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Abstract

The purpose of this note is to show that many of the examples of quantum vertex
operators do not satisfy vertex operator associativity.
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1 Introduction

Vertex operators were introduced in the earliest days of string theory and axioms for vertex alge-
bras were developed to incorporate these examples (see for instance [4, 9, 13]). Vertex algebras
are known to have the so called “associativity” property, as well as locality (or “commutativ-
ity”) property. In [3] a notion of a field algebra was developed, which generalizes the notion of
a vertex algebra. Briefly, field algebras only obey the associativity, but not the commutativity
property (see section 2 for a precise definition).

Besides vertex operators, there are many examples in the literature of quantum vertex oper-
ators (see for instance [8, 7, 10, 2], and many others). A definition of a quantum vertex algebra
should be such that it accommodates those examples of quantum vertex operators and their
properties. There are several proposals for a definition of a quantum vertex algebra. They
include Borcherds’ theory of (A, H, S)-vertex algebras, see [5], the Etingof-Kazhdan theory of
quantum vertex algebras [6], the Frenkel-Reshetikhin theory of deformed chiral algebras, see
[11]. (H. Li has developed the Etingof-Kazhdan theory further, see for example [14]). One of
the major and well known differences between quantum vertex algebras and the usual nonquan-
tized vertex algebras is that the quantum vertex operators can no longer satisfy a locality (or
“commutativity”) axiom, and there is instead a braiding map controlling the failure of locality.
In particular, the Etingof-Kazhdan definition of a quantum vertex algebra can be described as
a field algebra with a braiding map. Thus their examples necessarily satisfy the associativity
property [6]. Also, the author together with M. Bergvelt proposed in [1] a notion of an HD-
quantum vertex algebra (where HD = C[D] is the Hopf algebra of infinitesimal translations),
generalizing the Etingof-Kazhdan theory of quantum vertex algebras in various ways. In par-
ticular, the definition of an HD-quantum vertex algebra introduces, besides the braiding map,
a translation map controlling the failure of translation covariance. (As we will see in section 3
most examples of quantum vertex operators fail to satisfy the usual translation covariance). An
HD-quantum vertex algebra essentially specializes to an Etingof-Kazhdan (EK) quantum vertex
algebra in the case when the translation map is identity. A major difference from EK quantum
vertex algebras is that the HD-quantum vertex algebras are in general not field algebras. Part
of the motivation for such a definition of a quantum vertex algebra is explained in this paper:
many of the examples of quantum vertex operators in the literature cannot belong to a field
algebra, i.e., they do not satisfy the associativity property. Thus in order to incorporate those
examples, one needs to give a more general definition, such as in [1].
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The outline of the paper is as follows. In the next section we recall the definition of a
field algebra, vertex algebra and EK quantum vertex algebra. In particular we prove a technical
lemma stating that associativity implies translation covariance (thus it is not necessary to include
translation covariance as part of the definition of a field algebra). Next we summarize a class
of examples of quantum vertex operators from the literature. We then show that they fail to
satisfy the translation covariance, thus they do not obey the associativity property.

2 Field algebras and vertex algebras

We work over a field k of characteristic zero containing the rationals. Let V be a vector space
over k.

Definition 2.1 (field [9, 13]). A field a(z) on V is a series of the form

a(z) =
∑

n∈Z
a(n)z

−n−1, a(n) ∈ End(V ), such that a(n)v = 0, ∀v ∈ V, n À 0

Definition 2.2 (state-field correspondence [9, 13]). A state-field correspondence is a linear map
Y from V to the space of fields that associates to any a ∈ V a field Y (a, z) = a(z). In this case
we say that the field Y (a, z) = a(z) is the vertex operator corresponding to the state a ∈ V .

Notation 2.1. For a meromorphic function f(z, w) we denote by iz,wf(z, w) the expansion of
f(z, w) in the region |z| À |w| (i.e., in powers of w

z ), and similarly for iw,zf(z, w).

Definition 2.3 (field algebra [3, 13]). A field algebra consists of the following data:

• the space of states—a vector space V .
• the vacuum vector—a vector |0〉 ∈ V .
• the space of fields and state-field correspondence.
• a distinguished operator D : V → V .

These data should satisfy the following set of axioms

• vacuum axioms: Y (|0〉, z) = IdV , Y (a, z)|0〉 = ezDa;
• associativity axiom: for all a, b, c ∈ V there exists an element

Xz,w,0 ∈ V [[z, w]][z−1, w−1, (z − w)−1] such that:

iz,wXz,w,0(a⊗ b⊗ c) = Y (a, z)Y (b, w)c ∈ V ((z))((w)) (2.1)
iw,(z−w)Xz,w,0(a⊗ b⊗ c) = Y (Y (a, z − w)b, w)c ∈ V ((w))((z − w)) (2.2)

Definition 2.4 (vertex algebra [9, 13]). A vertex algebra is a field algebra which satisfies the
commutativity axiom

Xz,w,0(a⊗ b⊗ c) = Xw,z,0(b⊗ a⊗ c)

Remark 2.1 (EK quantum vertex algebra [6]). An EK quantum vertex algebra (see [6] for
a precise definition), is a field algebra with additional structure: the braiding map (satisfying
certain properties)

S
(τ)
z−w : V ⊗2 → V ⊗2[(z − w)±][[t]]

such that we have the following braided commutativity axiom:

Xz,w,0(a⊗ b⊗ c) = Xw,z,0(S
(τ)
w−z(b⊗ a)⊗ c)

In fact, EK quantum vertex algebra is defined differently, but in the case when the classical limit
is a nondegenerate vertex algebra, the above definition is equivalent to the original one (see [6]
for particulars).
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Lemma 2.1. Any vertex operator in a field algebra satisfies the following translation covariance
properties:

∂zY (a, z) = DY (a, z)− Y (a, z)D (2.3)
Y (Da, z) = ∂zY (a, z) (2.4)

Proof. As for any a, b, c in V Xz,w,0 is in V [[z, w]][z−1, w−1, (z−w)−1], there exists N ∈ N such
that

(z − w)N iz,wXz,w,0(a⊗ b⊗ c) = (z − w)N iw,zXz,w,0(a⊗ b⊗ c)

Change variables in equation (2.2) to get

iw,zXz+w,w,0(a⊗ b⊗ c) = Y (Y (a, z)b, w)c ∈ V ((w))((z))

from whence it follows that

(z + w)N iz,wY (a, z + w)Y (b, w)c = (z + w)NY (Y (a, z)b, w)c

Substitute the state c to be the vacuum |0〉 and use the vacuum axiom to get

iz,wY (a, z + w)ewDb = ewD(Y (a, z)b)

Now comparing the coefficients of w1 we have: ∂zY (a, z) + Y (a, z)Db = D(Y (a, z)b), which
completes the proof of (2.3). The second property is proved similarly, by putting b = |0〉.

3 Quantum vertex operators and field algebras

Many of the quantum vertex operators in the literature can be presented in the following way:
Let F be a field extension of k (for instance k(t) or k(q, t), where q, t are parameters).

Notation 3.1. Let vn ∈ F for any n ∈ N. Denote by Hv the (deformed) Heisenberg algebra
with generators hn, n ∈ Z, and relations

[hm, hn] = mv|m|δm+n,01 (3.1)

Let the vector space V0 be the highest weight module with highest weight vector |0〉 = 1, such
that hn|0〉 = 0 for n ∈ N, h0|0〉 = 0. Let V = V0 ⊗ k[Zα] = V0 ⊗ k[eα, e−α]. Denote by Ψv(z)
and Ψ−1

v (z) the following fields on V (called the exponentiated bosons):

Ψv(z) = exp


∑

n≥1

h−n

n
zn


 exp


−

∑

n≥1

hn

n
z−n


 eαz∂α (3.2)

Ψ−1
v (z) = exp


−

∑

n≥1

h−n

n
zn


 exp


+

∑

n≥1

hn

n
z−n


 e−αz−∂α (3.3)
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Examples:

• v|n| = 1 – corresponds to the Schur symmetric functions,
• v|n| = 1− tn – corresponds to the Hall-Littlewood symmetric functions,
• v|n| = 1−tn

1−qn – Macdonald case,

• v|n| =
(1−qn)(1−( p

q
)n)

1+pn – the deformed Virasoro algebra.

For convenience we also introduce the reduced exponentiated boson filed Φ(z) and its modes:

Φv(z) = exp


∑

n≥1

h−n

n
zn


 exp


−

∑

n≥1

hn

n
z−n


 =

∑

n∈Z
Φv

nzn

We recall the following results.
Fact (undeformed case). Let vn = 1 for any n ∈ N. If λ be a partition, λ = (λ1, λ2, . . . , λk),
then

Φ1
λ1

Φ1
λ2

...Φ1
λk
|0〉 = Sλ

where Sλ is the Schur function corresponding to the partition λ. (We identify h−n1 with the
power symmetric function pn.) Moreover the fields Ψ1(z) and Ψ−1

1 (z) generate a vertex operator
super-algebra (see [13]) corresponding to the rank one odd lattice.
Fact (Hall-Littlewood case). Let v|n| = 1− tn. If λ is a partition, λ = (λ1, λ2, . . . , λk), then

Φt
λ1

Φt
λ2

...Φt
λk
|0〉 = Hλ

where Hλ is the Hall-Littlewood function corresponding to the partition λ (due to Naihuan Jing,
[12]). Clearly, the exponentiated boson doesn’t belong to a super vertex algebra, as it doesn’t
satisfy the commutativity axiom. In fact we have

(1− tz1/z2)Φt(z1)Φt(z2) = −(1− tz2/z1)Φt(z2)Φt(z1)

The quantum fields Ψt(z) and Ψ−1
t (z) are the simplest quantum deformation of the fields Ψ1(z)

and Ψ−1
1 (z) (the last can be obtained from Ψt(z) and Ψ−1

t (z) by letting t = 0). One can ask,
does it belong to a field algebra? Below we prove that this is not possible.

Theorem 3.1. The exponentiated boson fields Ψ(z) and Ψ−1(z) defined in (3.2) and (3.2) can
not be vertex operators in a field algebra, except in the undeformed case, vn = 1 in (3.1) for any
n ∈ N.

Proof. Consider for simplicity the deformed case where v1 6= 1. The other deformed cases (we
have to have at least for one ñ ∈ N vñ 6= 1) are proved similarly.

Suppose the opposite is true, i.e., that the fields Ψ(z) and Ψ−1(z) belong to a field algebra.
Then by the creation axiom we have Ψ(z) = Y (eα, z) for the state eα of some field algebra, and
Ψ−1(z) = Y (e−α, z) for the state e−α. Then both those fields should satisfy the equation (2.3)
and the equation (2.4).

Note that by application to the vacuum itself the vacuum axioms immediately imply D|0〉 = 0.
For any vertex operator Y (a, z) =

∑
n∈Z a(n)z

−n−1 we have

∂zY (a, z)|0〉 = D(Y (a, z)|0〉)
which implies Da = a(−2)1. In particular for the state eα we have Deα = h−1e

α. If we apply
(2.3) we should have

Y (e−α, z)Deα = −∂zY (e−α, z)eα + D(Y (e−α, z)eα) (3.4)
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We have

∂zY (e−α, z)eα = ∂z


z−1 exp


∑

n≥1

h−n|0〉
n

zn







Y (e−α, z)Deα = z−2[h−1, h1] exp


∑

n≥1

h−n|0〉
n

zn




As D(Y (e−α, z)eα) has no term z−2, a simple comparison of both sides of (3.4) shows that this
could only be valid when [h−1, h1] = −1, i.e., we have a contradiction.

Thus if we want to construct a system of axioms for a quantum vertex algebra containing the
the fields Ψ(z) and Ψ−1(z) as vertex operators for some elements of the space of states we have
to go beyond field algebras. In particular we have to relax the translation covariance axiom.
This is what we do in our definition of HD-quantum vertex algebras in [1]. HD-quantum vertex
algebras satisfy (2.4), but not (2.3). Their properties do not include associativity, but rather
braided associativity, as we want to include the fields Ψ(z) = Y (eα, z) and Ψ−1(z) = Y (e−α, z)
as vertex operators among our examples. The braided associativity reflects the failure of the
translation covariance property (2.3) (see [1] for particulars).
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