have a convergent population, meaning a population of completely 
labelled simplexes. These genetic operators used are:

1. Crossover

2. Mutation

3. Increase Dimension

4. Selection Operator

Since we use a dual multimodal function we have multiple optimal
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values: None, NearlyCompletedLabled and CompletlyLabled. 
We compute the type following the rules: 

a. Completely labelled - if its labels have three distinct values 0,1 
and 2 

b. Nearly-completely - if its labels have two distinct values 0,1 or 
0,2 or 1,2 

c. Non-labelled – if its labels have only one distinct value 0 or 1 
or 2

5. The population is composed of a list for simplexes. An 
IsConvergent flag is used to quickly and conveniently check if 
the population is convergent.

Initial population 

The generation of the initial population plays an important role 
in a standard genetic algorithm. The initial population generation 
technique influences the probability and the required time to obtain 
the desired solution. There are two possible generation methods for the 
initial population:

• Random: This method uses a pseudo random generator to 
obtain random individuals.

• Constructive: This method of generating the initial population 
does not rely on creating the individuals randomly and implies 
the use of a schema in order to have a better control over the 
resulting population. 

Due to the fact that this method can generate sub-optimal solutions 
or even optimal ones the genetic algorithm’s efficiency and speed can be 
greatly improved [11].

In our algorithm, we generate the initial population by choosing 
random points (x, y) from the function’s definition domain. The 
algorithm then generates a simplex from each point, each with its own 
three vertices and label. This list of simplexes represents the initial 
population.

Fitness

It’s calculated based on simplex type. The evaluation order is from 
the fittest to the weakest: completely labelled, nearly-completely labelled 
and non-labelled. Because we don’t have more degrees of fitness it is 
very difficult to choose between individuals when selecting for the next 
generation. That is why we chose to use one current population that 
increases in size during crossover and mutation and gets trimmed to 
the initial size during selection.

Genetic operators

In order to increase the algorithm’s efficiency we modified the 
genetic operators to obtain the best results.

The crossover operator: Based on the crossover probability 
input parameter a group of individuals are selected for the crossover 
operation. Since this operation is applied on two simplexes, the 
selected number of individuals must be multiple of two. We then 
select the ordered parents (groups of two simplexes), and run them 
through the crossover operation, resulting in a new child that is added 
to the population. This operation increases the number of individuals 
from the population based on the crossover probability, for example 
choosing a crossover probability of 0.6 will result in a population 
increase of approximately 60% (more simplexes) than the current 
population.

local points. In order to obtain the optimal global point, the Hessian 
matrix is applied on all local optimal points resulting the solution. Our 
algorithm implementation was built in C#, using the Maple API in 
order to solve mathematical equations. A friendly user interface was 
created for demonstrating the algorithm’s efficiency and stability.

Genetic representation

The goal of our algorithm is to find completely labeled simplexes 
that represent optimal local points. Since each simplex has three 
vertices we use the following data structure:

1. A point data structure has only two float properties, X and Y. 
This is a basic structure used to build up more complex ones 
on top.

2. A vertex data structure is derived from the point basic data 
structure that will be used to map the three vertices of each 
simplex. Besides the usual point properties a vertex also has the 
following:

a)  Label is a value used to store the computed integer label value 
(0, 1 or 2). The label of each vertex of the simplex is calculated 
applying the formula (1);

( )
( ) ( )
( ) ( )

( )

1 1 2 2

1 1 2 2

2 2

0,  0, 0
1,  0, 0

2,  0 

if g x x g x x
f x if g x x g x x

if g x x

− ≥ − ≥
= − < − ≥
 − <

                 (1)

where g1 and g2 represent the the conversion of the function f to a 
fixed point problem [8,10] with respect to x1 and x2 variables.

b) Hessian determinant is used to store the value of the computed 
Hessian determinant;

c) The computed function value is used to store the calculated 
function value for this vertex(point);

3. A simplex is constructed from three vertexes labelled Vertex0, 
Vertex1 and Vertex2. Based on these vertices the simplex type 
is computed. Also the original point of generation is kept as a 
reference.

4. The SimplexType is an enum that has the following possible 

Figure 1:  Flow diagram of the improved genetic algorithm.
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6. If the simplex is nearly-completely labelled or completely 
labelled the algorithm stops as we have found the value that we 
were looking for. The individual is replaced in the population.

Selection operator: The selection operator chooses the fittest 
individuals first. It selects the first PopulationSize number of simplexes 
from the current population ordered by simplex type: completely 
labeled, nearly-completely-labeled or non-labeled. The result represents 
the new generation that has PopulationSize number of simplex. This 
way we keep the generations at a constant length. Also a domain check is 
done on the individuals in order to make sure that if an invalid simplex 
has been generated, it will not be selected in the next generation.

Stop condition

Like all standard genetic algorithms we need a stop condition, a 
way to determine that the algorithm has found the required solution 
and that it needs to stop. Usually the stop condition is quite simple, and 
it involves a simple check. Since our algorithm handles simplexes, the 
stop condition is linked to this entity and consists of checking that all 
simplexes are completely labelled. Since each simplex knows its state, 
the stop condition implies checking the state of all simplexes.

Genetic parameters

The novel improved genetic algorithm like any other genetic 
algorithm requires a few input parameters. This input parameters 
affect the algorithm’s speed and accuracy. From the standard genetic 
parameters list, we supply the population size and the well-known 
crossover/mutation probabilities. In our particular case, we also supply 
the algorithm with the function that will use for calculations and the 
definition domain. Also we provide a constant value that will be used 
for the triangulation process.

• Function - is the field where you can enter a new function that is 
intended to be processed; 

• Domain (Min and Max) - fields that contain the definition domain 
of the function; 

• H - Is the value that is added to vertex0 to obtain vertex1. Based 
on vertex1’s values a new vertex, vertex2 is obtained by adding the 
value of h. This is the way the triangulation is done. We ensure 
that the value of the constant h, required for triangulation is 
sufficiently small in relation to the definition domain. In the used 
test cases, the definition domain is set to [-3, 3] and we choose h 
to be one of the following values 1, 0.5, 0.1.

• PopulationSize - is the size of the population, representing the 
number of the simplexes in one generation; 

• Crossover Probability=represents the crossover probability; 

• Mutation Rate - probability that the mutation occurs of an 
individual;

• Mutation Value - value that is added to a vertex.

• StepSize - is a numeric value representing the step size used by 
the increase dimension operator [2.4.3]; it is used to generate new 
points from a vector stating from the start of the vector to the end.

Triangulation and fixed point implementation

As a computation engine for our novel improved genetic algorithm 
we use Maple, via the OpenMaple interface. 

This interface allows us to embed calls to the Maple engine directly 
in our application.

The crossover operates on two input parents and generates a new 
child [11]. All vertexes from the two parents are extracted and from 
them the required three vertexes for the new child are selected. The 
vertex selection process takes vertexes with different label first, if any, 
and then selects the remaining ones from the vertexes that have not 
been chosen. The purpose is to select from the two simplexes whose 
vertices together have the highest fitness. The higher fitness is closer 
to a completely labeled simplex. A vertex cannot be chosen two times. 
Except the label selection priority (different label vertexes are selected 
first), the vertexes are chosen in the following order: firstParent.
Vertex0, firstParent.Vertex1, firstParent.Vertex2, secondParent.Vertex0, 
secondParent.Vertex1, secondParent.Vertex2.

Mutation operator: Based on the mutation probability input 
parameter a group of individuals are selected for the mutation 
operation. The mutation probability is inversely related to the fitness 
as this operation is not applied to completely labeled individuals. The 
resulting mutated individual is added to the population thus increasing 
the population by keeping the original individual. This ensures that the 
population overall fitness is not decreased by generating an individual 
with lower fitness. The operation consists of:

• Only the non-labelled and nearly-completely labelled 
individuals are processed because mutating completely labelled 
individuals can only result in an individual with a lower fitness. 
The simplexes are chosen based on the mutation probability 
parameter.

• The first vertex from the selected simplex is mutated 
by subtracting the pre-set mutation value from its base 
coordinates (x, y). From this processed value a new point will 
be generated with the following coordinates (x-mutationValue, 
y-mutationValue). This new mutated point will be used to 
generate a new mutated simplex based on the H parameter and 
triangulation method. The mutationValue should be smaller 
than h in order for the newly created vertex to stay in the 
definition domain of the function.

Increase dimension operator: The increase dimension operator 
updates the population by trying to convert the weakest individuals 
(non-labelled) into better ones (nearly-completely labelled or even 
completely labeled). It operates on one individual at a time. This 
operator does not handle nearly-completely labelled or completely 
labeled individuals as it tries to prevent the genetic algorithm getting 
stuck in a local area. Since this operator only works with non-labelled 
individuals it updates the individual and does not generate a new 
changed individual as it cannot decrease the population overall 
fitness. Starting from the increase dimension operator presented by 
Zhang [12] we implemented our version consisting of the following 
steps: 

1. The first step is to generate a vector from the first and second 
vertex. Based on it a normalized vector is generated.

2. According to a predefined stepSize [2.6] we go through the 
normalized vector and for each step we generate a new point.

3. For each new point we generate a new simplex based on that 
point, h and the triangulation method.

4. We check if the new simplex is non-labelled.

5. If the simplex is non-labelled the algorithm continues. If a 
solution is not found the individual is not updated.
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This is accomplished by referencing its dynamic-link library (.dll) 
file, maplec.dll, which is located in the Maple binary directory.

We use the C# interface, as there are many programing languages 
supported, to access the OpenMaple API.

The first step is to encode the input function in a maple compatible 
format, for example: ( )2 4 6 2

1 1 1 2 2" := 2× -1.05×1 + 1÷ 6 × - × + "f x x x x x
. After that we compute the partial derivative of the function using the 
Maple DIFF command for both x1 and x2 (2)(3).

fDiffx1:=diff(f,x1)                   (2)

fDiffx2:=diff(f,x2)                                        (3)

Based on (2)(3) the problem to be optimized is converted into a 
fixed-point problem using the following formula g(x)=x-∇f(x). The 
maple commands used for converting to a fixed-point problem are 
shown in (4)(5).

fGx1:=x1-diff(f,x1)                                        (4)

fGx2:=x2-diff(f,x2)                                        (5)

In order to generate each vertex’s label we use the (6)(7) maple 
commands that uses the fixed-point problem formulas previously 
defined (4)(5).

fLx1:= fGx1-x1                          (6)

fLx2:= fGx2-x2                         (7)

After the genetic algorithms runs, we obtain many minimal local 
points, which are completely labeled simplexes.

To find the fixed point, we search across the local minimal points 
for the one who has the Hessian matrix positively defined. This means 
that it’s determinant is greater than 0 thus resulting in the global 
minimum point. 

Hessian matrix is calculated for all 3 simplex vertices, at the time of 
the vertex’s creation thus it’s stored at vertex level.

The (8)(9) maple commands are used to compute the Hessian 
determinant.

whith(VectorCalculus):fHessian(f[x1,x2])                  (8)

whith(VectorCalculus):fHessianDet:=(Hessian(f[x1,x2]),deter
minant))                                                                                (9) [2].

For computing the function value for a certain vertex we use the 
(10) maple command since the vertex is basically a point.

eval(f,[x1={0},x2={1}])                 (10)

Computational Results
In order to asses our algorithm we performed comparison on 

benchmarks instances from literature [1,2] where available.

An application was created that has an intuitive interface Figure 2 
through which you can easily change the fields needed for testing new 
sets of data.

We have tested the algorithm using the following function (11). The 
graphical representation of this function is presented in Figure 3.

( )
6

2 4 21
1 1 1 1 1 2 2 1 2: min 2 1,05 , 3 3, 3 3

6
xf f x x x x x x x x= − + − + − ≤ ≤ − ≤ ≤          (11)

To test the efficiency of the new algorithm we have used two values 
for h (1, 0.5). 

For each value of h (1, 0.5) we used three sets of dates as presented 
in Table 1.

Since Zhang et al. [1,2] has not published the algorithm he used 
nor the complete datasets used some fields in Table 1 don’t have a value 
(N/A).

Figure 2: Application interface.
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Figure 3: Graphic model for f1.
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Figure 3: Graphic model for f1.

Sets of values for GA
[Table 3] Point coordinates (x,y) Our results

(function value)
Zhang results

(function value) [1,2]
Set of values 1 (-0.07025898, -0.05255371) 0.008916605 N/A
Set of values 2 (0.01575422, 0.03153596) 0.000994019 N/A
Set of values 3 (0.01485147, 0.01237264) 0.000410412 N/A

N/A (0.036168, 0.002933) N/A 0.002517

Table 1: Results for h=1.

Figure 4: Convergence of the algorithm.Figure 4: Convergence of the algorithm.

Sets of values for GA
[Table 3] Point coordinates (x,y) Our results

(function value)
Zhang results

(function value) [1,2]
Set of values 4 (0.01283163, -.03332525) 0.001867463 N/A
Set of values 5 (-0.0009697764, 0.004777217) 0.00002933557 N/A
Set of values 6 (-0.001642168, -0.001397997) 0.000005052073 N/A

N/A (0.014164, 0.000000) N/A 0.000412

Table 2: Results for h=0.5.

The best results from Table 1 are highlighted and were obtained 
using an initial population with 10000 individuals. 

As the initial population is increased, the algorithm accuracy 
increases as well. These results are better than the ones obtained by 
Zhang et al. [1,2].

Choosing a Crossover Probability of 0.6 will result in a population 
increase of approximately 60% (more simplexes) compared with the 

current population. As clearly shown in Figure 4 the obtained results 
for subsequent generations are converging. 

The results generated by the implemented algorithm are shown in 
Figures 5, 6 and 7. The red point represents the global minimal point of 
the function, having the coordinates (0.01485147, 0.01237264) and the 
function value f of 0.000410412.

We can observe in Table 2 that for lower value of the h parameter we 
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Figure 5: Population size=300.Figure 5: Population size=300.
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Figure 6: Graphic for 5000 individuals.Figure 6: Graphic for 5000 individuals.

Figure 7: Population size=10000.Figure 7: Population size=10000.
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obtained better results. For these parameters the minimal global point 
has the following coordinates: (-0.001642168,-0.001397997) and the 
function value is 0.000005052073.

Since Zhang et al. [1,2] has not published the algorithm he used 
nor the complete datasets used some fields in Table 1 don’t have a value 
(N/A). The best results are highlighted and are better than the ones 
obtained by Zhang et al. [1,2].

Conclusion
In this paper we described a novel improved genetic algorithm for 

solving dual multimodal functions. The main features of our approach 
are:

• We operate on a simplicial triangulation over the searching space;

• We used the fixed-point theory in conjunction with the GA;

• We obtain a convergent population by using custom GA operators.

In this way, we managed to significantly increase the accuracy of the 
improved genetic algorithm by implementing and tweaking the genetic 
operators and specially the increase dimension operator that manages 
to generate individuals with higher fitness.

Further on the focus is to adapt and optimize the algorithm for 
solving combinatorial optimization problems, as they represent a 
significant percentage of total optimization problems, for example 
Committed Travelers problem, Knapsack problem, etc. (Table 3).

References

1. Jingjun Z, Hongxia W, Ruizhen G (2011) Study of an improved genetic algorithm 
based on fixed point theory and hK1 triangulation in euclidean space. Jr Comp
6: 2173-2179.

2. Jingjun Z, Yanmin S, Ruizhen G, Yuzhen D (2008) An improved genetic
algorithm based on hK1 triangulation. International seminar on futer
information technology and management engineering, Leicestershire, United 
Kingdom.

3. Gregory JER (1991) Foundations of Genetic Algorithms 1991 (FOGA 1).
Morgan Kaufmann Publisher Inc., USA.

4. Wang Z (1993) Simplicial Fixed Points Algorithm. Press of National University
of Defense Technology.

5. Hiroshi N, Chikahiro T, Hideki A (2005) An efficient learning algorithm for finding 
multiple solutions based on fixed-point homotopy method. Proceedings of 
International Joint Conference on Neural Networks, Montreal, Canada.

6. Bugajewski D (2000) Fixed Point Theorems in Hyperconvex Spaces Revisited. 
Math Comput Modell 32: 1457-1461.

7. Andrei B, Vasile B (2013) Applications of the PL homotopy algorithm for the
computation of fixed points to unconstrained optimization problems. Creat Math 
Inform 22: 41-46.

8. Yuzhen D, Jingjun Z, Ruizhen G, Yanmin S (2009) An improved genetic
algorithm based on hK1 subdivision and fixed point. International conference on 
business intelligence and financial engineering, Beijing, China.

9. Yuzhen D, Jingjun Z, Ruizhen G, Yanmin S (2009) An improved genetic
algorithm based on J1 subdivision and fixed point theory. International 
conference on intelligent human-machine systems and cybernetics, Hangzhou, 
Zhejiang, China.

10. Jingjun Z, Yuzhen D, Ruizhen G, Yanmin S (2009) An improved genetic
algorithm based on fixed point theory for function optimization. International 
conference on computer engineering and technology, Singapore.

11. Michalewicz Z (2013) Genetic algorithms + data structures=evolution programs. 
Springer Science & Business Media, Berlin, Germany.

12. Jingjun Z, Yanmin S (2009) An improved genetic algorithm based on
K1 triangulation with variable coefficient for optimization of multimodal
functions. 4th IEEE Conference on Industrial Electronics and Applications,
Xi’an, China.

Set of values

GA Parameter 
Set of values 1 Set of values 2 Set of values 3 Set of values 4 Set of values 5 Set of values 6

Population 300 10000 10000 1000 5000 10000
Crossover Probability 0.1 0.1 0.6 0.1 0.6 0.6

Mutation Rate 0.9 0.1 0.1 0.6 0.1 0.1
Mutation Value 0.1 0.1 0.1 0.1 0.1 0.1

Increase Dimension Step size 0.1 0.1 0.1 0.01 0.1 0.1

Table 3: Sets of values for GA.

http://ojs.academypublisher.com/index.php/jcp/article/view/jcp061021732179
http://ojs.academypublisher.com/index.php/jcp/article/view/jcp061021732179
http://ojs.academypublisher.com/index.php/jcp/article/view/jcp061021732179
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4746445&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4746419%2F4746420%2F04746445.pdf%3Farnumber%3D4746445
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4746445&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4746419%2F4746420%2F04746445.pdf%3Farnumber%3D4746445
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4746445&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4746419%2F4746420%2F04746445.pdf%3Farnumber%3D4746445
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4746445&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4746419%2F4746420%2F04746445.pdf%3Farnumber%3D4746445
http://store.elsevier.com/Foundations-of-Genetic-Algorithms-1991-FOGA-1/isbn-9781558601703/
http://store.elsevier.com/Foundations-of-Genetic-Algorithms-1991-FOGA-1/isbn-9781558601703/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1555985&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1555985
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1555985&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1555985
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1555985&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1555985
http://www.sciencedirect.com/science/article/pii/S089571770000217X
http://www.sciencedirect.com/science/article/pii/S089571770000217X
http://creative-mathematics.ubm.ro/issues/abs_cmi_22_2013_1_041-046.pdf
http://creative-mathematics.ubm.ro/issues/abs_cmi_22_2013_1_041-046.pdf
http://creative-mathematics.ubm.ro/issues/abs_cmi_22_2013_1_041-046.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5208928&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5208928
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5208928&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5208928
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5208928&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5208928
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5335902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5335902
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5335902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5335902
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5335902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5335902
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5335902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5335902
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4769513&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4769513
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4769513&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4769513
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4769513&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4769513
http://www.springer.com/in/book/9783540606765
http://www.springer.com/in/book/9783540606765
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5138175
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5138175
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5138175
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5138175

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	The Developed Improved Genetic Algorithm
	Genetic representation
	Initial population 
	Fitness
	Genetic operators
	Stop condition
	Genetic parameters
	Triangulation and fixed point implementation

	Computational Results
	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	References

